1
|
van Brenk B, Kruidhof L, Kemperman AJB, van der Meer WGJ, Wösten HAB. Discoloration of textile dyes by spent mushroom substrate of Agaricus bisporus. BIORESOURCE TECHNOLOGY 2024; 402:130807. [PMID: 38723727 DOI: 10.1016/j.biortech.2024.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.
Collapse
Affiliation(s)
- Brigit van Brenk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Leodie Kruidhof
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Antoine J B Kemperman
- Membrane Science and Technology Cluster, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Walter G J van der Meer
- Membrane Science and Technology Cluster, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands; Oasen N.V., P.O. Box 122, 2800 AC Gouda, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
2
|
Licona-Juárez KC, Bezerra AVS, Oliveira ITC, Massingue CD, Medina HR, Rangel DEN. Congo red induces trans-priming to UV-B radiation in Metarhizium robertsii. Fungal Biol 2023; 127:1544-1550. [PMID: 38097328 DOI: 10.1016/j.funbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 12/18/2023]
Abstract
Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.
Collapse
Affiliation(s)
- Karla Cecilia Licona-Juárez
- Universidade Brasil, São Paulo, SP, 08230-030, Brazil; Laboratorio de Biología Molecular, Tecnológico Nacional de Mexico, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | | | | | - Humberto R Medina
- Laboratorio de Biología Molecular, Tecnológico Nacional de Mexico, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná (UTFPR), Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
3
|
Ridtibud S, Suwannasai N, Sawasdee A, Champreda V, Phosri C, Sarp S, Pisutpaisal N, Boonyawanich S. Screening of White-Rot Fungi Isolates for Decolorization of Pulp and Paper Mill Effluent and Assessment of Biodegradation and Biosorption Processes. Curr Microbiol 2023; 80:350. [PMID: 37735278 DOI: 10.1007/s00284-023-03464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Ten white-rot fungal isolates were evaluated for the decolorization potential of pulp and paper mill effluent. Trametes elegans PP17-06, Pseudolagarobasidium sp. PP17-33, and Microporus sp.2 PP17-20 showed the highest decolorization efficiencies between 42 and 54% in 5 d. To reveal the mechanisms involved in decolorization and assess the long-term performance, PP17-06, which showed the highest decolorization efficiency, was further investigated. It could reduce the ADMI color scale by 63.6% in 10 d. However, extending the treatment period for more than 10 d did not significantly enhance the decolorization efficiencies. The maximum MnP activity of 3.27 U L-1 was observed on the 6 d during the biodegradation. In comparison, laccase activities were low with the maximum activity of 0.38 U L-1 (24 d). No significant LiP activities were monitored during the experiment. Dead fungal biomass showed an optimum decolorization efficiency of 44.18% in 8 d employing the biosorption mechanism. No significant changes in the decolorization efficiency were observed after that, suggesting the equilibrium status was reached. These results revealed that PP17-06 has the potential to decolorize pulp and paper mill effluent by employing both biodegradation and biosorption processes.
Collapse
Affiliation(s)
- Sanhathai Ridtibud
- Department of Agro-Industrial, Food, and Environment Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Nuttika Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Watthana, Bangkok, 10110, Thailand
| | - Apichaya Sawasdee
- Program in Innovation of Environmental Management, College of Innovative Management, Valaya Alongkorn Rajabhat University Under the Royal Patronage, Pathumthani, 13180, Thailand.
