1
|
Silva-Neto HA, Zucolotto V, D'Alessandro EB, Tavares MGO, Antoniosi Filho NR, Coltro WKT, Grosseli GM, Fadini PS, Urban RC. Preliminary assessment of toxicity of aerosol samples from central-west Brazil using Artemia spp. bioassays. CHEMOSPHERE 2023:139283. [PMID: 37348616 DOI: 10.1016/j.chemosphere.2023.139283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/26/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 μm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 μm, 0.8 μm and 0.22 μm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.
Collapse
Affiliation(s)
- Habdias A Silva-Neto
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Valtencir Zucolotto
- Physics Institute of São Carlos (IFSC), University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | | | - Maria G O Tavares
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | - Wendell K T Coltro
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Guilherme M Grosseli
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Pedro S Fadini
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Roberta C Urban
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Liu J, Banerjee S, Oroumiyeh F, Shen J, Del Rosario I, Lipsitt J, Paulson S, Ritz B, Su J, Weichenthal S, Lakey P, Shiraiwa M, Zhu Y, Jerrett M. Co-kriging with a low-cost sensor network to estimate spatial variation of brake and tire-wear metals and oxidative stress potential in Southern California. ENVIRONMENT INTERNATIONAL 2022; 168:107481. [PMID: 36037546 DOI: 10.1016/j.envint.2022.107481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Due to regulations and technological advancements reducing tailpipe emissions, an increasing proportion of emissions arise from brake and tire wear particulate matter (PM). PM from these non-tailpipe sources contains heavy metals capable of generating oxidative stress in the lung. Although important, these particles remain understudied because the high cost of actively collecting filter samples. Improvements in electrical engineering, internet connectivity, and an increased public concern over air pollution have led to a proliferation of dense low-cost air sensor networks such as the PurpleAir monitors, which primarily measure unspeciated fine particulate matter (PM2.5). In this study, we model the concentrations of Ba, Zn, black carbon, reactive oxygen species concentration in the epithelial lining fluid, dithiothreitol (DTT) loss, and OH formation. We use a co-kriging approach, incorporating data from the PurpleAir network as a secondary predictor variable and a land-use regression (LUR) as an external drift. For most pollutant species, co-kriging models produced more accurate predictions than an LUR model, which did not incorporate data from the PurpleAir monitors. This finding suggests that low-cost sensors can enhance predictions of pollutants that are costly to measure extensively in the field.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Sudipto Banerjee
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Farzan Oroumiyeh
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Jiaqi Shen
- Department of Atomospheric and Oceanic Sciences, University of Caifornia Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, United States.
| | - Irish Del Rosario
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Jonah Lipsitt
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Suzanne Paulson
- Department of Atomospheric and Oceanic Sciences, University of Caifornia Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, United States.
| | - Beate Ritz
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Jason Su
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, 2121 Berkeley Way, Berkeley, CA, United States.
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine and Health Sciences, McGill Unviersity, 2001 McGill College, Suite 1200, Montreal, QC H3A 1G1, Canada.
| | - Pascale Lakey
- Deaprtment of Chemistry, University of California, Irvine, Natural Sciences II, 1102, Irvine, CA 92617, United States.
| | - Manabu Shiraiwa
- Deaprtment of Chemistry, University of California, Irvine, Natural Sciences II, 1102, Irvine, CA 92617, United States.
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Michael Jerrett
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| |
Collapse
|
3
|
Wang Y, Li X, Wang Q, Zhou B, Liu S, Tian J, Hao Q, Li G, Han Y, Hang Ho SS, Cao J. Response of aerosol composition to the clean air actions in Baoji city of Fen-Wei River Basin. ENVIRONMENTAL RESEARCH 2022; 210:112936. [PMID: 35181303 DOI: 10.1016/j.envres.2022.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The implementation of air pollution control measures could alter the compositions of submicron aerosols. Identifying the changes can evaluate the atmospheric responses of the implemented control measures and provide more scientific basis for the formulation of new measures. The Fen-Wei River Basin is the most air polluted region in China, and thereby is a key area for the reduction of emissions. Only limited studies determine the changes in the chemical compositions of submicron aerosols. In this study, Baoji was selected as a representative city in the Fen-Wei River Basin. The compositions of submicron aerosols were determined between 2014 and 2019. Organic fractions were determined through an online instrument (Quadrupole Aerosol Chemical Speciation Monitor, Q-ACSM) and source recognition was performed by the Multilinear Engine (ME-2). The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was also employed to evaluate the contributions of emissions reduction and meteorological conditions to the changes of submicron aerosol compositions. The results indicate that the mass concentrations of submicron aerosols have been substantially decreased after implementation of air pollution control measures. This was mainly attributed to the emission reductions of sulfur dioxide (SO2) and primary organic aerosol (POA). In addition, the main components that drove the pollution episodes swapped from POA, sulfate, nitrate and less-oxidized organic (LO-OOA) in 2014 to nitrate and more-oxidized OOA (MO-OOA) in 2019. Due to the changes of chemical compositions of both precursors and secondary pollutants, the pollution control measures should be modernized to focus on the emissions of ammonia (NH3), nitrogen oxides (NOx) and volatile organic compounds (VOCs) in this region.
