1
|
Sawant ND, Tatke PA, Desai ND. Systematic Approach in the Development of Chitosan Functionalized Iloperidone Nanoemulsions for Transnasal Delivery, In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:247. [PMID: 39433704 DOI: 10.1208/s12249-024-02964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Iloperidone, a second-generation USFDA approved antipsychotic and BCS class II drug shows poor oral bioavailability of 28%. The present research deals with optimization of transnasal nanoemulsions of Iloperidone using Design Expert (Version 11) and further surface functionalization with chitosan for potentiating nose to brain delivery. Chitosan functionalized transnasal Iloperidone nanoemulsions were developed using oleic acid, charge inducer, Tween 80, Transcutol HP and chitosan using ultrasonication technique and evaluated. Droplet size, polydispersity index and zeta potential of Iloperidone nanoemulsions was found to be 173 ± 0.5 nm, 0.413 ± 0.2 and - 22.5 ± 0.1 mV while that of chitosan functionalized Iloperidone nanoemulsions was 146.4 ± 0.5 nm, 0.291 ± 0.02 and + 23.6 ± 0.3 mV respectively. Ninhydrin assay, TEM and FTIR studies confirmed surface functionalization of Iloperidone nanoemulsion droplets with chitosan. In vitro release of Iloperidone from nanoemulsions and chitosan functionalized nanoemulsions was 90.41 ± 2.1% and 72.02 ± 0.21% while ex vivo permeation of Iloperidone across goat nasal mucosa was 1270.58 ± 0.023 μg/cm2 and 1096.13 ± 0.043 μg/cm2 respectively at the end of 8 h. Studies in RPMI 2650 nasal and Neuro2A brain cell line lines indicated safety of chitosan functionalized transnasal Iloperidone nanoemulsions. Studies in Wistar rats showed increased cataleptic effects, reduced cognitive impairment and anxiety-related behaviour with greater brain accumulation indicating promising potential of this approach in nose to brain drug delivery.
Collapse
Affiliation(s)
- Niserga D Sawant
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India
| | - Pratima A Tatke
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India
| | - Namita D Desai
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India.
| |
Collapse
|
2
|
Edo GI, Yousif E, Al-Mashhadani MH. Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydr Res 2024; 542:109199. [PMID: 38944980 DOI: 10.1016/j.carres.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The second and most often utilized natural polymer is chitosan (CS), a naturally existing amino polysaccharide that is produced by deacetylating chitin. Numerous applications have been the subject of in-depth investigation due to its non-hazardous, biologically compatible, and biodegradable qualities. Chitosan's characteristics, such as mucoadhesion, improved permeability, controlled release of drugs, in situ gelation process, and antibacterial activity, depend on its amino (-NH2) and hydroxyl groups (-OH). This study examines the latest findings in chitosan research, including its characteristics, derivatives, preliminary research, toxic effects, pharmaceutical kinetics and chitosan nanoparticles (CS-NPs) based for non-parenteral delivery of drugs. Chitosan and its derivatives have a wide range of physical and chemical properties that make them highly promising for use in the medicinal and pharmaceutical industries. The characteristics and biological activities of chitosan and its derivative-based nanomaterials for the delivery of drugs, therapeutic gene transfer, delivery of vaccine, engineering tissues, evaluations, and other applications in medicine are highlighted in detail in the current review. Together with the techniques for binding medications to nanoparticles, the application of the nanoparticles was also dictated by their physical properties that were classified and specified. The most recent research investigations on delivery of drugs chitosan nanoparticle-based medication delivery methods applied topically, through the skin, and through the eyes were considered.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
3
|
Nagaraja B, Janga JK, Hossain S, Verma G, Palomino AM, Reddy KR. Novel chitosan-based barrier materials for environmental containment: Synthesis, characterization, and contaminant removal capacities and mechanisms. CHEMOSPHERE 2024; 359:142285. [PMID: 38723684 DOI: 10.1016/j.chemosphere.2024.142285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
