1
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
2
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
3
|
Yao P, Zhang Y, Zhang S, Wei X, Liu Y, Du C, Hu M, Feng C, Li J, Zhao F, Li C, Li Z, Du L. Knowledge atlas of antibody-drug conjugates on CiteSpace and clinical trial visualization analysis. Front Oncol 2023; 12:1039882. [PMID: 36686767 PMCID: PMC9850101 DOI: 10.3389/fonc.2022.1039882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Objective Antibody-drugs conjugates (ADCs) are novel drugs with highly targeted and tumor-killing abilities and developing rapidly. This study aimed to evaluate drug discovery and clinical trials of and explore the hotspots and frontiers from 2012 to 2022 using bibliometric methods. Methods Publications on ADCs were retrieved between 2012 and 2022 from Web of Science (WoS) and analyzed with CiteSpace 6.1.R2 software for the time, region, journals, institutions, etc. Clinical trials were downloaded from clinical trial.org and visualized with Excel software. Results A total of 696 publications were obtained and 187 drug trials were retrieved. Since 2012, research on ADCs has increased year by year. Since 2020, ADC-related research has increased dramatically, with the number of relevant annual publications exceeding 100 for the first time. The United States is the most authoritative and superior country and region in the field of ADCs. The University of Texas MD Anderson Cancer Center is the most authoritative institution in this field. Research on ADCs includes two clinical trials and one review, which are the most influential references. Clinical trials of ADCs are currently focused on phase I and phase II. Comprehensive statistics and analysis of the published literature and clinical trials in the field of ADCs, have shown that the most studied drug is brentuximab vedotin (BV), the most popular target is human epidermal growth factor receptor 2 (HER2), and breast cancer may become the main trend and hotspot for ADCs indications in recent years. Conclusion Antibody-drug conjugates have become the focus of targeted therapies in the field of oncology. The innovation of technology and combination application strategy will become the main trend and hotspots in the future.
Collapse
Affiliation(s)
- Peizhuo Yao
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinbin Zhang
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yinbin Zhang, ; Shuqun Zhang,
| | - Shuqun Zhang
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yinbin Zhang, ; Shuqun Zhang,
| | - Xinyu Wei
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanbin Liu
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chong Du
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingyou Hu
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
| | - Cong Feng
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Li
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fang Zhao
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chaofan Li
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhen Li
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lisha Du
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Enhanced Permeability and Retention Effect as a Ubiquitous and Epoch-Making Phenomenon for the Selective Drug Targeting of Solid Tumors. J Pers Med 2022; 12:jpm12121964. [PMID: 36556185 PMCID: PMC9784116 DOI: 10.3390/jpm12121964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In 1979, development of the first polymer drug SMANCS [styrene-co-maleic acid (SMA) copolymer conjugated to neocarzinostatin (NCS)] by Maeda and colleagues was a breakthrough in the cancer field. When SMANCS was administered to mice, drug accumulation in tumors was markedly increased compared with accumulation of the parental drug NCS. This momentous result led to discovery of the enhanced permeability and retention effect (EPR effect) in 1986. Later, the EPR effect became known worldwide, especially in nanomedicine, and is still believed to be a universal mechanism for tumor-selective accumulation of nanomedicines. Some research groups recently characterized the EPR effect as a controversial concept and stated that it has not been fully demonstrated in clinical settings, but this erroneous belief is due to non-standard drug design and use of inappropriate tumor models in investigations. Many research groups recently provided solid evidence of the EPR effect in human cancers (e.g., renal and breast), with significant diversity and heterogeneity in various patients. In this review, we focus on the dynamics of the EPR effect and restoring tumor blood flow by using EPR effect enhancers. We also discuss new applications of EPR-based nanomedicine in boron neutron capture therapy and photodynamic therapy for solid tumors.