| | - Verawat Champreda
- Biorefinery Technology and Bioproducts Research Group, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
- BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Cherdchai Phosri
- Department of Biology, Faculty of Science, Nakhon Phanom University, 124 Moo 12, Ard-Samart Subdistrict, Muang District, Nakhon Phanom, 48000, Thailand
| | - Sarper Sarp
- Water Engineering and Development Centre, The John Pickford Building School of Architecture, Building and Civil Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Nipon Pisutpaisal
- Department of Agro-Industrial, Food, and Environment Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
- The Biosensor and Bioelectronics Technology Centre, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| | - Siriorn Boonyawanich
- Department of Agro-Industrial, Food, and Environment Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
- The Biosensor and Bioelectronics Technology Centre, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| |
Collapse
|
4
|
Kulkarni K, Kurhade S, Chendake Y, Kulkarni A, Satpute S. Utilization of Low Cost Biofertilizers for Adsorptive Removal of Congo Red Dye. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:33. [PMID: 37667101 DOI: 10.1007/s00128-023-03784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
Presence of colors, organic surface finishing agents and surfactants in textile industry effluent makes it highly detrimental for surrounding environment. Hence the effluent from textile industry needs treatment for removal of these colors, organic and inorganic components before its disposal. Hence applicability of low cost and environmental friendly biosorbents, Azospirillium biofertilizer and Rhizobium biofertilizer were investigated for removal of Congo red dye. Batch experimentation was carried out to check operating parameters like, temperature, dose of adsorbent, pH, agitation speed, contact time and initial concentration. The biosorption capacity for Congo red dye was 67.114 and 101.01 mg/g, for Azospirillium biofertilizer and Rhizobium biofertilizer, respectively at optimized parameters. RL factor was 0.558 and 0.568 for Azospirillium biofertilizer and Rhizobium biofertilizer. The data showed combination of interaction-based separation through better fitting of Langmuir isotherm compared to Freundlich. Its separation is well described by Pseudo-second order and intraparticle diffusion model. Adsorption was favorable at lower temperature suggesting exothermic and spontaneous nature. Reusability for Azospirillium biofertilizer and Rhizobium biofertilizer was checked for 25 mg/land. While the biological nature of Azospirillium and Rhizobium biofertilizer makes removal of Congo red dye environmentally benign.
Collapse
Affiliation(s)
- Kavita Kulkarni
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India.
| | - Sunny Kurhade
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India
| | - Yogesh Chendake
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India
| | - Anand Kulkarni
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth (Deemed To Be University), Pune, India
| | - Satchidanand Satpute
- Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune, India
| |
Collapse
|
5
|
Csillag K, Emri T, Rangel DEN, Pócsi I. pH-dependent effect of Congo Red on the growth of Aspergillus nidulans and Aspergillus niger. Fungal Biol 2023; 127:1180-1186. [PMID: 37495307 DOI: 10.1016/j.funbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
The azo dye Congo Red (CR) is frequently used as an agent to elicit cell wall integrity stress in fungi. This highly toxic aromatic, heterocyclic compound contains two azo bonds as chromophore, which are responsible for protonation under acidic conditions, leading to changes in the molecular structure of the dye and the color of the solution. The investigation of how CR affects the growth of Aspergillus nidulans and Aspergillus niger on surface cultures provided us with evidence about its pH-dependent toxicity. Reducing the starting pH of the media from 7 to 3 decreased both the toxicity of CR and the dose-dependence of its toxicity substantially. These changes can be explained by the pH-dependent structural changes of CR and its precipitation at low pH. The pH also depended on the fungi; they could induce a decrease or even an increase, which could be important in the loss of dose-dependence. Our experiments led to the conclusion that in studies to evaluate the antifungal effect of CR, properly buffered solutions with pH values adjusted to above 5 are highly recommended to achieve a well-detectable and dose-dependent antifungal effect. However, for decolorization of CR solutions, lower pH is suggested where the decreased toxicity and solubility of CR could help this process.
