1
|
Lopes AC, Queirós RP, Inácio RS, Pinto CA, Casal S, Delgadillo I, Saraiva JA. High-Pressure Processing Effects on Microbiological Stability, Physicochemical Properties, and Volatile Profile of a Fruit Salad. Foods 2024; 13:1304. [PMID: 38731676 PMCID: PMC11083073 DOI: 10.3390/foods13091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Nowadays, consumers are more aware of the effects of their diet on their health, and thus demand natural or minimally processed food products. Therefore, research has focused on processes that assure safe products without jeopardizing their nutritional properties. In this context, this work aimed to evaluate the effects of high-pressure processing (550 MPa/3 min/15 °C, HPP) on a fruit salad (composed of melon juice and pieces of Golden apple and Rocha pear) throughout 35 days of storage at 4 °C. For the physicochemical properties analysed (browning degree, polyphenol oxidase activity, antioxidant activity (ABTS assay), and volatile profile), a freshly made fruit salad was used, while for the microbiological tests (total aerobic mesophiles, and yeast and moulds) spoiled melon juice was added to the fruit salad to increase the microbial load and mimic a challenge test with a high initial microbial load. It was determined that processed samples were more microbiologically stable than raw samples, as HPP enabled a reduction of almost 4-log units of both total aerobic mesophiles and yeasts and moulds, as well as an almost 1.5-fold increase in titratable acidity of the unprocessed samples compared to HPP samples. Regarding browning degree, a significant increase (p < 0.05) was observed in processed versus unprocessed samples (roughly/maximum 68%), while the addition of ascorbic acid decreased the browning of the samples by 29%. For antioxidant activity, there were no significant differences between raw and processed samples during the 35 days of storage. An increase in the activity of polyphenol oxidase immediately after processing (about 150%) was confirmed, which was generally similar or higher during storage compared with the raw samples. Regarding the volatile profile of the product, it was seen that the compounds associated with melon represented the biggest relative percentage and processed samples revealed a decrease in the relative quantity of these compounds compared to unprocessed. Broadly speaking, HPP was shown to be efficient in maintaining the stability and overall quality of the product while assuring microbial safety (by inactivating purposely inoculated microorganisms), which allows for longer shelf life (7 versus 28 days for unprocessed and processed fruit salad, respectively).
Collapse
Affiliation(s)
- Ana C. Lopes
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| | - Rui P. Queirós
- Department of Applications and Food Processing, Hiperbaric S.A., Calle Condado de Treviño, 6, 09001 Burgos, Spain;
| | - Rita S. Inácio
- School of Agriculture (ESA), Polytechnique Institute of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal;
| | - Carlos A. Pinto
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| | - Susana Casal
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Ivonne Delgadillo
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| | - Jorge A. Saraiva
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| |
Collapse
|
2
|
Olmo-Cunillera A, Ribas-Agustí A, Lozano-Castellón J, Pérez M, Ninot A, Romero-Aroca A, Lamuela-Raventós RM, Vallverdú-Queralt A. High hydrostatic pressure enhances the formation of oleocanthal and oleacein in 'Arbequina' olive fruit. Food Chem 2024; 437:137902. [PMID: 37924762 DOI: 10.1016/j.foodchem.2023.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
During olive oil production, the activity of endogenous enzymes plays a crucial role in determining the oil's phenolic composition. β-Glucosidase contributes to the formation of secoiridoids, while polyphenol oxidase (PPO) and peroxidase (POX) are involved in their oxidation. This study investigated whether high hydrostatic pressure (HHP), known to cause cell disruption and modify enzymatic activity and food texture, could reduce PPO and POX activity. HHP was applied to 'Arbequina' olives at different settings (300 and 600 MPa, 3 and 6 min) before olive oil extraction. The tested HHP conditions were not effective in reducing the activity of PPO and POX in olives, resulting in oils with a lower phenolic content. However, HHP increased the secoiridoid content of olives, particularly oleocanthal and oleacein (>50%). The pigments in oils produced from HHP-treated olives were higher compared to the control, whereas squalene and α-tocopherol levels and the fatty acid profile remained the same.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Albert Ribas-Agustí
- Food Safety and Functionality Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain.
| | - Julián Lozano-Castellón
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Antònia Ninot
- Fruit Science Program, Olive Growing and Oil Technology Research Team, Institute of Agrifood Research and Technology (IRTA), 43120 Constantí, Spain.
| | - Agustí Romero-Aroca
- Fruit Science Program, Olive Growing and Oil Technology Research Team, Institute of Agrifood Research and Technology (IRTA), 43120 Constantí, Spain.