Collapse
Affiliation(s)
- Yichen Wang
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xia Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China.
| | - Bianhong Zhou
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, College of Geography & Environment, Baoji University of Arts & Sciences, Baoji, 721013, China
| | - Suixin Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jie Tian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiang Hao
- Future Lab, Tsinghua University, Beijing, China
| | - Guohui Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV89512, United States
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
4
|
Patel K, Singh AK. Consequences of pre and post confinement on the atmospheric air pollutants during spread of COVID-19 in India. INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE (2004) 2022; 97:319-336. [PMID: 35669679 PMCID: PMC9160865 DOI: 10.1007/s12648-022-02380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
COVID-19, a severe respiratory syndrome, was diagnosed in Wuhan, China, and in the last week of January 2020, it was reported in India. The drastic speed of spreading of COVID-19 imposed a total lockdown in India for the first time in four stages. This leads to restrictions on transport, industries, coal-based power plants, etc. During these stages of lockdown, a detailed analysis was done to study the effect of confinement on various air pollutants, PM10, PM2.5, SO2, CO, NH3, and NOx (NO, NO2) over the thirteen different stations situated at different states in India. The data were compared with pre-confinement duration at different locations in India. During confinement, the air pollutants showed less value when compared with the pre-confinement stage alarming everyone and also the Indian government to bring up rules and regulations for better air quality index so that such pandemics should be reduced.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Physics, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204 India
| | - Abhay Kumar Singh
- Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
5
|
Xu W, Li Z, Lambe AT, Li J, Liu T, Du A, Zhang Z, Zhou W, Sun Y. Secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor during wintertime in Beijing, China. ENVIRONMENTAL RESEARCH 2022; 209:112751. [PMID: 35077717 DOI: 10.1016/j.envres.2022.112751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Secondary organic aerosols (SOA) constitute a large fraction of atmospheric aerosols, yet our knowledge of the formation and aging processes of SOA in megacities of China is still limited. In this work, the formation and aging processes of SOA in winter in Beijing was investigated using a high-resolution aerosol mass spectrometer (AMS) and an oxidation flow reactor (OFR). Our results showed that the OA enhancement from OH aging peaked at ∼3.9 equivalent days with an average enhancement of 0.9 (±0.3) μg m-3. Positive matrix factorization analysis of AMS-OFR data identified three primary OA (POA) and two SOA factors. While the concentrations of POA factors decreased as a function of photochemical age, the two SOA factors showed clear enhancements by 2.5 and 4.3 μg m-3 at ∼3.9 and ∼2.6 days of equivalent photochemical age, respectively. The average contribution of SOA to the total OA was 47% in ambient air and 87% in OFR-oxidized ambient air. The elevated oxygen-to-carbon (O/C) ratio from 0.49 to 0.77-0.82 and the decreased hydrogen-to-carbon (H/C) from 1.37 to ∼1.1 highlighted the formation of more oxidized SOA during photochemical aging in winter in Beijing. The ubiquitous SOA enhancement as a function of OA levels indicated the significant formation potential of SOA in winter, and it varied differently among different episodes. In particular, we observed a maximum SOA enhancement of 38.6 μg m-3 during a biomass burning event. This result demonstrates that photochemical oxidation of ubiquitous biomass burning emissions can be a large source of SOA in winter in North China Plain.