Collapse
Affiliation(s)
- Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Hamd A, Shaban M, Al-Senani GM, Alshabanat MN, Al-Ghamdi A, Dryaz AR, Ahmed SA, El-Sayed R, Soliman NK. Comprehensive evaluation of zeolite/marine alga nanocomposite in the removal of waste dye from industrial wastewater. Sci Rep 2023; 13:8082. [PMID: 37202430 DOI: 10.1038/s41598-023-34094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
A systematic study integrating laboratory, analytical, and case study field trial was conducted to figure out the effective adsorbent that could be used for the removal of Congo red (CR) dye from industrial wastewater effluent. The ability of the zeolite (Z) to adsorb CR dye from aqueous solutions was evaluated after it was modified by the Cystoseira compressa algae (CC) (Egyptian marine algae). Zeolite, CC algae were combined together in order to form the new composite zeolite/algae composite (ZCC) using wet impregnation technique and then characterized by the aid of different techniques. A noticeable enhancement in the adsorption capacity of newly synthesized ZCC was observed if compared to Z and CC, particularly at low CR concentrations. The batch style experiment was selected to figure out the impact of various experimental conditions on the adsorption behavior of different adsorbents. Moreover, isotherms and kinetics were estimated. According to the experimental results, the newly synthesized ZCC composite might be applied optimistically as an adsorbent for eliminating anionic dye molecules from industrial wastewater at low dye concentration. The dye adsorption on Z and ZCC followed the Langmuir isotherm, while that of CC followed the Freundlich isotherm. The dye adsorption kinetics on ZCC, CC, and Z were agreed with Elovich, intra-particle, and pseudo-second-order kinetic models, correspondingly. Adsorption mechanisms were also assessed using Weber's intraparticle diffusion model. Finally, field tests showed that the newly synthesized sorbent has a 98.5% efficient in eliminating dyes from industrial wastewater, authorizing the foundation for a recent eco-friendly adsorbent that facilitate industrial wastewater reuse.
Collapse
Grants
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Ahmed Hamd
- Basic Science Department, Faculty of Oral and Dental Medicine, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mashael N Alshabanat
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Azza Al-Ghamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
- Renewable and Sustainable Energy Unit, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Asmaa Ragab Dryaz
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
- Basic Science Department, Faculty of Engineering, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Refat El-Sayed
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Mekka 25376, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - N K Soliman
- Basic Science Department, Faculty of Oral and Dental Medicine, Nahda University Beni-Suef (NUB), Beni Suef, Egypt.
| |
Collapse
|
7
|
Moustafa MT. Preparation and characterization of low-cost adsorbents for the efficient removal of malachite green using response surface modeling and reusability studies. Sci Rep 2023; 13:4493. [PMID: 36934177 PMCID: PMC10024755 DOI: 10.1038/s41598-023-31391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
Malachite green used in textile and dyeing industries is a common persistent pollutant in wastewater and the environment causing major hazards to human health and aquatic organisms. In this study, the response surface methodology was applied to optimize the adsorptive removal of malachite green using nano-bentonite, MgO-impregnated clay, and Mucor sp. composites. The nano materials and Mucor sp. composite were characterized by FTIR, SEM and X-ray diffractometry. According to the obtained results, nano-bentonite exhibits a maximum MG adsorption efficiency of 98.6% at 35 °C, pH 7.0, 60 min contact time, 1.0 g/L adsorbent dosage, and 50 mg/L initial MG concentration. On the other hand, the maximum efficiency for MG adsorption on MgO-impregnated clay of 97.04% is observed at pH 9.0, 60 min contact time, 0.7 g/L adsorbent dosage, and 50 mg/L initial MG concentration. The Malachite green (MG) adsorption isotherm on MgO-impregnated clay corresponded with the Freundlich isotherm, with a correlation coefficient (R2) of 0.982. However, the Langmuir adsorption isotherm was a superior fit for nano-bentonite (R2 = 0.992). The adsorption activities of nano-bentonite and MgO-impregnated clay were fitted into a pseudo-second-order kinetic model with R2 of 0.996 and 0.995, respectively. Additionally, despite being recycled numerous times, the adsorbent maintained its high structural stability and removal effectiveness for nano-bentonite (94.5-86%) and MgO-impregnated clay (92-83%).
