1
|
Salehghamari M, Mashreghi M, Matin MM, Neshati Z. Development of a bacterial cellulose-gelatin composite as a suitable scaffold for cardiac tissue engineering. Biotechnol Lett 2024; 46:887-905. [PMID: 38771508 DOI: 10.1007/s10529-024-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Cardiac tissue engineering is suggested as a promising approach to overcome problems associated with impaired myocardium. This is the first study to investigate the use of BC and gelatin for cardiomyocyte adhesion and growth. METHODS Bacterial cellulose (BC) membranes were produced by Komagataeibacter xylinus and coated or mixed with gelatin to make gelatin-coated BC (BCG) or gelatin-mixed BC (mBCG) scaffolds, respectively. BC based-scaffolds were characterized via SEM, FTIR, XRD, and AFM. Neonatal rat-ventricular cardiomyocytes (nr-vCMCs) were cultured on the scaffolds to check the capability of the composites for cardiomyocyte attachment, growth and expansion. RESULTS The average nanofibrils diameter in all scaffolds was suitable (~ 30-65 nm) for nr-vCMCs culture. Pore diameter (≥ 10 µm), surface roughness (~ 182 nm), elastic modulus (0.075 ± 0.015 MPa) in mBCG were in accordance with cardiomyocyte requirements, so that mBCG could better support attachment of nr-vCMCs with high concentration of gelatin, and appropriate surface roughness. Also, it could better support growth and expansion of nr-vCMCs due to submicron scale of nanofibrils and proper elasticity (~ 0.075 MPa). The viability of nr-vCMCs on BC and BCG scaffolds was very low even at day 2 of culture (~ ≤ 40%), but, mBCG could promote a metabolic active state of nr-vCMCs until day 7 (~ ≥ 50%). CONCLUSION According to our results, mBCG scaffold was the most suitable composite for cardiomyocyte culture, regarding its physicochemical and cell characteristics. It is suggested that improvement in mBCG stability and cell attachment features may provide a convenient scaffold for cardiac tissue engineering.
Collapse
Affiliation(s)
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
3
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
4
|
Mou X, Shah J, Roye Y, Du C, Musah S. An ultrathin membrane mediates tissue-specific morphogenesis and barrier function in a human kidney chip. SCIENCE ADVANCES 2024; 10:eadn2689. [PMID: 38838141 PMCID: PMC11152122 DOI: 10.1126/sciadv.adn2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Organ-on-chip (OOC) systems are revolutionizing tissue engineering by providing dynamic models of tissue structure, organ-level function, and disease phenotypes using human cells. However, nonbiological components of OOC devices often limit the recapitulation of in vivo-like tissue-tissue cross-talk and morphogenesis. Here, we engineered a kidney glomerulus-on-a-chip that recapitulates glomerular morphogenesis and barrier function using a biomimetic ultrathin membrane and human-induced pluripotent stem cells. The resulting chip comprised a proximate epithelial-endothelial tissue interface, which reconstituted the selective molecular filtration function of healthy and diseased kidneys. In addition, fenestrated endothelium was successfully induced from human pluripotent stem cells in an OOC device, through in vivo-like paracrine signaling across the ultrathin membrane. Thus, this device provides a dynamic tissue engineering platform for modeling human kidney-specific morphogenesis and function, enabling mechanistic studies of stem cell differentiation, organ physiology, and pathophysiology.