Collapse
|
5
|
Identification of CD73 as the Antigen of an Antigen-Unknown Monoclonal Antibody Established by Exosome Immunization, and Its Antibody-Drug Conjugate Exerts an Antitumor Effect on Glioblastoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15070837. [PMID: 35890137 PMCID: PMC9322095 DOI: 10.3390/ph15070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Development of antibodies against the native structure of membrane proteins with multiple transmembrane domains is challenging because it is difficult to prepare antigens with native structures. Previously, we successfully developed a monoclonal antibody against multi-pass membrane protein TMEM180 by exosome immunization in rats. This approach yielded antibodies that recognized cancer-specific antigens on the exosome. In this study, we performed immunoprecipitation using magnetic beads to identify the antigen of one of the rat antibody clones, 0614, as CD73. We then converted antibody 0614 to human chimeric antibody 0614-5. Glioblastoma (GB) was the cancer type with the highest expression of CD73 in the tumor relative to healthy tissue. An antibody-drug conjugate (ADC) of 0614-5 exerted an antitumor effect on GB cell lines according to expression of CD73. The 0614-5-ADC has potential to be used to treat cancers with high CD73 expression. In addition, our strategy could be used to determine the antigen of any antibody produced by exosome immunization, which may allow the antibody to advance to new antibody therapies.
Collapse
|
6
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
7
|
Krache A, Fontan C, Pestourie C, Bardiès M, Bouvet Y, Payoux P, Chatelut E, White-Koning M, Salabert AS. Preclinical Pharmacokinetics and Dosimetry of an 89Zr Labelled Anti-PDL1 in an Orthotopic Lung Cancer Murine Model. Front Med (Lausanne) 2022; 8:741855. [PMID: 35174180 PMCID: PMC8841431 DOI: 10.3389/fmed.2021.741855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Anti-PDL1 is a monoclonal antibody targeting the programmed death-cell ligand (PD-L1) by blocking the programmed death-cell (PD-1)/PD-L1 axis. It restores the immune system response in several tumours, such as non-small cell lung cancer (NSCLC). Anti-PDL1 or anti-PD1 treatments rely on PD-L1 tumoural expression assessed by immunohistochemistry on biopsy tissue. However, depending on the biopsy extraction site, PD-L1 expression can vary greatly. Non-invasive imaging enables whole-body mapping of PD-L1 sites and could improve the assessment of tumoural PD-L1 expression.MethodsPharmacokinetics (PK), biodistribution and dosimetry of a murine anti-PDL1 radiolabelled with zirconium-89, were evaluated in both healthy mice and immunocompetent mice with lung cancer. Preclinical PET (μPET) imaging was used to analyse [89Zr]DFO-Anti-PDL1 distribution in both groups of mice. Non-compartmental (NCA) and compartmental (CA) PK analyses were performed in order to describe PK parameters and assess area under the concentration-time curve (AUC) for dosimetry evaluation in humans.ResultsOrgan distribution was correctly estimated using PK modelling in both healthy mice and mice with lung cancer. Tumoural uptake occurred within 24 h post-injection of [89Zr]DFO-Anti-PDL1, and the best imaging time was at 48 h according to the signal-to-noise ratio (SNR) and image quality. An in vivo blocking study confirmed that [89Zr]DFO-anti-PDL1 specifically targeted PD-L1 in CMT167 lung tumours in mice. AUC in organs was estimated using a 1-compartment PK model and extrapolated to human (using allometric scaling) in order to estimate the radiation exposure in human. Human-estimated effective dose was 131 μSv/MBq.ConclusionThe predicted dosimetry was similar or lower than other antibodies radiolabelled with zirconium-89 for immunoPET imaging.