Collapse
Affiliation(s)
- Mohammed Taha Moustafa
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Shubra El Kheima 1, Al Qalyubia Governorate, 6210001, Egypt.
| |
Collapse
|
8
|
Mushtaq S, Bareen FE, Tayyeb A. Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10925-10954. [PMID: 36088439 DOI: 10.1007/s11356-022-22860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
This study was aimed at finding the metal sorption potential of six indigenous Trichoderma strains by using batch experiments for Cd (II), Cr (VI), Cu (II), and Pb (II). Trichoderma atrobrunneum showed maximum metal biosorption potential at 800 mg L-1 of initial concentration. Two adsorption isotherm models, (1) Langmuir (2) Freundlich models, were employed on the biosorption data obtained at various initial metal concentrations (10 mg L-1-200 mg L-1) and pseudo-first (PSI) and pseudo-second (PSII) order equilibrium kinetic models were subjected to data of agitation time (3-7 days). A maximum correlation coefficient value (R2) of ≤ 1 was observed for the Langmuir and PSII model. Results revealed that pH 6-7 was the best for metal sorption, while metal removal efficiency was increased by increasing temperature (298 K, 303 K, 308 K, 313 K). The results of thermodynamic study parameters (∆G°, ∆H°, ∆S°) indicated that heavy metal biosorption by Trichoderma strains was an endothermic, spontaneous, and feasible process. Moreover, surface characterization analysis through SEM, BET, FTIR, and XRD showed that T. atrobrunneum and Trichoderma sp. could adsorb more metal ions when grown in high metal concentrations. The results indicate that living biomass of T. atrobrunneum and Trichoderma sp. is an effective multi-metal biosorbent that can be used for efficacious bioremediation of bio-treatment of heavy metal polluted wastewater.
Collapse
Affiliation(s)
- Sobia Mushtaq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Firdaus E Bareen
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Haque MM, Haque MA, Mosharaf MK, Islam MS, Islam MM, Hasan M, Molla AH, Haque MA. Biofilm-mediated decolorization, degradation and detoxification of synthetic effluent by novel biofilm-producing bacteria isolated from textile dyeing effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120237. [PMID: 36150625 DOI: 10.1016/j.envpol.2022.120237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Biofilm-mediated bioremediation of xenobiotic pollutants is an environmental friendly biological technique. In this study, 36 out of 55 bacterial isolates developed biofilms in glass test tubes containing salt-optimized broth plus 2% glycerol (SOBG). Scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Congo red- and Calcofluor binding results showed biofilm matrices contain proteins, curli, nanocellulose-rich polysaccharides, nucleic acids, lipids, and peptidoglycans. Several functional groups including -OH, N-H, C-H, CO, COO-, -NH2, PO, C-O, and C-C were also predicted. By sequencing, ten novel biofilm-producing bacteria (BPB) were identified, including Exiguobacterium indicum ES31G, Kurthia gibsonii ES43G, Kluyvera cryocrescens ES45G, Cedecea lapagei ES48G, Enterobacter wuhouensis ES49G, Aeromonas caviae ES50G, Lysinibacillus sphaericus ES51G, Acinetobacter haemolyticus ES52G, Enterobacter soli ES53G, and Comamonas aquatica ES54G. The Direct Red (DR) 28 (a carcinogenic and mutagenic dye used in dyeing and biomedical processes) decolorization process was optimized in selected bacterial isolates. Under optimum conditions (SOBG medium, 75 mg L-1 dye, pH 7, 28 °C, microaerophilic condition and within 72 h of incubation), five of the bacteria tested could decolorize 97.8% ± 0.56-99.7% ± 0.45 of DR 28 dye. Azoreductase and laccase enzymes responsible for biodegradation were produced under the optimum condition. UV-Vis spectral analysis revealed that the azo (-NN-) bond peak at 476 nm had almost disappeared in all of the decolorized samples. FTIR data revealed that the foremost characteristic peaks had either partly or entirely vanished or were malformed or stretched. The chemical oxygen demand decreased by 83.3-91.3% in the decolorized samples, while plant probiotic bacterial growth was indistinguishable in the biodegraded metabolites and the original dye. Furthermore, seed germination (%) was higher in the biodegraded metabolites than the parent dye. Thus, examined BPB could provide potential solutions for the bioremediation of industrial dyes in wastewater.
