1
|
Vicente-Garcia C, Vona D, Flemma A, Cicco SR, Farinola GM. Diatoms in Focus: Chemically Doped Biosilica for Customized Nanomaterials. Chempluschem 2024:e202400462. [PMID: 39422416 DOI: 10.1002/cplu.202400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Indexed: 10/19/2024]
Abstract
Diatoms are photosynthetic microalgae widely diffused around the globe and well adapted to thrive in diverse environments. Their success is closely related to the nanostructured biosilica shell (frustule) that serves as exoskeleton. Said structures have attracted great attention, thanks to their hierarchically ordered network of micro- and nanopores. Frustules display high specific surface, mechanical resistance and photonic properties, useful for the design of functional and complex materials, with applications including sensing, biomedicine, optoelectronics and energy storage and conversion. Current technology allows to alter the chemical composition of extracted frustules with a diverse array of elements, via chemical and biochemical strategies, without compromising their valuable morphology. We started our research on diatoms from the viewpoint of material scientists, envisaging the possibilities of these nanostructured silica shells as a general platform to obtain functional materials for several applications via chemical functionalization. Our first paper in the field was published in ChemPlusChem ten years ago. Ten years later, in this Perspective, we gather the most recent and relevant functional materials derived from diatom biosilica to show the growth and diversification that this field is currently experiencing, and the key role it will play in the near future.
Collapse
Affiliation(s)
- Cesar Vicente-Garcia
- Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Danilo Vona
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università Degli Studi di Bari "Aldo Moro", Via Amendola, 165/a, 70126, Bari, Italy
| | - Annarita Flemma
- Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Stefania Roberta Cicco
- CNR Istituto di Chimica dei Composti Organometallici, Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Gianluca Maria Farinola
- Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
2
|
Kang S, Woo Y, Seo Y, Yoo D, Kwon D, Park H, Lee SD, Yoo HY, Lee T. A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System. Pharmaceutics 2024; 16:1171. [PMID: 39339207 PMCID: PMC11434644 DOI: 10.3390/pharmaceutics16091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them.
Collapse
Affiliation(s)
- Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daeryul Kwon
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Li Y, Zhang C, Hu Z. Hydraulic retention time governed the micro/nanostructures of titanium-incorporated diatoms and their photocatalytic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123398. [PMID: 38272163 DOI: 10.1016/j.envpol.2024.123398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Titanium-incorporated diatoms are promising biomaterials to photodegrade micropollutants such as pharmaceuticals and personal care products (PPCPs). Hydraulic retention time (HRT) is a key parameter for diatom cultivation and the incorporation of titanium into diatom frustules. This study assessed how HRT governs the micro/nanostructures, titania (TiO2) content and distribution, and the photocatalytic activity of titanium-incorporated diatom frustules. We cultivated a diatom strain Stephanodiscus hantzschii using a feed solution containing titanium(IV) in membrane bioreactors (MBRs) at a solids retention time (SRT) of 10 d and staged HRTs from 24 to 12 and to 6 h. The decrease in HRT reduced the porosity of diatom frustules but increased their silicon and titania contents. When the HRT decreased from 24 to 12 and to 6 h, the specific surface areas of the diatom decreased from 37.65 ± 3.19 to 31.53 ± 3.71 and to 18.43 ± 2.69 m2·g-1 frustules, while the titanium (Ti) contents increased from 53 ± 14 to 71 ± 9 and to 85 ± 13 mg Ti·g-1 frustules. The increase in the influent flow rates of the MBRs with decreasing HRTs likely enhanced nutrient diffusion inside the diatom valve pores, facilitating the uptake and incorporation of silicon and titanium. The titanium-incorporated frustules were effective in removing two representative PPCPs, bisphenol A (BPA) and N,N-diethyl-meta-toluamide (DEET), from water. As photocatalytic activity depends on the amount of titanium, decreasing the HRT substantially increased the photocatalytic activity of the titanium-incorporated frustules. In batch tests under ultraviolet light, frustules from the diatom cultivated at HRTs of 24, 12, and 6 h had the pseudo-first-order removal (mainly through photodegradation) rate constants of BPA of 0.376, 0.456, and 0.683 h-1, respectively. Under the same experimental condition, the pseudo-first-order removal rate constants of DEET by the frustules cultivated at HRTs of 24, 12, and 6 h increased from 0.270 to 0.330 and to 0.480 h-1.
Collapse
Affiliation(s)
- Yan Li
- NingboTech University, Ningbo, 315000, China; Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| | - Chiqian Zhang
- Civil Engineering Program, College of Engineering & Computer Science, Arkansas State University, Arkansas, 72467, United States.
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| |
Collapse
|
4
|
Shchipunov Y. Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 17:224. [PMID: 38204077 PMCID: PMC10779932 DOI: 10.3390/ma17010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.