This study critically appraises employing chitosan as a composite with bentonite, biochar, or both materials as an alternative to conventional barrier materials. A comprehensive literature review was conducted to identify the studies reporting chitosan-bentonite composite (CBC), chitosan amended biochar (CAB), and chitosan-bentonite-biochar composite (CBBC) for effective removal of various contaminants. The study aims to review the synthesis of these composites, identify fundamental properties affecting their adsorption capacities, and examine how these properties affect or enhance the removal abilities of other materials within the composite. Notably, CBC composites have the advantage of adsorbing both cationic and anionic species, such as heavy metals and dyes, due to the cationic nature of chitosan and the anionic nature of montmorillonite, along with the increased accessible surface area due to the clay. CAB composites have the unique advantage of being low-cost sorbents with high specific surface area, affinity for a wide range of contaminants owing to the high surface area and microporosity of biochar, and abundant available functional groups from the chitosan. Limited studies have reported the utilization of CBBC composites to remove various contaminants. These composites can be prepared by combining the steps employed in preparing CBC and CAB composites. They can benefit from the favorable adsorption properties of all three materials while also satisfying the mechanical requirements of a barrier material. This study serves as a knowledge base for future research to develop novel composite barrier materials by incorporating chitosan and biochar as amendments to bentonite.
Collapse
Affiliation(s)
- Banuchandra Nagaraja
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Jagadeesh Kumar Janga
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Sadam Hossain
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, 423 John D. Tickle Building, Knoxville, TN, 37996, USA.
| | - Gaurav Verma
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Angelica M Palomino
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, 423 John D. Tickle Building, Knoxville, TN, 37996, USA.
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Schröder V, Gherghel D, Apetroaei MR, Gîjiu CL, Isopescu R, Dinculescu D, Apetroaei MM, Enache LE, Mihai CT, Rău I, Vochița G. α-Chitosan and β-Oligochitosan Mixtures-Based Formula for In Vitro Assessment of Melanocyte Cells Response. Int J Mol Sci 2024; 25:6768. [PMID: 38928474 PMCID: PMC11204147 DOI: 10.3390/ijms25126768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or β-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/β-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that β-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the β conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. β-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.
Collapse
Affiliation(s)
- Verginica Schröder
- Departament of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capt. Aviator Al. Șerbănescu Street, Campus C, 900470 Constanta, Romania;
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 47 Lascar Catargi, 700107 Iasi, Romania;
| | - Manuela Rossemary Apetroaei
- Department of Marine Electric and Electronic Engineering, Faculty of Marine Engineering, Mircea cel Batran Naval Academy, 1 Fulgerului Street, 900218 Constanta, Romania;
| | - Cristiana Luminița Gîjiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Raluca Isopescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Daniel Dinculescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Laura Elena Enache
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | | | - Ileana Rău
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Gabriela Vochița
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 47 Lascar Catargi, 700107 Iasi, Romania;
| |
Collapse
|
5
|
Geetha V, Mayookha VP, Das M, Kumar GS. Bioactive carbohydrate polymers from marine sources as potent nutraceuticals in modulating obesity: a review. Food Sci Biotechnol 2024; 33:1517-1528. [PMID: 38623423 PMCID: PMC11016051 DOI: 10.1007/s10068-024-01525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