Collapse
Affiliation(s)
- Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Amdadul Haque
- Department of Agro-processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Shahidul Islam
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Mynul Islam
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Mehedi Hasan
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Ashraful Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
10
|
Evaluation of Congo red dye decolorization and degradation potential of an endophyte Colletotrichum gloeosporioides isolated from Thevetia peruviana (Pers.) K. Schum. Folia Microbiol (Praha) 2022; 68:381-393. [DOI: 10.1007/s12223-022-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
|
11
|
Bilal M, Ihsanullah I, Hassan Shah MU, Bhaskar Reddy AV, Aminabhavi TM. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115981. [PMID: 36029630 DOI: 10.1016/j.jenvman.2022.115981] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The presence of hazardous dyes in wastewater cause disastrous effects on living organisms and the environment. The conventional technologies for the remediation of dyes from water have several bottlenecks such as high cost and complex operation. This review aims to present a comprehensive outlook of various bio-sorbents that are identified and successfully employed for the removal of dyes from aqueous environments. The effect of physicochemical characteristics of adsorbents such as surface functional groups, pore size distribution and surface areas are critically evaluated. The adsorption potential at different experimental conditions of diverse bio-sorbents has been also explored and the influence of certain key parameters like solution pH, temperature, concentration of dyes, dosage of bio-sorbent and agitation speed is carefully evaluated. The mechanism of dyes adsorption, regeneration potential of the employed bio-sorbents and their comparison with other commercial adsorbents are discussed. The cost comparison of different adsorbents and key technological challenges are highlighted followed by the recommendations for future research.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi-580 031, India; Department of Biotechnology, Engineering and Food Technology, Chandigarh University, Mohali, Punjab, 140 413 India.
| |
Collapse
|
12
|
Hamad HN, Idrus S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers (Basel) 2022; 14:783. [PMID: 35215695 PMCID: PMC8876036 DOI: 10.3390/polym14040783] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.
Collapse
Affiliation(s)
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
13
|
The Utilization of Mg-Al/Cu as Selective Adsorbent for Cationic Synthetic Dyes. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11043.696-706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mg-Al-LDH is a chemical compound produced through co-precipitation technique and modified with Cu(NO3)2.6H2O to form Mg-Al/Cu. However, the research on the capability of these compounds for adsorbing mixtures of cationic dyes as well as malachite green (MG), methylene blue (MB), and Rodhamine-B (Rh-B) has not been carried out. Therefore, this research aims to determine the performance of Mg-Al-LDH and Mg-Al/Cu for removing cationic dyes. The materials used were characterized by using XRD powder, FT-IR, and N2 adsorption desorption. The Adsorption process was conducted by batch system and several effects were investigated, such as kinetic parameter, isotherm, and the temperature condition. The stability feature of Mg-Al-LDH and Mg-Al/Cu was obtained from the regeneration process in the five cycles. The results presented that Mg-Al/Cu was effectively produced, which was indicated by the formation of layer at 10.792° (003), 22.94° (006), 35.53° (112), 55.78° (110), and 56.59° (116). Mg-Al-LDH and Mg-Al/Cu were found to adsorbed MG than the other cationic dyes with adsorption capacity of 68.996 mg/g and 104.167 mg/g, respectively. The unique properties of Mg-Al/Cu includes, structural stability towards the reuse of adsorbent subsequently for five times, without significant decrease of adsorption capacity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
14
|