| | - Rosa Maria Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Bork LV, Proksch N, Rohn S, Kanzler C. Contribution of Hydroxycinnamic Acids to Color Formation in Nonenzymatic Browning Reactions with Key Maillard Reaction Intermediates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1708-1720. [PMID: 38224245 DOI: 10.1021/acs.jafc.3c07168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The Maillard reaction is a vital part of food processing, involving a vast number of complex reaction pathways, resulting in high-molecular-weight colorants. So far, studies have been focused on the conversion of carbohydrates and amino compounds, but the literature elaborating the contribution of phenolic compounds to the formation of the colored end-products is still rare. The aim of this study was to characterize early reactions, underlying the formation of phenol-containing melanoidins. For this purpose, binary model systems of the prominent phenolic compounds caffeic acid and ferulic acid combined with α-dicarbonyl compounds typically formed in the Maillard reaction such as glyoxal, methylglyoxal, and diacetyl were analyzed after heat treatment. High-resolution mass spectrometry revealed that decarboxylation, aromatic electrophilic substitution, and nucleophilic addition are important reaction steps that lead to colored heterogeneous oligomers. Polymerization was favored for phenolic compounds with a high electron density in the aromatic system and for α-dicarbonyl compounds carrying aldehyde functions.
Collapse
Affiliation(s)
- Leon Valentin Bork
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nicolas Proksch
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Clemens Kanzler
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
4
|
Buitimea-Cantúa GV, Chávez-Leal V, Soto-Caballero MC, Tellez-Medina DI, Welti-Chanes J, Escobedo-Avellaneda Z. Enzymatic Activity and Its Relationships with the Total Phenolic Content and Color Change in the High Hydrostatic Pressure-Assisted Curing of Vanilla Bean ( Vanilla planifolia). Molecules 2023; 28:7606. [PMID: 38005328 PMCID: PMC10674283 DOI: 10.3390/molecules28227606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Diverse enzymatic reactions taking place after the killing of green vanilla beans are involved in the flavor and color development of the cured beans. The effects of high hydrostatic pressure (HHP) at 50-400 MPa/5 min and blanching as vanilla killing methods were evaluated on the total phenolic content (TPC), polyphenoloxidase (PPO), and peroxidase (POD) activity and the color change at different curing cycles of sweating-drying (C0-C20) of vanilla beans. The rate constants describing the above parameters during the curing cycles were also obtained. The TPC increased from C1 to C6 compared with the untreated green beans after which it started to decrease. The 400 MPa samples showed the highest rate of phenolic increase. Immediately after the killing (C0), the highest increase in PPO activity was observed at 50 MPa (46%), whereas for POD it was at 400 MPa (25%). Both enzymes showed the maximum activity at C1, after which the activity started to decrease. As expected, the L* color parameter decreased during the entire curing for all treatments. An inverse relationship between the rate of TPC decrease and enzymatic activity loss was found, but the relationship with L* was unclear. HHP appears to be an alternative vanilla killing method; nevertheless, more studies are needed to establish its clear advantages over blanching.
Collapse
Affiliation(s)
- Génesis V. Buitimea-Cantúa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Viridiana Chávez-Leal
- Facultad de Ciencias Agrotecnologicas, Universidad Autónoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc, Chihuahua 31510, Mexico
| | - Mayra C. Soto-Caballero
- Facultad de Ciencias Agrotecnologicas, Universidad Autónoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc, Chihuahua 31510, Mexico
| | - Dario I. Tellez-Medina
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Azcapotzalco, Ciudad de México 11340, Mexico
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Zamantha Escobedo-Avellaneda
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
5
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
6
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
7
|
Ferreira RM, Costa AM, Pinto CA, Silva AMS, Saraiva JA, Cardoso SM. Impact of Fermentation and Pasteurization on the Physico-Chemical and Phytochemical Composition of Opuntia ficus-indica Juices. Foods 2023; 12:foods12112096. [PMID: 37297341 DOI: 10.3390/foods12112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Opuntia ficus-indica fruits are a source of valuable compounds, presenting a high nutritional value and several health benefits. However, due to its low shelf life and increased production, there are considerable post-harvest losses of this cactus fruit. So, ways need to be found to drain the increased production of this fruit that is being wasted. The chemical composition of prickly pear makes it an appealing substrate for fermentation. This study investigates the production of fermented beverages produced from Opuntia ficus-indica cv 'Rossa' and evaluates the effects of different fermentation times (18 and 42 h) and post-fermentation pasteurization by high-pressure (500 MPa for 10 min) and temperature (71.1 °C for 30 s) on the physico-chemical and biological characteristics of the produced beverages. According to the results, the beverage produced from 48 h of fermentation has an alcohol content value of 4.90 ± 0.08% (v/v) and a pH of 3.91 ± 0.03. These values contribute to an extended shelf life and improved organoleptic characteristics compared to the sample fermented for 18 h. Additionally, the longer fermentation resulted in 50% fewer total soluble solids, 90% less turbidity, and lower pH when compared to the sample fermented for 18 h. Moreover, overall, high-pressure processing demonstrates better retention of "fresh-like" characteristics, along with higher levels of phytochemical compounds and antioxidant capacity, similar to those observed in the juice for SO•- and NO•-scavenging abilities.