The majority of bioactive polysaccharides are present in some marine creatures. These polysaccharides are considered as promising anti-obesity agents, their anti-obesity properties involve a number of mechanisms, including suppression of lipid metabolism and absorption, impact on satiety, and prevention of adipocyte differentiation. Obesity is linked to type 2 diabetes, cardiovascular disease, and other metabolic syndromes. In this review various bioactive polysaccharides like chitin, chitosan, fucosylated chondroitin sulphate, chitooligosaccharides and glycosaminoglycans have been discussed for their anti-obesity effects through various pathways. Critical evaluation of observational studies and intervention trials on obesity, lipid hypertrophy, dyslipidemia, and type 2 diabetes was done with a primary focus on specific marine fauna polysaccharide as a source of seafood that is consumed all over the world. It has been observed that consumption of individual seafood constituents was effective in reducing obesity. Thus, marine derived novel bioactive polysaccharides have potential applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- V. Geetha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India
| | - V. P. Mayookha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - G. Suresh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
6
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Chitosan nanocomposites as a nano-bio tool in phytopathogen control. Carbohydr Polym 2024; 331:121858. [PMID: 38388036 DOI: 10.1016/j.carbpol.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Chitosan, an economically viable and versatile biopolymer, exhibits a wide array of advantageous physicochemical and biological properties. Chitosan nanocomposites, formed by the amalgamation of chitosan or chitosan nanoparticles with other nanoparticles or materials, have garnered extensive attention across agricultural, pharmaceutical, and biomedical domains. These nanocomposites have been rigorously investigated due to their diverse applications, notably in combatting plant pathogens. Their remarkable efficacy against phytopathogens has positioned them as a promising alternative to conventional chemical-based methods in phytopathogen control, thus exploring interest in sustainable agricultural practices with reduced reliance on chemical interventions. This review aims to highlight the anti-phytopathogenic activity of chitosan nanocomposites, emphasizing their potential in mitigating plant diseases. Additionally, it explores various synthesis methods for chitosan nanoparticles to enhance readers' understanding. Furthermore, the analysis delves into elucidating the intricate mechanisms governing the antimicrobial effectiveness of these composites against bacterial and fungal phytopathogens.
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India.
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, Surat 394125, Gujarat, India
| |
Collapse
|
7
|
Yang J, Duan A, Shen L, Liu Q, Wang F, Liu Y. Preparation and application of curcumin loaded with citric acid crosslinked chitosan-gelatin hydrogels. Int J Biol Macromol 2024; 264:130801. [PMID: 38548500 DOI: 10.1016/j.ijbiomac.2024.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
While oral administration offers safety benefits, its therapeutic efficacy is hindered by various physiological factors within the body. In this study, a novel approach was explored using a matrix consisting of 2 % chitosan and 2 % gelatin, with citric acid (CA) serving as a green cross-linking agent (ranging from 0.4 % to 1.0 %), and curcumin (Cur) as the model drug to formulate hydrogel carriers. The results showed that a 0.4 % CA concentration, the hydrogel (CGA0.4) reached swelling equilibrium in deionized water within 40 min, exhibiting a maximum swelling index was 539 g/g. The addition of Cur to the CGA hydrogel (CGACur) notably enhanced release efficiency, particularly in simulated intestinal fluid, where Cur release rates exceeded 40 % within 100 min compared to below 8 % in other solutions. Among these hydrogels, CGA0.4Cur exhibited the fastest degradation rate in the combined solution, reaching >90 % degradation after 7 days. Additionally, Cur and CA demonstrated positive effects on the tensile strength, antioxidant activity and antibacterial activity of hydrogels. Compare to the bioaccessibility of CGC (27 %), those of CGACur had increased to over 34 %. These findings offer provide theoretical support for CA-crosslinked chitosan/gelatin gels in delivering hydrophobic bioactive molecules and their application in intestinal drug delivery system.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China; Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, 253034, China.