Purification of Textile Effluents Containing C.I. Acid Violet 1: Adsorptive Removal versus Hydrogen Peroxide and Peracetic Acid Based Advanced Oxidation. Processes (Basel) 2021. [DOI: 10.3390/pr9111911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Textile effluent containing azo dyes such as C.I. Acid Violet 1 (AV1) can be degraded to toxic aromatic amines in the environment. Thus, there is a legitimate need to treat such effluents before they are discharged to surface waters. Two methods were proposed to remove AV1 from aqueous solutions: adsorption and advanced oxidation processes (AOPs). The sorption capacity of the strongly basic anion exchanger Purolite A520E of the polystyrene matrix determined from the Langmuir isotherm model was found to be 835 mg/g, while that of Lewatit S5428 of the polyacrylamide matrix Freundlich model seems to be more appropriate for describing the experimental data. The pseudo-second-order kinetic model and external diffusion are the rate limiting steps of adsorption. The removal efficiency of AV1 by the anion exchangers was higher than 99% after 40 min of phase contact time. AOPs involved the usage of hydrogen peroxide and peracetic acid (PAA) as oxidizing agents, while Fe2+ and simulated sunlight were used as oxidizing activators. AV1 oxidation followed the pseudo-first-order kinetics, and the systems with the highest values of the rate constants turned out to be those in which Fe2+ was present. The efficiency of oxidation measured by the degree of decolorization in the systems with Fe2+ was higher than 99% after 10–60 min. AV1 mineralization was slower, but after 120 min of oxidation it was higher than 98% in the H2O2/Fe2+, PAA/Fe2+ and PAA/Fe2+/sunlight systems.
Collapse
|
15
|
Green Synthesis of Ag-Au Bimetallic Nanocomposites Using Waste Tea Leaves Extract for Degradation Congo Red and 4-Nitrophenol. SUSTAINABILITY 2021. [DOI: 10.3390/su13063318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sustainable supply of pure water is a great challenge in most developing and third-world countries. Nanomaterial-based technology offers technological development for wastewater purification. Nanocatalysis hydrogenation of nitroarene and dye molecules is a hot model in many research fields. Herein, we report eco-friendly and facile technology to synthesize Ag-Au bimetallic nanocomposites. The synthesized nanocomposites are characterized by ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The synthesized nanocomposite can efficiently degrade Congo red and 4-nitrophenol in water and in the presence of sodium borohydride. The results show that it degrades Congo red and 4-nitrophenol entirely within 6 and 7 min, respectively. These results could be useful for the green synthesis of Ag-Au bimetallic nanocomposites and help to remove organic dye molecules and nitroaromatics from wastewater.
Collapse
|
16
|
Physicochemical Interactions in Systems C.I. Direct Yellow 50—Weakly Basic Resins: Kinetic, Equilibrium, and Auxiliaries Addition Aspects. WATER 2021. [DOI: 10.3390/w13030385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intensive development of many industries, including textile, paper or plastic, which consume large amounts of water and generate huge amounts of wastewater-containing toxic dyes, contribute to pollution of the aquatic environment. Among many known methods of wastewater treatment, adsorption techniques are considered the most effective. In the present study, the weakly basic anion exchangers such as Amberlyst A21, Amberlyst A23 and Amberlyst A24 of the polystyrene, phenol-formaldehyde and polyacrylic matrices were used for C.I. Direct Yellow 50 removal from aqueous solutions. The equilibrium adsorption data were well fitted to the Langmuir adsorption isotherm. Kinetic studies were described by the pseudo-second order model. The pseudo-second order rate constants were in the range of 0.0609–0.0128 g/mg·min for Amberlyst A24, 0.0038–0.0015 g/mg·min for Amberlyst A21 and 1.1945–0.0032 g/mg·min for Amberlyst A23, and decreased with the increasing initial concentration of dye from 100–500 mg/L, respectively. There were observed auxiliaries (Na2CO3, Na2SO4, anionic and non-ionic surfactants) impact on the dye uptake. The polyacrylic resin Amberlyst A24 can be promising sorbent for C.I. Direct Yellow 50 removal as it is able to uptake 666.5 mg/g of the dye compared to the phenol-formaldehyde Amberlyst A23 which has a 284.3 mg/g capacity.
Collapse
|