1
|
Gazioglu I, Zengin OS, Gunaydin Akyildiz A, Zengin Kurt B. Fungal biotransformation of carvone and camphor by Aspergillus flavus and investigation of cytotoxic activities of naturally obtained essential oils. Nat Prod Res 2023; 37:944-955. [PMID: 35899398 DOI: 10.1080/14786419.2022.2098957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In this study, the biotransformation of carvone and camphor by Aspergillus flavus and the products were investigated. The biotransformation reaction of carvone by A. flavus resulted in the production of neodihydrocarveol, dihydrocarvone, 2-cyclohexene-1-one,2-methyl-5-(1-methylethenyl), limonene-1,2-diol, trans-p-mentha-1(7),8-dien-2-ol, p-menth-8(10)-ene-2,9-diol, and the biotransformation reaction of camphor resulted in the production of 2 -campholenic acid, 2-cyclohexene-1-one,2-hydroxy-4,4,6,6-tetramethyl, α-campholene aldehyde. The naturally produced essential oils by biotransformation of carvone and camphor were observed to be cytotoxic to breast cancer cells while no significant inhibition was seen in the healthy cell line. Additionally, biotransformation products had the highest inhibition (74%) against aflatoxin B1. The bioactivities of biotransformation products are promising, and they can be further investigated for their therapeutic potential as active agents.
Collapse
Affiliation(s)
- Isil Gazioglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozge Sultan Zengin
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Bezmialem Vakif University, Istanbul, Turkey
| | - Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
2
|
Zhang LL, Fan G, Li X, Ren JN, Huang W, Pan SY, He J. Identification of functional genes associated with the biotransformation of limonene to trans-dihydrocarvone in Klebsiella sp. O852. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3297-3307. [PMID: 34800295 DOI: 10.1002/jsfa.11675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural dihydrocarvone has been widely used in the food, cosmetics, agrochemicals and pharmaceuticals industries because of its sensory properties and physiological effects. In our previous study, Klebsiella sp. O852 was shown to be capable of converting limonene to trans-dihydrocarvone with high catalytic efficiency. Thus, it was essential to identify and characterize the functional genes involved in limonene biotransformation using genome sequencing and heterologous expression. RESULTS The 5.49-Mb draft genome sequence of Klebsiella sp. O852 contained 5218 protein-encoding genes. Seven candidate genes participating in the biotransformation of limonene to trans-dihydrocarvone were identified by genome analysis. Heterologous expression of these genes in Escherichia coli BL21(DE3) indicated that 0852_GM005124 and 0852_GM003417 could hydroxylate limonene in the six position to yield carveol, carvone and trans-dihydrocarvone. 0852_GM002332 and 0852_GM001602 could catalyze the oxidation of carveol to carvone and trans-dihydrocarvone. 0852_GM000709, 0852_GM001600 and 0852_GM000954 had high carvone reductase activity toward the hydrogenation of carvone to trans-dihydrocarvone. CONCLUSION The results obtained in the present study suggest that the seven genes described above were responsible for converting limonene to trans-dihydrocarvone. The present study contributes to providing a foundation for the industrial production of trans-dihydrocarvone in microbial chassis cells using synthetic biology strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Zhang L, Chen Y, Li Z, Li X, Fan G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: a review. Food Funct 2022; 13:3110-3132. [DOI: 10.1039/d1fo04080d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spearmint belongs to the genus Mentha in the family Labiateae (Lamiaceae), which is wildly cultivated worldwide for its remarkable aroma and commercial value. The aromatic molecules of spearmint essential oil,...