| | - Anbang Duan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Liping Shen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Fei Wang
- The hospitial of North University of China,Taiyuan, Shanxi 030051, China
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
8
|
Celebi Ö, Bahadir T, Şimşek İ, Aydın F, Kahve Hİ, Tulun Ş, Büyük F, Celebi H. Surface defects due to bacterial residue on shrimp shell. Int J Biol Macromol 2024; 263:130353. [PMID: 38403225 DOI: 10.1016/j.ijbiomac.2024.130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The changes in the surface chemistry and morphological structure of chitin forms obtained from shrimp shells (ShpS) with and without microorganisms were evaluated. Total mesophilic aerobic bacteria (TMAB), estimated Pseudomonas spp. and Enterococcus spp. were counted in Shp-S by classical cultural counting on agar medium, where the counts were 6.56 ± 0.09, 6.30 ± 0.12, and 3.15 ± 0.03 CFU/g, respectively. Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM)/Energy dispersed X-ray (EDX) were used to assess the surface chemistry/functional groups and morphological structure for ChTfree (non-microorganism), and ChTmo (with microorganisms). ChTfree FTIR spectra presented a detailed chitin structure by OH, NH, and CO stretching vibrations, whereas specific peaks of chitin could not be detected in ChTmo. Major differences were also found in SEM analysis for ChTfree and ChTmo. ChTfree had a flat, prominent micropore, partially homogeneous structure, while ChTmo had a layered, heterogeneous, complex dense fibrous, and lost pores form. The degree of deacetylation was calculated for ChTfree and ChTmo according to FTIR and EDX data. The results suggest that the degree of deacetylation decreases in the presence of microorganisms, affecting the production of beneficial components negatively. The findings were also supported by the molecular docking model.
Collapse
Affiliation(s)
- Özgür Celebi
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Furkan Aydın
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Halil İbrahim Kahve
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Fatih Büyük
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Hakan Celebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
9
|
Zhang Q, Xie Y, Zhang Y, Huang E, Meng L, Liu Y, Tong T. Effects of Dietary Supplementation with Chitosan on the Muscle Composition, Digestion, Lipid Metabolism, and Stress Resistance of Juvenile Tilapia ( Oreochromis niloticus) Exposed to Cadmium-Induced Stress. Animals (Basel) 2024; 14:541. [PMID: 38396509 PMCID: PMC10886040 DOI: 10.3390/ani14040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to investigate the effects of dietary chitosan supplementation on the muscle composition, digestion, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia (Oreochromis niloticus) subjected to cadmium (Cd2+) stress. Juvenile tilapia with an initial body weight of 21.21 ± 0.24 g were fed with a formulated feed containing five different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan for 60 days, while the water in all experimental groups contained a Cd2+ concentration of 0.2 mg/L. The results showed that, compared with the control group (0% chitosan), the contents of crude fat and crude protein in the muscle, the activities of lipase, trypsin, and amylase in the intestine, as well as the relative expression levels of metallothionein (mt), cytochrome P450 1A (cyp1a), carnitine palmitoyltransferase-1 (cpt-1), peroxisome proliferator-activated receptor alpha (pparα), peroxisome proliferator-activated receptor gamma (pparγ), hormone-sensitive lipase (hsl), lipoprotein lipase (lpl), malate dehydrogenase (mdh), leptin (lep), fatty acid synthase (fas), sterol regulatory element-binding protein 1 (srebp1), and stearoyl-CoA desaturase (scd) genes in the liver of juveniles were significantly increased (p < 0.05). In conclusion, dietary chitosan supplementation could alleviate the effects of Cd2+ stress on the muscle composition, digestive enzymes, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia, and to some extent reduce the toxic effect of Cd2+ stress on tilapia.
Collapse
Affiliation(s)
- Qin Zhang
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Yi Xie
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Yuanhui Zhang
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Enhao Huang
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Liuqing Meng
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Yongqiang Liu
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| | - Tong Tong
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (Q.Z.); (Y.X.); (Y.Z.); (E.H.); (L.M.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530008, China
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning 530008, China
| |
Collapse
|
10
|
Pawariya V, De S, Dutta J. Chitosan-based Schiff bases: Promising materials for biomedical and industrial applications. Carbohydr Polym 2024; 323:121395. [PMID: 37940288 DOI: 10.1016/j.carbpol.2023.121395] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
There is plenty of scope for modifying chitosan, an only polycationic natural polysaccharide, owing to its reactive functional groups, namely hydroxyl and amino groups. Although innumerable numbers of chitosan derivatives have been synthesized by modifying these groups and reported elsewhere, in this review article, an attempt has been exclusively made to demonstrate the syntheses of various chitosan-based Schiff bases (CSBs) simply by allowing the reactions of reactive amino groups of chitosan with different aldehydes/ketones of interest. Due to their very peculiar and unique characteristics, such as biodegradability, biocompatibility, metal-binding capability, etc., they are found to be very useful for diversified applications. Thus, we have also attempted to showcase their very specific biomedical fields, including tissue engineering, drug delivery, and wound healing, to name a few. In addition, we have also discussed the utilization of CSBs for industrial applications such as wastewater treatment, catalysis, corrosion inhibition, sensors, etc.