Collapse
Affiliation(s)
- Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
5
|
Bekissanova Z, Railean V, Wojtczak I, Brzozowska W, Trykowski G, Ospanova A, Sprynskyy M. Synthesis and Antimicrobial Activity of 3D Micro-Nanostructured Diatom Biosilica Coated by Epitaxially Growing Ag-AgCl Hybrid Nanoparticles. Biomimetics (Basel) 2023; 9:5. [PMID: 38248579 PMCID: PMC10813397 DOI: 10.3390/biomimetics9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The 3D (three-dimensional) micro-nanostructured diatom biosilica obtained from cultivated diatoms was used as a support to immobilize epitaxially growing AgCl-Ag hybrid nanoparticles ((Ag-AgCl)NPs) for the synthesis of nanocomposites with antimicrobial properties. The prepared composites that contained epitaxially grown (Ag-AgCl)NPs were investigated in terms of their morphological and structural characteristics, elemental and mineral composition, crystalline forms, zeta potential, and photoluminescence properties using a variety of instrumental methods including SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDX (energy-dispersive X-ray spectroscopy), XRD (X-ray powder diffraction), zeta-potential measurement, and photoluminescence spectroscopy. The content of (AgCl-Ag)NPs in the hybrid composites amounted to 4.6 mg/g and 8.4 mg/g with AgClNPs/AgNPs ratios as a percentage of 86/14 and 51/49, respectively. Hybrid nanoparticles were evenly dispersed with a dominant size of 5 to 25 nm in composite with an amount of 8.4 mg/g of silver. The average size of the nanoparticles was 7.5 nm; also, there were nanoparticles with a size of 1-2 nm and particles that were 20-40 nm. The synthesis of (Ag-AgCl)NPs and their potential mechanism were studied. The MIC (the minimum inhibitory concentration method) approach was used to investigate the antimicrobial activity against microorganisms Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The nanocomposites containing (Ag-AgCl)NPs and natural diatom biosilica showed resistance to bacterial strains from the American Type Cultures Collection and clinical isolates (diabetic foot infection and wound isolates).
Collapse
Affiliation(s)
- Zhanar Bekissanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.B.); (A.O.)
- Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland;
| | - Weronika Brzozowska
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Grzegorz Trykowski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Alyiya Ospanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.B.); (A.O.)
- Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland;
| |
Collapse
|
6
|
Li Y, Zhang C, He X, Hu Z. Solids retention time dependent, tunable diatom hierarchical micro/nanostructures and their effect on nutrient removal. WATER RESEARCH 2022; 216:118346. [PMID: 35358880 DOI: 10.1016/j.watres.2022.118346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The hierarchical three-dimensional (3D) micro/nanostructures of diatoms make them a promising biomaterial for fabricating nanomaterials, producing bioactive pharmaceuticals or nutraceuticals, and removing micropollutants. For diatom production in a continuous flow system, little is known how bioreactor operating parameters, especially solids retention time (SRT), affect the 3D structures of diatoms. This study demonstrated that tunable diatom micro/nanostructures could be produced by varying the SRT of membrane bioreactors (MBRs). A diatom strain (Stephanodiscus hantzschii) was cultivated in two identical MBRs with a fixed hydraulic retention time (HRT) of 24 h and staged SRTs from 5, to 10, and to 20 d. As SRTs increased from 5 to 20 d, important characteristics of diatom micro/nanostructures showed linear decreases: the diameters of foramina on the areola layer decreased from 170 ± 10 to 130 ± 12 nm, the numbers of nanopores per cribrum layer decreased from 20 ± 3 to 12 ± 2, and the specific surface areas of the diatoms decreased from 36.01 ± 1.27 to 12.67 ± 2.45 m2·g-1. However, the average diatom heights increased from 2.9 ± 0.3 to 3.9 ± 0.4 µm, while diatom cell diameter (5 µm) and nanopore size (20 nm) remained unchanged. The silicon content of diatoms also linearly increased with SRT. The decrease in diatom porosity and increase in silicon content were probably due to the reduced diatom growth rates (likely resulting in less pores) at increasing SRTs, which also facilitated silica deposition as the overall diatom population stayed longer in the MBRs. As the SRTs increased from 5 to 10, and to 20 d, the nitrate (NO3-) removal efficiency decreased from 75% to 70%, and to 60%, respectively, whereas phosphorus (P) removal efficiency increased from 74% to 80%, and to 90%, respectively. The opposite trends in efficiencies were because NO3--N was removed by cellular uptake and biomass waste whereas P was mainly removed through diatom-assisted chemical precipitation.