Collapse
|
4
|
Screening a Strain of Klebsiella sp. O852 and the Optimization of Fermentation Conditions for Trans-Dihydrocarvone Production. Molecules 2021; 26:molecules26092432. [PMID: 33922023 PMCID: PMC8122266 DOI: 10.3390/molecules26092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Flavors and fragrances have high commercial value in the food, cosmetic, chemical and pharmaceutical industries. It is interesting to investigate the isolation and characterization of new microorganisms with the ability to produce flavor compounds. In this study, a new strain of Klebsiella sp. O852 (accession number CCTCC M2020509) was isolated from decayed navel orange (Citrus sinensis (L.) Osbeck), which was proved to be capable of converting limonene to trans-dihydrocarvone. Besides, the optimization of various reaction parameters to enhance the trans-dihydrocarvone production in shake flask was performed for Klebsiella sp. O852. The results showed that the yield of trans-dihydrocarvone reached up to 1 058 mg/L when Klebsiella sp. O852 was incubated using LB-M medium for 4 h at 36 °C and 150 rpm, and the biotransformation process was monitored for 36 h after adding 1680 mg/L limonene/ethanol (final ethanol concentration of 0.8% (v/v)). The content of trans-dihydrocarvone increased 16 times after optimization. This study provided a basis and reference for producing trans-dihydrocarvone by biotransformation.
Collapse
|
5
|
Mączka W, Wińska K, Grabarczyk M, Galek R. Plant-Mediated Enantioselective Transformation of Indan-1-one and Indan-1-ol. Part 2. Molecules 2019; 24:molecules24234342. [PMID: 31783666 PMCID: PMC6930634 DOI: 10.3390/molecules24234342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 01/01/2023] Open
Abstract
The main purpose of this publication was to obtain the S-enantiomer of indan-1-ol with high enantiomeric excess and satisfactory yield. In our research, we used carrot callus cultures (Daucus carota L.), whereby the enzymatic system reduced indan-1-one and oxidized indan-1-ol. During the reaction of reduction, after five days, we received over 50% conversion, with the enantiomeric excess of the formed S-alcohol above 99%. In turn, during the oxidation of racemic indan-1-ol after 15 days, 36.7% of alcohol with an enantiomeric excess 57.4% S(+) remained in the reaction mixture. In addition, our research confirmed that the reactions of reduction and oxidation are competing reactions during the transformation of indan-1-ol and indan-1-one in carrot callus cultures.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | - Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | - Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences Pl. Grunwaldzki 24A, 53-363 Wroclaw, Poland;
| |
Collapse
|
6
|
Hegazy MEF, Elshamy AI, Mohamed TA, Hussien TA, Helaly SE, Abdel-Azim NS, Shams KA, Shahat AA, Tawfik WA, Shahen AM, Debbab A, El Saedi HR, Mohamed AEHH, Hammouda FM, Sakr M, Paré PW, Efferth T. Terpenoid bio-transformations and applications via cell/organ cultures: a systematic review. Crit Rev Biotechnol 2019; 40:64-82. [DOI: 10.1080/07388551.2019.1681932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohamed-Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Giza, Egypt
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-Cho, Tokushima, Japan
| | - Tarik A. Mohamed
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | - Taha A. Hussien
- Pharmacognosy Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Soleiman E. Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Khaled A. Shams
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | | | - Wafaa A. Tawfik
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | - Alaa M. Shahen
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | | | - Hesham R. El Saedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | | | | | - Mahmoud Sakr
- Genetic Engineering and Biotech. Division, National Research Centre, Giza, Egypt
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Abstract
The main purpose of this work was to discover the way to obtain pure enantiomers of indan-1-ol. The subject of the study was the ability of the plant enzyme system to reduce the carbonyl group of indan-1-one, as well as to oxidize the hydroxyl group of racemic indan-1-ol. Locally available fruit and vegetables were selected for stereoselective biotransformation. During the reduction, mainly alcohol of the S-(+)-configuration with a high enantiomeric excess (ee = 99%) was obtained. The opposite enantiomer was obtained in bioreduction with the apple and parsley. Racemic indan-1-ol was oxidized by all catalysts. The best result was obtained for the Jerusalem artichoke: Over 50% conversion was observed after 1 h, and the enantiomeric excess of unreacted R-(–)-indan1-ol was 100%.
Collapse
|