Collapse
Affiliation(s)
- Varun Pawariya
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Silchar, Assam 788010, India
| | - Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India.
| |
Collapse
|
11
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
12
|
Kuo MT, Raffaelle JF, Waller EM, Varaljay VA, Wagner D, Kelley-Loughnane N, Reuel NF. Screening Enzymatic Degradation of Polyester Polyurethane with Fluorescent Single-walled Carbon Nanotube and Polymer Nanoparticle Conjugates. ACS NANO 2023; 17:17021-17030. [PMID: 37606935 DOI: 10.1021/acsnano.3c04347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Enzymatic biodegradation is a promising method to reclaim plastic materials. However, to date, a high-throughput method for screening potential enzyme candidates for biodegradation is still lacking. Here, we propose a single-walled carbon nanotube (SWCNT) fluorescence sensor for screening the enzymatic degradation of polyester polyurethane nanoparticles. Through wrapping the SWCNT with cationic chitosan, an electrostatic bond is formed between the SWCNT and Impranil, a widely applied model substrate of polyester polyurethane. As Impranil is being degraded by the enzymes, a characteristic quenching at a short reaction time followed by a brightening at a longer reaction time in the fluorescence signal is observed. The time-dependent fluorescence response is compared with turbidity measurement, and we conclude that the brightening in fluorescence results from the binding of the degradation product with the SWCNT. The proposed SWCNT sensor design has the potential to screen enzyme candidates for selective degradation of other plastic particles.
Collapse
Affiliation(s)
- Mei-Tsan Kuo
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jack F Raffaelle
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ellise McKenna Waller
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Vanessa A Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | | | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Nigel F Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Wang X, Song R, Johnson M, A S, Shen P, Zhang N, Lara-Sáez I, Xu Q, Wang W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol Biosci 2023; 23:e2300094. [PMID: 37158294 DOI: 10.1002/mabi.202300094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 KW52, Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
14
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
15
|
Recent Application Prospects of Chitosan Based Composites for the Metal Contaminants Wastewater Treatment. Polymers (Basel) 2023; 15:polym15061453. [PMID: 36987232 PMCID: PMC10057141 DOI: 10.3390/polym15061453] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heavy metals, known for their toxic nature and ability to accumulate and magnify in the food chain, are a major environmental concern. The use of environmentally friendly adsorbents, such as chitosan (CS)—a biodegradable cationic polysaccharide, has gained attention for removing heavy metals from water. This review discusses the physicochemical properties of CS and its composites and nanocomposites and their potential application in wastewater treatment.