Collapse
Affiliation(s)
- Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Jinjian Li
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
6
|
Yun X, Meng W, Xu H, Zhang W, Yu X, Shen H, Chen Y, Shen G, Ma J, Li B, Cheng H, Hu J, Tao S. Coal Is Dirty, but Where It Is Burned Especially Matters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7316-7326. [PMID: 33977718 DOI: 10.1021/acs.est.1c01148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coal abatement actions for pollution reduction often target total coal consumption. The health impacts of coal uses, however, vary extensively among sectors. Here, we modeled the sectorial contributions of coal uses to emissions, outdoor and indoor PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 mm) concentrations, exposures, and health outcomes in China from 1970 to 2014. We show that in 2014, residential coal accounted for 2.9% of total energy use but 34% of premature deaths associated with PM2.5 exposure, showing that effects were magnified substantially along the causal path. The number of premature deaths attributed to unit coal consumption in the residential sector was 40 times higher than that in the power and industrial sectors. Emissions of primary PM2.5 were more important than secondary aerosol precursors in terms of health consequences, and indoor exposure accounted for 97% and 91% of total premature deaths attributable to PM2.5 from coal combustion in 1974 and 2014, respectively. Our assessment raises a critical challenge in the switching of residential coal uses to effectively mitigate PM2.5 exposure in the Chinese population.
Collapse
Affiliation(s)
- Xiao Yun
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Wenjun Meng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Haoran Xu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Wenxiao Zhang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Xinyuan Yu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Huizhong Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Yilin Chen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Bengang Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Jianying Hu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Wang J, Lei Y, Chen Y, Wu Y, Ge X, Shen F, Zhang J, Ye J, Nie D, Zhao X, Chen M. Comparison of air pollutants and their health effects in two developed regions in China during the COVID-19 pandemic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112296. [PMID: 33711659 PMCID: PMC7927583 DOI: 10.1016/j.jenvman.2021.112296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 05/09/2023]
Abstract
Air pollution attributed to substantial anthropogenic emissions and significant secondary formation processes have been reported frequently in China, especially in Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD). In order to investigate the aerosol evolution processes before, in, and after the novel coronavirus (COVID-19) lockdown period of 2020, ambient monitoring data of six air pollutants were analyzed from Jan 1 to Apr 11 in both 2020 and 2019. Our results showed that the six ambient pollutants concentrations were much lower during the COVID-19 lockdown due to a great reduction of anthropogenic emissions. BTH suffered from air pollution more seriously in comparison of YRD, suggesting the differences in the industrial structures of these two regions. The significant difference between the normalized ratios of CO and NO2 during COVID-19 lockdown, along with the increasing PM2.5, indicated the oxidation of NO2 to form nitrate and the dominant contribution of secondary processes on PM2.5. In addition, the most health risk factor was PM2.5 and health-risked based air quality index (HAQI) values during the COVID-19 pandemic in YRD in 2020 were all lower than those in 2019. Our findings suggest that the reduction of anthropogenic emissions is essential to mitigate PM2.5 pollution, while O3 control may be more complicated.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yali Lei
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Chen
- Yangzhou Environmental Monitoring Center, Yangzhou 225007, China.
| | - Yangzhou Wu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Fuzhen Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jie Zhang
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12203, USA
| | - Jianhuai Ye
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Dongyang Nie
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xiuyong Zhao
- State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control, State Power Environmental Protection Research Institute, Nanjing 210000, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
8
|
Wang Y, Yuan Y, Wang Q, Liu C, Zhi Q, Cao J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139133. [PMID: 32402905 PMCID: PMC7202850 DOI: 10.1016/j.scitotenv.2020.139133] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 04/14/2023]
Abstract
Measures taken to control the disease (Covid-19) caused by the novel coronavirus dramatically reduced the number of vehicles on the road and diminished factory production. For this study, changes in the air quality index (AQI) and the concentrations of six air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) were evaluated during the Covid-19 control period in northern China. Overall, the air quality improved, most likely due to reduced emissions from the transportation and secondary industrial sectors. Specifically, the transportation sector was linked to the NO2 emission reductions, while lower emissions from secondary industries were the major cause for the reductions of PM2.5 and CO. The reduction in SO2 concentrations was only linked to the industrial sector. However, the reductions in emissions did not fully eliminate air pollution, and O3 actually increased, possibly because lower fine particle loadings led to less scavenging of HO2 and as a result greater O3 production. These results also highlight need to control emissions from the residential sector.