Collapse
Affiliation(s)
- Ricardo M Ferreira
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adriana M Costa
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Sui X, Meng Z, Dong T, Fan X, Wang Q. Enzymatic browning and polyphenol oxidase control strategies. Curr Opin Biotechnol 2023; 81:102921. [PMID: 36965297 DOI: 10.1016/j.copbio.2023.102921] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/27/2023]
Abstract
Significant amounts of fresh and fresh-cut fruits and vegetables are wasted every year due to enzymatic browning. Polyphenol oxidase (PPO) is the key enzyme involved in the enzymatic browning. In the past decades, various methods have been developed to inhibit browning of various fresh produce items. However, for most fresh horticultural produce, ideal measures accepted by industries and consumers are still scarce. This review provides up-to-date knowledge of browning control technologies, including physical methods, chemical methods such as natural inhibitors, molecular biotechnology, and nanotechnology. In addition, we propose some ideas to improve the efficacies of these strategies with fewer side effects. To better inhibit tissue browning, new research directions are also discussed, for example, regulation of PPO substrate techniques.
Collapse
Affiliation(s)
- Xu Sui
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China
| | - Zan Meng
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China
| | - Tiantian Dong
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China
| | - Xuetong Fan
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, PA 19454, USA.
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China.
| |
Collapse
|
9
|
Using OPLS-DA to Fingerprint Key Free Amino and Fatty Acids in Understanding the Influence of High Pressure Processing in New Zealand Clams. Foods 2023; 12:foods12061162. [PMID: 36981089 PMCID: PMC10048364 DOI: 10.3390/foods12061162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
This study investigated the effect of high pressure processing (HPP) on the fatty acids and amino acids content in New Zealand Diamond Shell (Spisula aequilatera), Storm Shell (Mactra murchisoni), and Tua Tua (Paphies donacina) clams. The clam samples were subjected to HPP with varying levels of pressure (100, 200, 300, 400, 500, and 600 MPa) and holding times (5 and 600 s) at 20 °C. Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) were deployed to fingerprint the discriminating amino and fatty acids post-HPP processing while considering their inherent biological variation. Aspartic acid (ASP), isoleucine (ILE), leucine (LEU), lysine (LYS), methionine (MET), serine (SER), threonine (THR), and valine (VAL) were identified as discriminating amino acids, while C18:0, C22:1n9, C24:0, and C25:5n3 were identified as discriminating fatty acids. These amino and fatty acids were then subjected to mixed model ANOVA. Mixed model ANOVA was employed to investigate the influence of HPP pressure and holding times on amino acids and fatty acids in New Zealand clams. A significant effect of pressure levels was reported for all three clam species for both amino and fatty acids composition. Additionally, holding time was a significant factor that mainly influenced amino acid content. butnot fatty acids, suggesting that hydrostatic pressure hardly causes hydrolysis of triglycerides. This study demonstrates the applicability of OPLS-DA in identifying the key discriminating chemical components prior to traditional ANOVA analysis. Results from this research indicate that lower pressure and shorter holding time (100 MPa and 5 s) resulted in the least changes in amino and fatty acids content of clams.
Collapse
|
10
|
Effect of High-Pressure and Thermal Pasteurization on Microbial and Physico-Chemical Properties of Opuntia ficus-indica Juices. BEVERAGES 2022. [DOI: 10.3390/beverages8040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opuntia fruits are recognized for their richness in nutrients and in bioactive compounds, being also highly appreciated by consumers as a juice. Nevertheless, without further processing, prickly pear juices have a short shelf-life, hampering their commercial use. In this work, thermal (TP) and high-pressure (HPP) pasteurization were applied to juices from Opuntia ficus-indica cultivars ‘Rossa’, ‘Gialla’, and ‘Bianca’ to understand the impact of those methods on the microbial safety, physico-chemical properties, and the nutritional content of the samples, over storage at 4 °C. In general, thermal pasteurization at 71.1 °C for 30 s increased the shelf-life by 22 days, and high-pressure pasteurization at 500 MPa for 10 min increased the shelf-life by 52 days with regard to microbial growth as well as maintenance of physical-chemical characteristics. The application of these two pasteurization methods delayed changes in the physico-chemical characteristics of the juices, with a more pronounced effect on the titratable acidity, °Brix and browning. For the same periods of time, the application of pasteurization methods decreased the variation in these quality parameters by around 75%. Similarly, these methods were shown to have the same effect on the polyphenolic concentration as well as the antioxidant activity of the juices. In particular, HPP was more efficient in preventing a decrease in °Brix and increase in titratable acidity, which normally negatively affect the flavor of the juices.