Collapse
Affiliation(s)
- Yan Li
- NingboTech University, Ningbo 315000, China; Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Xiaoqing He
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri, 65211, USA; Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA.
| |
Collapse
|
7
|
De Tommasi E, De Luca AC. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:3080-3101. [PMID: 35774319 PMCID: PMC9203090 DOI: 10.1364/boe.457483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/01/2023]
Abstract
Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Endocrinology and Experimental Oncology "Gaetano Salvatore", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| |
Collapse
|
8
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
9
|
De Tommasi E, Rea I, Ferrara MA, De Stefano L, De Stefano M, Al-Handal AY, Stamenković M, Wulff A. Underwater Light Manipulation by the Benthic Diatom Ctenophora pulchella: From PAR Efficient Collection to UVR Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2855. [PMID: 34835620 PMCID: PMC8621762 DOI: 10.3390/nano11112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Several species of diatoms, unicellular microalgae which constitute the main component of phytoplankton, are characterized by an impressive photosynthetic efficiency while presenting a noticeable tolerance versus exposure to detrimental UV radiation (UVR). In particular, the growth rate of the araphid diatom Ctenophora pulchella is not significantly affected by harsh treatments with UVR, even in absence of detectable, specific UV-absorbing pigments and even if it is not able to avoid high UV exposure by motility. In this work we applied a multi-disciplinary approach involving numerical computation, photonics, and biological parameters in order to investigate the possible role of the frustule, micro- and nano-patterned silica shell which encloses the cell, in the ability of C. pulchella to efficiently collect photosynthetic active radiation (PAR) and to simultaneously screen the protoplasm from UVR. The characterization of the photonic properties of the frustule has been accompanied by in vivo experiments conducted in water in order to investigate its function as optical coupler between light and plastids.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Maria Antonietta Ferrara
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Mario De Stefano
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Adil Y. Al-Handal
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| | - Marija Stamenković
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
- Department of Ecology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| |
Collapse
|
10
|
Multi-Element Composition of Diatom Chaetoceros spp. from Natural Phytoplankton Assemblages of the Russian Arctic Seas. BIOLOGY 2021; 10:biology10101009. [PMID: 34681108 PMCID: PMC8533213 DOI: 10.3390/biology10101009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023]
Abstract
Simple Summary Despite the long history of studying the elemental composition of phytoplankton and its individual ecological and systematic groups or specific algae species, the global dataset is far from completed. Our original research aims to study the elemental composition of a certain taxonomic group of marine diatoms, whose representatives make a significant contribution to primary production in the Arctic Ocean. The data on the chemical composition of diatom microalgae are discussed concerning their role in the global biogeochemical circulation of elements in the ocean. In particular, the obtained data make a prominent input to the study of the multi-element composition of marine diatom species, namely Chaetoceros spp., inhabiting the shelf seas of the Arctic Ocean. These data may be used as a basis for the cultivation of marine diatom strains for obtaining commercially promising producers of biogenic silica or valuable biological products that can be used as raw materials in the production of feed and nutrition for agriculture and aquaculture. Abstract Data on the elemental composition of the diatom Chaetoceros spp. from natural phytoplankton communities of Arctic marine ecosystems are presented for the first time. Samples were collected during the 69th cruise (22 August–26 September 2017) of the R/V Akademik Mstislav Keldysh in the Kara, Laptev, and East Siberian Seas. The multi-element composition of the diatom microalgae was studied by ICP-AES and ICP-MS methods. The contents of major (Na, Mg, Al, Si, P, S, K and Ca), trace (Li, Be, B, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb, Bi, Th and U) and rare earth (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) elements varied greatly, which was probably associated with the peculiarities of the functional state and mineral nutrition of phytoplankton in the autumn period. Biogenic silicon was the dominant component of the chemical composition of Chaetoceros spp., averaging 19.10 ± 0.58% of dry weight (DW). Other significant macronutrients were alkaline (Na and K) and alkaline earth (Ca and Mg) metals as well as biogenic (S and P) and essential (Al and Fe) elements. Their total contents varied from 1.26 to 2.72% DW, averaging 2.07 ± 0.43% DW. The Al:Si ratio for natural assemblages of Chaetoceros spp. of the shelf seas of the Arctic Ocean was 5.8 × 10−3. The total concentrations of trace and rare earth elements on average were 654.42 ± 120.07 and 4.14 ± 1.37 μg g−1 DW, respectively. We summarize the scarce data on the average chemical composition of marine and oceanic phytoplankton and discuss the limitations and approaches of such studies. We conclude on the lack of data and the need for further targeted studies on this issue.
Collapse
|
11
|
Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet. In the present review, we highlight the frustule formation process, the most common purification techniques, as well as advantages and bottlenecks related to the employment of diatom-derived silica for medical purposes, suggesting possible solutions for a large-scale biosilica production.
Collapse
|