Collapse
|
16
|
Pauli FP, Freitas CS, Pereira PR, Magalhães A, de Carvalho da Silva F, Paschoalin VMF, Ferreira VF. Exploring the Antimicrobial and Antitumoral Activities of Naphthoquinone-Grafted Chitosans. Polymers (Basel) 2023; 15:polym15061430. [PMID: 36987212 PMCID: PMC10053705 DOI: 10.3390/polym15061430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Biopolymers obtained from natural macromolecules are noteworthy among materials presenting high biocompatibility and adequate biodegradability, as is the case of chitosan (CS), making this biopolymeric compound a suitable drug delivery system. Herein, chemically-modified CS were synthetized using 2,3-dichloro-1,4-naphthoquinone (1,4-NQ) and the sodium salt of 1,2-naphthoquinone-4-sulfonic acid (1,2-NQ), producing 1,4-NQ-CS and 1,2-NQ-CS by three different methods, employing an ethanol and water mixture (EtOH:H2O), EtOH:H2O plus triethylamine and dimethylformamide. The highest substitution degree (SD) of 0.12 was achieved using water/ethanol and triethylamine as the base for 1,4-NQ-CS and 0.54 for 1,2-NQ-CS. All synthesized products were characterized by FTIR, elemental analysis, SEM, TGA, DSC, Raman, and solid-state NMR, confirming the CS modification with 1,4-NQ and 1,2-NQ. Chitosan grafting to 1,4-NQ displayed superior antimicrobial activities against Staphylococcus aureus and Staphylococcus epidermidis associated with improved cytotoxicity and efficacy, indicated by high therapeutic indices, ensuring safe application to human tissue. Although 1,4-NQ-CS inhibited the growth of human mammary adenocarcinoma cells (MDA-MB-231), it is accompanied by cytotoxicity and should be considered with caution. The findings reported herein emphasize that 1,4-NQ-grafted CS may be useful in protecting injured tissue against bacteria, commonly found in skin infections, until complete tissue recovery.
Collapse
Affiliation(s)
- Fernanda Petzold Pauli
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, Brazil;
| | - Cyntia Silva Freitas
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (C.S.F.); (P.R.P.)
| | - Patricia Ribeiro Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (C.S.F.); (P.R.P.)
| | - Alviclér Magalhães
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | | | - Vania M. F. Paschoalin
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (C.S.F.); (P.R.P.)
- Correspondence: (V.M.F.P.); (V.F.F.)
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, Brazil;
- Correspondence: (V.M.F.P.); (V.F.F.)
| |
Collapse
|
17
|
Cellulose-Chitosan Functional Biocomposites. Polymers (Basel) 2023; 15:polym15020425. [PMID: 36679314 PMCID: PMC9863338 DOI: 10.3390/polym15020425] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Here, we present a detailed review of recent research and achievements in the field of combining two extremely important polysaccharides; namely, cellulose and chitosan. The most important properties of the two polysaccharides are outlined, giving rise to the interest in their combination. We present various structures and forms of composite materials that have been developed recently. Thus, aerogels, hydrogels, films, foams, membranes, fibres, and nanofibres are discussed, alongside the main techniques for their fabrication, such as coextrusion, co-casting, electrospinning, coating, and adsorption. It is shown that the combination of bacterial cellulose with chitosan has recently gained increasing attention. This is particularly attractive, because both are representative of a biopolymer that is biodegradable and friendly to humans and the environment. The rising standard of living and growing environmental awareness are the driving forces for the development of these materials. In this review, we have shown that the field of combining these two extraordinary polysaccharides is an inexhaustible source of ideas and opportunities for the development of advanced functional materials.
Collapse
|
18
|
Emran MY, Miran W, Gomaa H, Ibrahim I, Belessiotis GV, Abdelwahab AA, Othman MB. Biowaste Materials for Advanced Biodegradable Packaging Technology. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:861-897. [DOI: 10.1007/978-3-031-09710-2_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
20
|
He X, Nkoh JN, Shi RY, Xu RK. Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120175. [PMID: 36115484 DOI: 10.1016/j.envpol.2022.120175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.