Collapse
|
11
|
Sánchez-Bravo P, Noguera-Artiaga L, Gómez-López VM, Carbonell-Barrachina ÁA, Gabaldón JA, Pérez-López AJ. Impact of Non-Thermal Technologies on the Quality of Nuts: A Review. Foods 2022; 11:3891. [PMID: 36496699 PMCID: PMC9739324 DOI: 10.3390/foods11233891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Nuts are widely consumed worldwide, mainly due to their characteristic flavor and texture, ease of consumption, and their functional properties. In addition, consumers increasingly demand natural or slightly processed foods with high quality. Consequently, non-thermal treatments are a viable alternative to thermal treatments used to guarantee safety and long shelf life, which produce undesirable changes that affect the sensory quality of nuts. Non-thermal treatments can achieve results similar to those of the traditional (thermal) ones in terms of food safety, while ensuring minimal loss of bioactive compounds and sensory properties, thus obtaining a product as similar as possible to the fresh one. This article focuses on a review of the main non-thermal treatments currently available for nuts (cold plasma, high pressure, irradiation, pulsed electric field, pulsed light, ultrasound and ultraviolet light) in relation to their effects on the quality and safety of nuts. All the treatments studied have shown promise with regard to the inhibition of the main microorganisms affecting nuts (e.g., Aspergillus, Salmonella, and E. coli). Furthermore, by optimizing the treatment, it is possible to maintain the organoleptic and functional properties of these products.
Collapse
Affiliation(s)
- Paola Sánchez-Bravo
- Laboratory of Fitoquímica y Alimentos Saludables (LabFAS), CEBAS-CSIC, University of Murcia, 25, 30100 Murcia, Spain
- Department of AgroFood Technology, Miguel Hernandez University, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Luis Noguera-Artiaga
- Department of AgroFood Technology, Miguel Hernandez University, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Vicente M. Gómez-López
- Catedra Alimentos Para la Salud, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain
| | | | - José A. Gabaldón
- Catedra Alimentos Para la Salud, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain
| | - Antonio J. Pérez-López
- Department of Food Technology and Nutrition, Catholic University of San Antonio, Campus de los Jerónimos s/n, 30107 Murcia, Spain
| |
Collapse
|
12
|
Silva FVM, Sulaiman A. Control of Enzymatic Browning in Strawberry, Apple, and Pear by Physical Food Preservation Methods: Comparing Ultrasound and High-Pressure Inactivation of Polyphenoloxidase. Foods 2022; 11:foods11131942. [PMID: 35804757 PMCID: PMC9265869 DOI: 10.3390/foods11131942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Polyphenoloxidase (PPO) enzyme can be found in fruits, vegetables and crustaceans. Its activity, promoted by oxygen, causes food browning with subsequent loss of quality and limited shelf life. Foods are pasteurized with conventional and novel physical methods to inactivate spoilage enzymes, thus avoiding the addition of unhealthy chemical preservatives. Ultrasound and high- pressure processing (HPP) are non-thermal technologies capable of retaining vitamins, bioactives and sensory components of fresh fruits. Enzyme residual activity vs. processing time were plotted for strawberry, apple, and pear purees subjected to thermosonication (1.3 W/g—71 °C), HPP-thermal (600 MPa—71 °C) and heat treatment alone at 71 °C. The PPO residual activities after treatments were highly variable. TS was the most effective for inactivating PPO, followed by thermal processing. HPP-thermal did not improve the inactivation compared with thermal treatment at 71 °C. The resistance of the three fruits’ PPOs exhibited the same pattern for the three technologies: pear PPO was the most resistant enzyme, followed by apple PPO and, lastly, strawberry PPO. However, the resistance of the three PPOs to TS was lower and very similar. Given the huge variability of PPO resistance, it is important to run inactivation tests for different fruits/cultivars. The results can assist manufacturers to avoid browning during processing, storage and distribution of fruit purees, juices and concentrates.
Collapse
Affiliation(s)
- Filipa Vinagre Marques Silva
- LEAF, Associate Laboratory Terra, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Correspondence: or
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering, Universiti Putra Malaysia, Seri Kembangan 43300, Selangor, Malaysia;
| |
Collapse
|
13
|
Umair M, Jabeen S, Ke Z, Jabbar S, Javed F, Abid M, Rehman Khan KU, Ji Y, Korma SA, El-Saadony MT, Zhao L, Cacciotti I, Mariana Gonçalves Lima C, Adam Conte-Junior C. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. ULTRASONICS SONOCHEMISTRY 2022; 86:105999. [PMID: 35436672 PMCID: PMC9036140 DOI: 10.1016/j.ultsonch.2022.105999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Sidra Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zekai Ke
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Faiqa Javed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan
| | - Kashif-Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China.
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma 00166, Italy
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|