Collapse
Affiliation(s)
- Anis Krache
- CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- General-Electric - Zionexa, Targeting Imaging and Therapy, Buc, France
- Anis Krache
| | - Charlotte Fontan
- General-Electric - Zionexa, Targeting Imaging and Therapy, Buc, France
| | - Carine Pestourie
- CREFRE (Centre Régional D'Exploration Fonctionnelle et Ressources Expérimentales) – INSERM UMS006, Plateforme GénoToul-Anexplo, Toulouse, France
- ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse, France
| | - Manuel Bardiès
- IRCM (Institut de Recherche en Cancérologie de Montpellier), UMR 1194 INSERM, Université de Montpellier and ICM, Montpellier, France
- Département de Médecine Nucléaire, ICM (Institut du Cancer de Montpellier), Montpellier, France
| | - Yann Bouvet
- General-Electric - Zionexa, Targeting Imaging and Therapy, Buc, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Etienne Chatelut
- CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
| | - Melanie White-Koning
- CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- *Correspondence: Anne-Sophie Salabert
| |
Collapse
|
8
|
Thi Kim Dung D, Umezawa M, Ohnuki K, Nigoghossian K, Okubo K, Kamimura M, Yamaguchi M, Fujii H, Soga K. The influence of Gd-DOTA ratios conjugating PLGA-PEG micelles encapsulated IR-1061 in bimodal over–1000 nm near–infrared fluorescence and magnetic resonance imaging. Biomater Sci 2022; 10:1217-1230. [DOI: 10.1039/d1bm01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging can provide multidimensional information for understanding concealed microstructures or bioprocesses in biological objects. The combination of over–1000 nm near–infrared (OTN–NIR) fluorescence imaging and magnetic resonance (MR) imaging is...
Collapse
|
9
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
10
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
11
|
Kamakura D, Asano R, Kawai H, Yasunaga M. Mechanism of action of a T cell-dependent bispecific antibody as a breakthrough immunotherapy against refractory colorectal cancer with an oncogenic mutation. Cancer Immunol Immunother 2020; 70:177-188. [PMID: 32666260 PMCID: PMC7838078 DOI: 10.1007/s00262-020-02667-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
T cell-dependent bispecific antibody (TDB)-induced T cell activation, which can eliminate tumor cells independent of MHC engagement, is expected to be a novel breakthrough immunotherapy against refractory cancer. However, the mechanism of action of TDBs has not been fully elucidated thus far. We focused on TDB-induced T cell-tumor cell contact as an important initial step in direct T cell-mediated tumor cell killing via transport of cytotoxic cell proteases (e.g., granzymes) with or without immunological synapse formation. Using an anti-EGFR/CD3 TDB, hEx3, we visualized and quantified T cell-tumor cell contact and demonstrated a correlation between the degree of cell contact and TDB efficacy. We also found that cytokines, including interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) secreted by activated T cells, damaged tumor cells in a cell contact-independent manner. Moreover, therapeutic experiences clearly indicated that hEx3, unlike conventional anti-EGFR antibodies, was effective against colorectal cancer (CRC) cells with mutant KRAS, BRAF, or PIK3CA. In a pharmacokinetic analysis, T cells spread gradually in accordance with the hEx3 distribution within tumor tissue. Accordingly, we propose that TDBs should have four action steps: 1st, passive targeting via size-dependent tumor accumulation; 2nd, active targeting via specific binding to tumor cells; 3rd, T cell redirection toward tumor cells; and 4th, TDB-induced cell contact-dependent (direct) or -independent (indirect) tumor cell killing. Finally, our TDB hEx3 may be a promising reagent against refractory CRC with an oncogenic mutation associated with a poor prognosis.
Collapse
Affiliation(s)
- Daisuke Kamakura
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Hiroki Kawai
- Research and Development Department, LPIXEL Inc., Tokyo, 100-0004, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
12
|
Shimizu K, Takeuchi Y, Otsuka K, Mori T, Narita Y, Takasugi S, Magata Y, Matsumura Y, Oku N. Development of tissue factor-targeted liposomes for effective drug delivery to stroma-rich tumors. J Control Release 2020; 323:519-529. [DOI: 10.1016/j.jconrel.2020.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
|
13
|
Gonda K, Negishi H, Takano-Kasuya M, Kitamura N, Furusawa N, Nakano Y, Hamada Y, Tokunaga M, Higuchi H, Tada H, Ishida T. Heterogeneous Drug Efficacy of an Antibody-Drug Conjugate Visualized Using Simultaneous Imaging of Its Delivery and Intracellular Damage in Living Tumor Tissues. Transl Oncol 2020; 13:100764. [PMID: 32403030 PMCID: PMC7218300 DOI: 10.1016/j.tranon.2020.100764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan.
