1
|
Sadiq M, Sivasubramanian A, Karanath-Anilkumar A, Anjum-Musthafa S, Kamaraj C, Munuswamy-Ramanujam G. Zaluzanin-D enriched Vernonia arborea extract mediated copper oxide nanoparticles synthesis and their anti-oxidant, anti-inflammatory and DNA methylation altering properties. RSC Adv 2024; 14:33809-33819. [PMID: 39450058 PMCID: PMC11500681 DOI: 10.1039/d4ra04032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Metal oxide nanoparticles synthesized with the aid of medicinal plant extracts are showing potential as treatment options for inflammatory diseases. Two key benefits of this synthesis method is: the synthesis process is environmentally benign and the utilization of medicinal plant-derived extracts adds to the medicinal value of the synthesized nanoparticle. Earlier, sesquiterpene lactone zaluzanin-D (ZD) has been isolated from leaves of Vernonia arborea. ZD showed ability to reduce inflammation in activated monocytes. Copper oxide nanoparticles (bCuO-NPs) were synthesized using ZD-enriched leaf extract of V. arborea and characterized by UV-vis spectroscopy, FT-IR, XRD, particle size analyzer, and TEM. Synthesized bCuO-NPs did not show significant toxicity to human monocytic cell lines (THP-1) at the tested concentrations. The bCuO-NPs showed radical scavenging ability indicating anti-oxidant properties. Flow cytometry experiments proved the capability of bCuO-NPs to reduce intracellular ROS in peroxide-activated THP-1 cells. The NPs also showed a significant ability to reduce inflammatory adhesion in PMA-activated THP-1 cells. In the DNA methylation studies, bCuO-NPs behaved similarly to ZD and prevented DNA hypomethylation at the MMP-9 promoter region. These properties strongly indicate the ability of bCuO-NPs to reduce inflammation in the activated monocytes. Furthermore, in zebrafish (Danio rerio) embryos, the developmental toxicity of bCuO-NPs was assessed. The studies indicated the reduced toxicity and compatibility of the NPs with biological organisms. Based on the results, it can be concluded that the bCuO-NPs produced from ZD-enriched leaf extract have significant anti-oxidant capabilities and the ability to reduce inflammation in monocytic cell lines. Overall, reduced in vitro and in vivo toxicity, along with its antioxidant and anti-inflammatory properties, makes bCuO-NPs a potential candidate for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Muhammad Sadiq
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| | - Arvind Sivasubramanian
- Natural Products and Organic Synthesis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University Thanjavur 613401-Tamil Nadu India
| | - Aswathy Karanath-Anilkumar
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology Chengalpattu-603203 Tamil Nadu India
| | - Shazia Anjum-Musthafa
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| | - Chinnaperumal Kamaraj
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| | - Ganesh Munuswamy-Ramanujam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| |
Collapse
|
2
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Chandana CR, Kalita S, Patgiri P, Kumar Kaman P. Green synthesis of silver nano-insecticide from Polygonum hydropipper (Polygonaceae). Nat Prod Res 2024:1-10. [PMID: 39311084 DOI: 10.1080/14786419.2024.2405015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
Developing eco-friendly and cost-effective green synthesis of metallic nanoparticles using an array of natural resources has garnered significant interest in recent years for their diverse sustainable applications, including agriculture. In our present investigation for green synthesis of silver nanoparticles (AgNPs), phytochemicals present on the Polygonum hydropipper (Family: Polygonaceae) leaf extract acted as a reducing and stabilising agent owing to their active phytoconstituents. Biosynthesis of AgNPs was confirmed using various physio-chemical methods including UV-Vis spectrophotometry, Dynamic Light Scattering (DLS) analysis, Zeta potential, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The Fourier Transform Infra-red Spectrograph (FTIR) analysis revealed strong peaks in the range of 638-3246.3 cm-1, confirming the presence of various functional groups viz., O-H, C-H, C = C and O = C = O on the biosynthesized compound. The methodology employed in our study for the biosynthesis of AgNPs utilising P. hydropiper leaf extract exhibits significant potential for future technological advancements.
Collapse
Affiliation(s)
- C R Chandana
- Department of Entomology, Assam Agricultural University, Jorhat, India
- Department of Entomology, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Surajit Kalita
- Department of Entomology, Assam Agricultural University, Jorhat, India
| | - Pulin Patgiri
- Department of Entomology, Assam Agricultural University, Jorhat, India
| | | |
Collapse
|
4
|
Ibne Shoukani H, Nisa S, Bibi Y, Ishfaq A, Ali A, Alharthi S, Kubra KT, Zia M. Green synthesis of polyethylene glycol coated, ciprofloxacin loaded CuO nanoparticles and its antibacterial activity against Staphylococcus aureus. Sci Rep 2024; 14:21246. [PMID: 39261712 PMCID: PMC11390890 DOI: 10.1038/s41598-024-72322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Antibacterial resistance requires an advanced strategy to increase the efficacy of current therapeutics in addition to the synthesis of new generations of antibiotics. In this study, copper oxide nanoparticles (CuO-NPs) were green synthesized using Moringa oleifera root extract. CuO-NPs fabricated into a form of aspartic acid-ciprofloxacin-polyethylene glycol coated copper oxide-nanotherapeutics (CIP-PEG-CuO) to improve the antibacterial activity of NPs and the efficacy of the drug with controlled cytotoxicity. These NPs were charachterized by Fourier transform infrared spectroscopy (FTIR), x-rays diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Antibacterial screening and bacterial chemotaxis investigations demonstrated that CIP-PEG-CuO NPs show enhanced antibacterial potential against Gram-positive and Gram-negative clinically isolated pathogenic bacterial strains as compared to CuO-NPs. In ex-vivo cytotoxicity CIP-PEG-CuO-nano-formulates revealed 88% viability of Baby Hamster Kidney 21 cell lines and 90% RBCs remained intact with nano-formulations during hemolysis assay. An in-vivo studies on animal models show that Staphylococcus aureus were eradicated by this newly developed formulate from the infected skin and showed wound-healing properties. By using specially designed nanoparticles that are engineered to precisely transport antimicrobial agents, these efficient nano-drug delivery systems can target localized infections, ensure targeted delivery, enhance efficacy through increased drug penetration through physical barriers, and reduce systemic side effects for more effective treatment.