Collapse
Affiliation(s)
- Yichen Wang
- School of Humanities, Economics and Law, Northwestern Polytechnical University, Xi'an 710129, China; Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Yuan Yuan
- School of Humanities, Economics and Law, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - ChenGuang Liu
- School of Humanities, Economics and Law, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiang Zhi
- School of Government Administration, Central University of Finance and Economics, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
9
|
Zhou W, Xu W, Kim H, Zhang Q, Fu P, Worsnop DR, Sun Y. A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1616-1653. [PMID: 32672265 DOI: 10.1039/d0em00212g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic emissions in Asia have significantly increased during the last two decades; as a result, the induced air pollution and its influences on radiative forcing and public health are becoming increasingly prominent. The Aerodyne Aerosol Mass Spectrometer (AMS) has been widely deployed in Asia for real-time characterization of aerosol chemistry. In this paper, we review the AMS measurements in Asia, mainly in China, Korea, Japan, and India since 2001 and summarize the key results and findings. The mass concentrations of non-refractory submicron aerosol species (NR-PM1) showed large spatial distributions with high mass loadings occurring in India and north and northwest China (60.2-81.3 μg m-3), whereas much lower values were observed in Korea, Japan, Singapore and regional background sites (7.5-15.1 μg m-3). Aerosol composition varied largely in different regions, but was overall dominated by organic aerosols (OA, 32-75%), especially in south and southeast Asia due to the impact of biomass burning. While sulfate and nitrate showed comparable contributions in urban and suburban regions in north China, sulfate dominated inorganic aerosols in south China, Japan and regional background sites. Positive matrix factorization analysis identified multiple OA factors from different sources and processes in different atmospheric environments, e.g., biomass burning OA in south and southeast Asia and agricultural seasons in China, cooking OA in urban areas, and coal combustion in north China. However, secondary OA (SOA) was a ubiquitous and dominant aerosol component in all regions, accounting for 43-78% of OA. The formation of different SOA subtypes associated with photochemical production or aqueous-phase/fog processing was widely investigated. The roles of primary emissions, secondary production, regional transport, and meteorology on severe haze episodes, and different chemical responses of primary and secondary aerosol species to source emission changes and meteorology were also demonstrated. Finally, future prospects of AMS studies on long-term and aircraft measurements, water-soluble OA, the link of OA volatility, oxidation levels, and phase state were discussed.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Wang Q, Ye J, Li L, Zhou J, Ran W, Zhang R, Wu Y, Cao J. Chemical composition and sources of submicron aerosols in winter at a regional site in Beijing-Tianjin-Hebei region: Implications for the Joint Action Plan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137547. [PMID: 32143101 DOI: 10.1016/j.scitotenv.2020.137547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The Ministry of Environmental Protection released a Joint Action Plan for Control of Air Pollution (Hereafter, Joint Action Plan, JAP), to reduce PM2.5 concentrations in the Beijing-Tianjin-Hebei region (BTH) during the winter of 2017. To investigate the effectiveness of the controls, we deployed an aerosol chemical speciation monitor and collected filter samples at Xianghe, a representative site for the BTH, to characterize the aerosol composition during the implementation of the JAP. Those results were compared with earlier data obtained from a literature survey and reanalysis of studies in the BTH. During several pollution episodes in the control period, the major aerosol types changed relative to the earlier studies from sulfate, oxygenated organic aerosol, and coal combustion organic aerosol to nitrate and biomass burning organic aerosol. The dominant secondary inorganic aerosol species during the JAP changed from sulfate to nitrate, and the main source for primary organic aerosol switched from coal combustion to biomass burning. These changes can be explained by the fact that the JAP controls targeted coal combustion and SO2 but not biomass burning or NOx emissions. Our evaluation of the control measures provides a scientific basis for developing new policies in the future.
Collapse
Affiliation(s)
- Yichen Wang
- School of Humanities, Economics and Law, Northwestern Polytechnical University, Xi'an 710129, China; Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Jianhuai Ye
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Li Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jun Zhou
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 6068501, Japan
| | - Weikang Ran
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Renjian Zhang
- Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Xianghe Observatory of Whole Atmosphere, Institute of Atmospheric Physics, Chinese Academy of Sciences, Xianghe County, Hebei Province 065400, China
| | - Yunfei Wu
- Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|