| | - Hiroshi Negishi
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Mayumi Takano-Kasuya
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Naoko Furusawa
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Yasushi Nakano
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICAMINOLTA. INC., Hino, Tokyo, 191-8511, Japan
| | - Yoh Hamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Masayuki Tokunaga
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
14
|
Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, Keating KA, Mousa SA. Pharmacokinetics, Biodistribution, and Anti-Angiogenesis Efficacy of Diamino Propane Tetraiodothyroacetic Acid-conjugated Biodegradable Polymeric Nanoparticle. Sci Rep 2019; 9:9006. [PMID: 31227723 PMCID: PMC6588584 DOI: 10.1038/s41598-019-44979-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
The anti-angiogenic agent, diamino propane tetraiodothyroacetic acid (DAT), is a thyro-integrin (integrin αvβ3) antagonist anticancer agent that works via genetic and nongenetic actions. Tetraiodothyroacetic acid (tetrac) and DAT as thyroid hormone derivatives influence gene expression after they transport across cellular membranes. To restrict the action of DAT to the integrin αvβ3 receptors on the cell surface, we used DAT-conjugated PLGA nanoparticles (NDAT) in an active targeting mode to bind to these receptors. Preparation and characterization of NDAT is described, and both in vitro and in vivo experiments were done to compare DAT to NDAT. Intracellular uptake and distribution of DAT and NDAT in U87 glioblastoma cells were evaluated using confocal microscopy and showed that DAT reached the nucleus, but NDAT was restricted from the nucleus. Pharmacokinetic studies using LC-MS/MS analysis in male C57BL/6 mice showed that administration of NDAT improved the area under the drug concentration curve AUC(0-48 h) by 4-fold at a dose of 3 mg/kg when compared with DAT, and Cmax of NDAT (4363 ng/mL) was 8-fold greater than that of DAT (548 ng/mL). Biodistribution studies in the mice showed that the concentrations of NDAT were higher than DAT/Cremophor EL micelles in heart, lung, liver, spleen, and kidney. In another mouse model using female NCr nude homozygous mice with U87 xenografts, tumor growth was significantly decreased at doses of 1 and 3 mg/kg of NDAT. In the chick chorioallantoic membrane (CAM) assay used to measure angiogenesis, DAT (500 ng/CAM) resulted in 48% inhibition of angiogenesis levels. In comparison, NDAT at low dose (50 ng/CAM) showed 45% inhibition of angiogenesis levels. Our investigation of NDAT bridges the study of polymeric nanoparticles and anti-angiogenic agents and offers new insight for the rational design of anti-angiogenic agents.
Collapse
Affiliation(s)
- Weikun Li
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Murat Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- Department of Physiology, Veterinary Medicine Faculty, Uludag University, Bursa, Turkey
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Qishan Lin
- Center for Functional Genomics, University at Albany SUNY, Albany, NY, USA
| | - Kavitha Godugu
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Kazutoshi Fujioka
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Kelly A Keating
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
15
|
Jang JH, Han SJ, Kim JY, Kim KI, Lee KC, Kang CS. Synthesis and Feasibility Evaluation of a new Trastuzumab Conjugate Integrated with Paclitaxel and 89Zr for Theranostic Application Against HER2-Expressing Breast Cancers. ChemistryOpen 2019; 8:451-456. [PMID: 31008009 PMCID: PMC6454217 DOI: 10.1002/open.201900037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/12/2019] [Indexed: 01/26/2023] Open
Abstract
The preparation and in vitro evaluation of a theranostic conjugate composed of trastuzumab, paclitaxel (PTX), and deferoxamine (DFO)-chelated 89Zr have been reported. These comounds have potential applications against HER2 receptor positive breast cancers. We conjugated DFO and PTX to trastuzumab by exploiting simple conjugation chemistry. The conjugate (DFO-trastuzumab-PTX) showed excellent radiolabeling efficiency with 89Zr and the labeled conjugate had high in vitro stability in human serum. Furthermore, DFO-trastuzumab-PTX displayed comparable cytotoxicity with PTX and 89Zr-DFO-trastuzumab-PTX exhibited HER2 receptor-mediated binding on HER2-positive MDA-MB-231 breast cancer cells. The results of our in vitro study indicate high potential of 89Zr-DFO-trastuzumab-PTX to be utilized in the theranostic application against HER2-postive breast cancers.