Collapse
Affiliation(s)
- Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Jessica Shah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Carolyn Du
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27710, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Hsu YH, Chou YC, Chen CL, Yu YH, Lu CJ, Liu SJ. Development of novel hybrid 3D-printed degradable artificial joints incorporating electrospun pharmaceutical- and growth factor-loaded nanofibers for small joint reconstruction. BIOMATERIALS ADVANCES 2024; 159:213821. [PMID: 38428121 DOI: 10.1016/j.bioadv.2024.213821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Small joint reconstruction remains challenging and can lead to prosthesis-related complications, mainly due to the suboptimal performance of the silicone materials used and adverse host reactions. In this study, we developed hybrid artificial joints using three-dimensional printing (3D printing) for polycaprolactone (PCL) and incorporated electrospun nanofibers loaded with drugs and biomolecules for small joint reconstruction. We evaluated the mechanical properties of the degradable joints and the drug discharge patterns of the nanofibers. Empirical data revealed that the 3D-printed PCL joints exhibited good mechanical and fatigue properties. The drug-eluting nanofibers sustainedly released teicoplanin, ceftazidime, and ketorolac in vitro for over 30, 19, and 30 days, respectively. Furthermore, the nanofibers released high levels of bone morphogenetic protein-2 and connective tissue growth factors for over 30 days. An in vivo animal test demonstrated that nanofiber-loaded joints released high concentrations of antibiotics and analgesics in a rabbit model for 28 days. The animals in the drug-loaded degradable joint group showed greater activity counts than those in the surgery-only group. The experimental data suggest that degradable joints with sustained release of drugs and biomolecules may be utilized in small joint arthroplasty.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Ying-Chao Chou
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chao-Lin Chen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsun Yu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chia-Jung Lu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
6
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Svyntkivska M, Makowski T, Pawlowska R, Kregiel D, de Boer EL, Piorkowska E. Cytotoxicity studies and antibacterial modification of poly(ethylene 2,5-furandicarboxylate) nonwoven. Colloids Surf B Biointerfaces 2024; 233:113609. [PMID: 37925865 DOI: 10.1016/j.colsurfb.2023.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Novel poly(ethylene 2,5-furandicarboxylate) PEF nonwovens were produced by solution electrospinning and further modification. To improve the wettability of the hydrophobic nonwovens with water, they were treated with sodium hydroxide. Cytotoxicity tests carried out with human keratinocytes confirmed that the nonwovens did not have a toxic effect on healthy cells. The hydrophilicity of the sodium hydroxide treated nonwoven favored the adherence of the cells and their growth. In turn, the two-step modification of the nonwovens by reactions with (3-mercaptopropyl)methyldimethoxysilane and silver nitrate permitted to deposit silver particles on the fiber surfaces. The bacteria growth inhibition zones around the tested specimens were observed evidencing their antibacterial activity against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Mariia Svyntkivska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Ele L de Boer
- Avantium Renewable Polymers BV, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
| | - Ewa Piorkowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
8
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Langwald SV, Ehrmann A, Sabantina L. Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. MEMBRANES 2023; 13:488. [PMID: 37233549 PMCID: PMC10220787 DOI: 10.3390/membranes13050488] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical applications, such as wound healing or tissue engineering. While most studies concentrate on their chemical and biochemical properties, the physical properties are often measured without long explanations regarding the chosen methods. Here, we give an overview of typical measurements of topological features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic properties and water uptake, mechanical and electrical properties as well as water vapor and air permeability. Besides describing typically used methods with potential modifications, we suggest some low-cost methods as alternatives in cases where special equipment is not available.
Collapse
Affiliation(s)
- Sarah Vanessa Langwald
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
10
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
11
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
12
|
Liao X, Jérôme V, Agarwal S, Freitag R, Greiner A. High Strength and High Toughness Electrospun Multifibrillar Yarns with Highly Aligned Hierarchy Intended as Anisotropic Extracellular Matrix. Macromol Biosci 2022; 22:e2200291. [PMID: 36126173 DOI: 10.1002/mabi.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Indexed: 01/15/2023]
Abstract
Electrospun nanofibers can be effectively used as a surrogate for extracellular matrices (ECMs). However, in the context of cellular mechanobiology, their mechanical performances can be enhanced by using nanofibrous materials with a high level of structural organization. Herein, this work develops multifibrillar yarns with superior mechanical performance based on biocompatible polyacrylonitrile (PAN) as surrogate ECM. Nearly perfect aligned nanofibers along with the axis of the multifibrillar yarn are prepared. These highly aligned yarns exhibit high strength, high toughness, good stress relaxation behavior, and are robust enough for technical or medical applications. Further, this work analyzes the influence of the highly aligned-hierarchical topological structure of the material on cell proliferation and cell orientation using cells derived from epithelial and connective tissues. Compared to nonoriented electrospun multifibrillar yarns and flat films, the well-ordered topology in the electrospun PAN multifibrillar yarns triggers an improved proliferation of fibroblasts and epithelial cells. Fibroblasts acquire an elongated morphology analogous to their behavior in the natural ECM. Hence, this heterogeneous multifibrillar material can be used to restore or reproduce the ECM for tissue engineering applications, notably in the skeletal muscle and tendon.