Collapse
Affiliation(s)
- Xian He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Muacevic A, Adler JR. Evaluation of the Chemical, Morphological, Physical, Mechanical, and Biological Properties of Chitosan/Polyvinyl Alcohol Nanofibrous Scaffolds for Potential Use in Oral Tissue Engineering. Cureus 2022; 14:e29850. [PMID: 36204260 PMCID: PMC9527563 DOI: 10.7759/cureus.29850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Background Chitosan is a biocompatible, biodegradable, and non-toxic natural polymer that can be fabricated by different methods for use in dental and biomedical fields. Electrospinning can produce polymeric nanofibrous scaffolds and membranes with desirable properties for use in tissue engineering. The objectives of this study were to investigate several morphological, physical, and biological characteristics of these nanofibrous scaffolds and evaluate their potential use in tissue engineering. Methodology Chitosan/polyvinyl alcohol nanofibrous scaffolds (CS/PVA NFS) in a ratio of 70/30 were fabricated by conventional electrospinning. The scaffolds were evaluated chemically by Fourier transformed infrared spectroscopy (FTIR) and morphologically by the atomic force microscope (AFM) and the field emission-scanning electron microscope (FE-SEM). These scaffolds were also evaluated mechanically by a tensile strength test and several investigations, including water contact angle, swelling ratio, and degradation ratio. Biological evaluations included protein adsorption, cell culture, and cell viability assay. Results The morphological evaluation revealed a homogenous, bead-free mat with an average fiber diameter of 172.7 ± 56.8 nm, an average pore size of 0.54 ± 0.17 µm, and porosity of 74.8% ± 3.3%; the scaffolds showed a tensile strength of 6.67 ± 0.7 Mpa. Scaffolds showed a desired hydrophilic property, as shown by the water contact angle test with a mean angle of 29.5°, while the swelling ratio was 229%, and degradability in phosphate buffer solution after 30 days was 26.9 ± 2.9%. In-vitro cell culture study with adipose tissue mesenchymal stem cells and cell viability and cytotoxicity tests by MTT assay demonstrated well-attached cells with increasing proliferation rate with no signs of cytotoxicity. Conclusions Assessment of the CS/PVA NFS revealed randomly oriented bead-free and porous mats. The scaffolds were stable at aqueous solutions following thermal treatment. They were hydrophilic, biodegradable, and biocompatible, as shown by the cell culture and MTT assay, which suggest that the fabricated scaffolds have the potential to be used in tissue engineering applications either as scaffolds, bio-grafts, or barrier membranes.
Collapse
|
22
|
Bioactive Compounds and Therapeutics from Fish: Revisiting Their Suitability in Functional Foods to Enhance Human Wellbeing. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3661866. [PMID: 36033572 PMCID: PMC9410824 DOI: 10.1155/2022/3661866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Global public awareness about fish-based diet and its health/nutritional benefits is on the rise. Fish nutritional profile projects promising bioactive and other compounds with innumerable health benefits for human wellbeing. As various reported researches involving fish/marine-derived molecules reveal promising attributes, and as the position of fish-based nutrients as nutraceuticals continue to strengthen, health challenges still confront communities worldwide, from cardiovascular disease, diabetes, and obesity to hypertension. Thus, further understanding of fish-based nutrient impact as functional foods remains crucial given the diverse prevailing compositional/nutraceutical merits. In this review, therefore, we provide important information regarding bioactive compounds and therapeutics obtained from fish, specific to the context of their suitability in functional foods to enhance human health. This contribution is hereby constructed as follows: (a) fish nutraceutical/therapeutic components, (b) constituents of fish-based nutrients and their suitability in functional foods, (c) fish antioxidant/bioactive compounds to help alleviate health conditions, (d) common human ailments alleviated by fish-based nutrients, and (e) role of fish in mental health and immune system. As increased fish consumption should be encouraged, the potential of the quality proteins, omega-3 fatty acids, and other compounds inherent in fish should steadily be harnessed.