Collapse
Affiliation(s)
- Joo Hee Jang
- Division of Applied RIKorea Institute of Radiological and Medical Sciences75 Nowon-ro, Nowon-guSeoulKorea01812
| | - Sang Jin Han
- Division of Applied RIKorea Institute of Radiological and Medical Sciences75 Nowon-ro, Nowon-guSeoulKorea01812
| | - Jung Young Kim
- Division of Applied RIKorea Institute of Radiological and Medical Sciences75 Nowon-ro, Nowon-guSeoulKorea01812
| | - Kwang Il Kim
- Division of Applied RIKorea Institute of Radiological and Medical Sciences75 Nowon-ro, Nowon-guSeoulKorea01812
| | - Kyo Chul Lee
- Division of Applied RIKorea Institute of Radiological and Medical Sciences75 Nowon-ro, Nowon-guSeoulKorea01812
| | - Chi Soo Kang
- Division of Applied RIKorea Institute of Radiological and Medical Sciences75 Nowon-ro, Nowon-guSeoulKorea01812
| |
Collapse
|
16
|
Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2019; 32:465-480. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of 'next-generation' ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019; 24:molecules24010172. [PMID: 30621193 PMCID: PMC6337375 DOI: 10.3390/molecules24010172] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023] Open
Abstract
Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
18
|
Lee SJ, Jeong YI. Hybrid nanoparticles based on chlorin e6-conjugated hyaluronic acid/poly(l-histidine) copolymer for theranostic application to tumors. J Mater Chem B 2018; 6:2851-2859. [PMID: 32254238 DOI: 10.1039/c7tb03068a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study is to synthesize multifunctional hybrid nanoparticles composed of hyaluronic acid (HA) and poly(l-histidine) (PHS) with a disulfide linkage and chlorin e6 (HAPHSce6ss) for diagnostic and therapeutic application against breast tumor cells. The reductive end of HA was conjugated with cystamine to make a disulfide linkage (HA-cystamine). PHS was conjugated with Ce6 with the aid of carbodiimide chemistry (PHS-ce6). Then, HA-cystamine was conjugated with the carboxyl group of Ce6 to make an HAPHSce6ss copolymer. Nanoparticles of HAPHSce6ss copolymer have small particle sizes of less than 100 nm and their diameters increased with acidic pH, indicating that HAPHSce6ss nanoparticles have pH-sensitivity. Furthermore, ce6 was activated in the acidic environment and had redox-status in a fluorescence study. In a cell culture study, the nanoparticles were specifically targeted at the CD44 receptor of MDA-MB231 cells while CD44-negative MCF7 cells had no CD44-specificity. The nanoparticles exhibited an enhanced association with cells and were more fluorescent at acidic pH or in the presence of GSH. They inhibited the growth of tumor cells in a CD44 receptor specific or pH-sensitive manner. In an in vivo animal tumor xenograft study using mice, HAPHSce6ss nanoparticles predominantly targeted an MDA-MB231 tumor rather than an MCF7 tumor and effectively inhibited tumor growth. HAPHSce6ss nanoparticles have CD44 specificity, pH/redox dual sensitivity and a fluorescence diagnostic function against tumor cells. We suggest that HAPHSce6ss nanoparticles are a promising candidate for theranostic application to tumors.
Collapse
Affiliation(s)
- Sang-Joon Lee
- Department of Health Administration, Gwangju Health University, 73, Bungmun-daero(St) 419beon-gil(Rd), Gwangsan-gu, Gwangju, 62287, Republic of Korea
| | | |
Collapse
|
19
|
Yasunaga M, Manabe S, Furuta M, Ogata K, Koga Y, Takashima H, Nishida T, Matsumura Y. Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|