Collapse
Affiliation(s)
- Xiaojian Liao
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| | - Valérie Jérôme
- University of Bayreuth, Process Biotechnology, 95440, Bayreuth, Germany
| | - Seema Agarwal
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| | - Ruth Freitag
- University of Bayreuth, Process Biotechnology, 95440, Bayreuth, Germany
| | - Andreas Greiner
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| |
Collapse
|
13
|
Spasova M, Manolova N, Rashkov I, Naydenov M. Eco-Friendly Hybrid PLLA/Chitosan/ Trichoderma asperellum Nanomaterials as Biocontrol Dressings against Esca Disease in Grapevines. Polymers (Basel) 2022; 14:polym14122356. [PMID: 35745931 PMCID: PMC9228446 DOI: 10.3390/polym14122356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Fungi constitute the largest number of plant pathogens and are responsible for a range of serious plant diseases. Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum) are the main fungal pathogens causing esca disease in grapevines. On the other hand, there are beneficial microorganisms such as Trichoderma spp., which are able to control the growth of many phytopathogens. In the present study, innovative, eco-friendly hybrid nanomaterials were created by electrospinning PLLA, followed by the formation of a film of chitosan/Trichoderma asperellum (T. asperellum) spores on the fibers. The polymer carrier used in this study plays an active role in ensuring the viability of the biological agent during storage and, when placed in contact with moisture, ensures the agent’s normal development. Oligochitosan, as well as low molecular weight and high molecular weight chitosan, were used. The effects of chitosan molecular weight on the dynamic viscosity of chitosan solutions, film formation, mechanical properties, spore incorporation and growth were studied. The morphology of the prepared nanomaterials, and the presence of a film based on the formation of chitosan/T. asperellum spores on the PLLA fibers, were examined using scanning electron microscopy (SEM). The surface chemical compositions of the fibrous materials were studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the obtained materials were also tested. The microbiological screening that was performed revealed that the eco-friendly hybrid nanomaterials incorporated with the beneficial microorganism, T. asperellum, to hamper the growth of the pathogenic P. chlamydospora and P. aleophilum fungi. The suppression rate depended on the viscosity of the chitosan solution used for the film formation. The use of oligochitosan resulted in the most effective infection of the material with T. asperellum spores. The environmentally friendly hybrid nanomaterials obtained in this study—in which the bioagent was embedded—are promising bioactive dressings for protecting grapevines against esca disease.
Collapse
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.M.); (I.R.)
- Correspondence:
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.M.); (I.R.)
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.M.); (I.R.)
| | - Mladen Naydenov
- Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria;
| |
Collapse
|
14
|
Study on the Incorporation of Chitosan Flakes in Electrospun Polycaprolactone Scaffolds. Polymers (Basel) 2022; 14:polym14081496. [PMID: 35458246 PMCID: PMC9032814 DOI: 10.3390/polym14081496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022] Open
Abstract
Hybrid scaffolds obtained by combining two or more biopolymers are studied in the context of tissue regeneration due to the possibility of achieving new functional properties or structural features. The aim of this work was to produce a new type of hybrid polycaprolactone (PCL)/chitosan (CS) electrospun mat through the controlled deposition of CS flakes interspaced between the PCL fibers. A poly(ethylene oxide) (PEO) solution was used to transport CS flakes with controlled size. This, and the PCL solution, were simultaneously electrospun onto a rotatory mandrel in a perpendicular setup. Different PCL/CS mass ratios were also studied. The morphology of the resulting fibers, evaluated by SEM, confirmed the presence of the CS flakes between the PCL fibers. The addition of PEO/CS fibers resulted in hydrophilic mats with lower Young’s modulus relatively to PCL mats. In vitro cell culture results indicated that the addition of CS lowers both the adhesion and the proliferation of human dermal fibroblasts. The present work demonstrates the feasibility of achieving a controlled deposition of a polymeric component in granular form onto a collector where electrospun nanofibers are being deposited, thereby producing a hybrid scaffold.
Collapse
|
15
|
Electrospinning of Chitosan for Antibacterial Applications—Current Trends. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan is a natural biopolymer that can be suitable for a wide range of applications due to its biocompatibility, rigid structure, and biodegradability. Moreover, it has been proven to have an antibacterial effect against several bacteria strains by incorporating the advantages of the electrospinning technique, with which tailored nanofibrous scaffolds can be produced. A literature search is conducted in this review regarding the antibacterial effectiveness of chitosan-based nanofibers in the filtration, biomedicine, and food protection industries. The results are promising in terms of research into sustainable materials. This review focuses on the electrospinning of chitosan for antibacterial applications and shows current trends in this field. In addition, various aspects such as the parameters affecting the antibacterial properties of chitosan are presented, and the application areas of electrospun chitosan nanofibers in the fields of air and water filtration, food storage, wound treatment, and tissue engineering are discussed in more detail.
Collapse
|
16
|
Trabelsi M, Mamun A, Klöcker M, Moulefera I, Pljonkin A, Elleuch K, Sabantina L. Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:7873. [PMID: 34883875 PMCID: PMC8659674 DOI: 10.3390/s21237873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Electrospinning enables simple and cost-effective production of magnetic nanofibers by adding nanoparticles to a polymer solution. In order to increase the electrical conductivity of such nanofibers, the carbonization process is crucial. In this study, the chemical and morphological properties of magnetic nanofiber mats prepared from polyacrylonitrile (PAN)/magnetite were investigated. In our previous studies, PAN/magnetite nanofiber mats were carbonized at 500 °C, 600 °C, and 800 °C. Here, PAN/magnetite nanofiber mats were carbonized at 1000 °C. The surface morphology of these PAN/magnetite nanofiber mats is not significantly different from nanofiber mats thermally treated at 800 °C and have remained relatively flexible at 1000 °C, which can be advantageous for various application fields. The addition of nanoparticles increased the average fiber diameter compared to pure PAN nanofiber mats and improved the dimensional stability during thermal processes. The high conductivity, the high magnetization properties, as well as shielding against electromagnetic interference of such carbonized nanofibers can be proposed for use in single photon avalanche diode (SPAD), where these properties are advantageous.