Collapse
|
23
|
Moon SH, Choi HN, Yang YJ. Natural/Synthetic Polymer Materials for Bioink Development. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Effective Removal of Methylene Blue from Simulated Wastewater Using ZnO-Chitosan Nanocomposites: Optimization, Kinetics, and Isotherm Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154746. [PMID: 35897923 PMCID: PMC9332308 DOI: 10.3390/molecules27154746] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Successful synthesis of ZnO-chitosan nanocomposites was conducted for the removal of methylene blue from an aqueous medium. Remarkable performance of the nanocomposites was demonstrated for the effective uptake of the dye, thereby achieving 83.77, 93.78 and 97.93 mg g-1 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. The corresponding adsorption efficiency was 88.77, 93.78 and 97.95 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. Upon regeneration, good reusability of the nanocomposites was manifested for the continuous removal of the dye up to six consecutive cycles. The adsorption process was kinetically described by a pseudo-first order model, while the isotherms were best fitted by the Langmuir model.
Collapse
|
25
|
Alkabli J. Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Emran MY, Miran W, Gomaa H, Ibrahim I, Belessiotis GV, Abdelwahab AA, Othman MB. Biowaste Materials for Advanced Biodegradable Packaging Technology. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-37. [DOI: 10.1007/978-3-030-83783-9_46-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 09/01/2023]
|
27
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
28
|
Evaluation of α-Chitosan from Crab Shell and β-Chitosan from Squid Gladius Based on Biochemistry Performance. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this study is to innovatively evaluate the biochemistry performance of α-chitosan from Portunus trituberculatus shell and β-chitosan from Illex argentinus squid gladius by using the weighted composite index method, and provide a theoretical basis for better development and utilization of chitosan biomedical materials. To build a composite evaluation system, seven key indicators, including molecular weight (Mw), deacetylation degree (DD), water binding capacity (WBC), fat binding capacity (FBC), thermal stability (TS), primary structure and secondary structure, which significantly affect chitosan biochemical characteristics, were determined and analyzed. The viscosity average Mw of chitosan was in the range of 22.5–377.1 kDa, and the DD was 83.4–97.8%. Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses of commercial chitosan (CS), crab chitosan (CSC) and squid chitosan (CSS) showed a downward trend in TS, while WBC and FBC showed an obvious upward trend. FT-IR had a similar profile in peak shape, but the peak position slightly shifted. CD indicated that chitosan maintained the double helix structure and multiple secondary structural elements. The composite weighted index values of CS, CSC and CSS were 0.85, 0.94 and 1.31 respectively, which indicated that the CSS biochemistry performance was significantly better than CSC, and β-chitosan has great potential in biomedical materials.
Collapse
|
29
|
Dhakshinamoorthy A, Jacob M, Vignesh NS, Varalakshmi P. Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview. Int J Biol Macromol 2020; 167:807-833. [PMID: 33144253 DOI: 10.1016/j.ijbiomac.2020.10.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Chitosan is one of the readily available polymers with relatively high abundance, biodegradable and sustainable materials with divergent functional groups that are employed in broad range of applications. Chitosan is widely used in many fields like adsorption, drug carrier for therapeutic activity, environmental remediation, drug formulation and among others. One of the unique features of chitosan is that it can be transformed to other forms like beads, films, flakes, sponges and fibres depending upon the applications. This review is aimed at showing the potential applications of chitosan and its modified solids in organic transformations. The number of existing articles is organized based on the nature of materials and subsequently with the types of reactions. After a brief description on the structural features of chitosan, properties, characterization methods including various analytical/microscopic techniques and some of the best practices to be followed in catalysis are also discussed. The next section of this review describes the catalytic activity of native chitosan without any modifications while the subsequent sections provide the catalytic activity of chitosan derivatives, chitosan covalently modified with metal complexes/salts through linkers and chitosan as support for metal nanoparticles (NPs). These sections discuss number of organic reactions that include Knoevenagel condensation, oxidation, reduction, heterocycles synthesis, cross-coupling reactions and pollutant degradation among others. A separate section provides the catalytic applications of chitosan and its modified forms for the production of fatty acid methyl esters (FAME) through esterification/transesterification reactions. The final section summarizes our views on the future directions of this field in the coming years.
Collapse
Affiliation(s)
| | - Manju Jacob
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| |
Collapse
|