Collapse
Affiliation(s)
- Marah Trabelsi
- Ecole Nationale d’Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia; (M.T.); (K.E.)
| | - Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Michaela Klöcker
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Imane Moulefera
- L.M.A.E. Laboratory, Department of Process Engineering, Faculty of Science and Technology, University of Mustapha Stambouli, Mascara 29000, Algeria;
| | - Anton Pljonkin
- Institute of Computer Technology and Information Security, Southern Federal University (SFedU), 347900 Taganrog, Russia;
| | - Khaled Elleuch
- Ecole Nationale d’Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia; (M.T.); (K.E.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| |
Collapse
|
17
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|
18
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
19
|
Sinsup P, Teeranachaideekul V, Makarasen A, Chuenchom L, Prajongtat P, Techasakul S, Yingyuad P, Dechtrirat D. Zingiber cassumunar Roxb. Essential Oil-Loaded Electrospun Poly(lactic acid)/Poly(ethylene oxide) Fiber Blend Membrane for Antibacterial Wound Dressing Application. MEMBRANES 2021; 11:648. [PMID: 34564465 PMCID: PMC8470900 DOI: 10.3390/membranes11090648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
The essential oil from Zingiber cassumunar Roxb. (Plai) has long been used in Thai herbal remedies to treat inflammation, pains, sprains, and wounds. It was therefore loaded into an electrospun fibrous membrane for use as an analgesic and antibacterial dressing for wound care. The polymer blend between poly(lactic acid) and poly(ethylene oxide) was selected as the material of choice because its wettability can be easily tuned by changing the blend ratio. Increasing the hydrophilicity and water uptake ability of the material while retaining its structural integrity and porosity provides moisture balance and removes excess exudates, thereby promoting wound healing. The effect of the blend ratio on the fiber morphology and wettability was investigated using scanning electron microscopy (SEM) and contact angle measurement, respectively. The structural determination of the prepared membranes was conducted using Fourier-transform infrared spectroscopy (FTIR). The release behavior of (E)-1-(3,4-dimethoxyphenyl) butadiene (DMPBD), a marker molecule with potent anti-inflammatory activity from the fiber blend, showed a controlled release characteristic. The essential oil-loaded electrospun membrane also showed antibacterial activity against S. aureus and E. coli. It also exhibited no toxicity to both human fibroblast and keratinocyte cells, suggesting that the prepared material is suitable for wound dressing application.
Collapse
Affiliation(s)
- Pattawika Sinsup
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (P.P.)
| | | | - Arthit Makarasen
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
| | - Laemthong Chuenchom
- Division of Physical Science, Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Pongthep Prajongtat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (P.P.)
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
| | - Peerada Yingyuad
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Decha Dechtrirat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (P.P.)
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
20
|
Mamun A, Moulefera I, Topuz Y, Trabelsi M, Sabantina L. The Possibility of Reuse of Nanofiber Mats by Machine Washing at Different Temperatures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4788. [PMID: 34500878 PMCID: PMC8432495 DOI: 10.3390/ma14174788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023]
Abstract
The worldwide spread of coronavirus COVID-19 infections demonstrates the great need for personal protective equipment and, in particular, hygiene masks. These masks are essential for the primary protection of the respiratory tract against pathogens such as viruses and bacteria that are infectious and transmitted through the air as large droplets or via small airborne particles. The use of protective masks will continue to accompany humans for an indefinite period of time, and therefore there is an urgent need for a safe method to extend their usability by reusing them under perspective with minimal loss of protective properties. Nanofiber mats are widely used in masks and in this study the reusability of nanofiber mats is investigated by washing them at different temperatures. This paper shows the first measurements of the washability of nanofiber mats. Furthermore, the air permeability is measured, and the evaporation resistance is evaluated. According to the results of this study, the air permeability performance of nanofiber mats does not change significantly after washing, confirming the possibility of reuse.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (Y.T.)
| | - Imane Moulefera
- Laboratory of Technique and Science of Water, University of Mascara Mustapha Stambouli, 29000 Mascara, Algeria;
| | - Yusuf Topuz
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (Y.T.)
| | - Marah Trabelsi
- Ecole Nationale d’Ingénieurs de Sfax, 3038 Sfax, Tunisia;
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (Y.T.)
| |
Collapse
|