Collapse
Affiliation(s)
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur, 22620, Pakistan.
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, 4600, Pakistan
| | - Afsheen Ishfaq
- Department of Medicine, FRPMC/PAF Hospital Faisal, Karachi, 75350, Pakistan
| | - Ashraf Ali
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur, 22780, Pakistan.
- School of Chemistry & Chemical Engineering , Henan University of Technology, Zhengzhou, 450001, China.
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Research Center of Basic Sciences, Engineering and High Altitude, Taif University, 21944, Taif, Saudi Arabia
| | - Khudija Tul Kubra
- Department of Microbiology, The University of Haripur, Haripur, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
5
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Radwan M, Moussa MA, Manaa EA, El-Sharkawy MA, Darweesh KF, Elraey SMA, Saleh NA, Mohammadein A, Al-Otaibi WM, Albadrani GM, Al-Ghadi MQ, Badawy LA, Abd El-Halim MO, Abdel-Daim MM, Mekky AE. Synergistic effect of green synthesis magnesium oxide nanoparticles and seaweed extract on improving water quality, health benefits, and disease resistance in Nile tilapia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116522. [PMID: 38843743 DOI: 10.1016/j.ecoenv.2024.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
This study aimed to evaluate the effect of adding liquid extract of algae (Hypnea musciformis, Grateloupia acuminata, and Sargassum muticum) (HGS) and Magnesium oxide nanoparticles (MgO NPs) using this extract to rear water of Oreochromis niloticus, on improving culture water indices, growth performance, digestive enzyme, hemato-biochemical characters, immune, antioxidative responses, and resistance after challenged by Aeromonas hydrophila with specific refer to the potential role of the mixture in vitro as resistance against three strains bacteria (Aeromonas sobria, Pseudomonas fluorescens, P. aeruginosa) and one parasite (Cichlidogyrus tilapia). The first group represented control, HGS0, whereas the other group, HGS5, HGS10, and HGS15 mL-1 of liquid extract, as well as all groups with 7.5 μg mL-1 MgO-NPs added to culture water of O. niloticus, for 60 days. Data showed that increasing levels at HGS 10 and HGS15 mL-1 in to-culture water significantly enhanced growth-stimulating digestive enzyme activity and a significantly improved survival rate of O. niloticus after being challenged with A. hydrophila than in the control group. The total viability, coliform, fecal coliform count, and heavy metal in muscle partially decreased at HGS 10 and HGS15 mL-1 than in the control group. Correspondingly, the highest positive effect on hemato-biochemical indices was noticed at levels HGS 10 and HGS15 mL-1. Fish noticed an improvement in immune and antioxidant indices compared to control groups partially at HGS 10 and HGS15 mL-1. Interestingly, fish cultured in rearing water with the mixture provided downregulated the related inflammatory genes (HSP70, TNF, IL-1β, and IL-8) partially at HGS15 mL-1. In vitro, the mixture showed positive efficiency as an antibacterial and partially antiparasitic at HGS 10 and HGS15 mL-1. This study proposes utilizing a mixture of (HGS) and (MgO-NPs) with optimum levels of 10-15 mL-1 in cultured water to improve water indices, growth, health status, and increased resistance of O. niloticus against bacterial and parasitic infection.
Collapse
Affiliation(s)
- Mahmoud Radwan
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Moussa A Moussa
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Eman A Manaa
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Kareem F Darweesh
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Said M A Elraey
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Nehad A Saleh
- Animal Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amaal Mohammadein
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Lobna A Badawy
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El‑Arish, Egypt
| | - Marwa O Abd El-Halim
- Department of Zoonoses, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Alsayed E Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|
7
|
Malandrakis AA, Varikou K, Kavroulakis Ν, Nikolakakis A, Dervisi I, Reppa CΙ, Papadakis S, Holeva MC, Chrysikopoulos CV. Copper nanoparticles interfere with insecticide sensitivity, fecundity and endosymbiont abundance in olive fruit fly Bactrocera oleae (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3640-3649. [PMID: 38456555 DOI: 10.1002/ps.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kyriaki Varikou
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Νektarios Kavroulakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Antonis Nikolakakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Irene Dervisi
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Chrysavgi Ι Reppa
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Maria C Holeva
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Constantinos V Chrysikopoulos
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Ullah I, Khan SS, Ahmad W, Liu L, Rady A, Aldahmash B, Yu Y, Wang J, Wang Y. NIR light-activated nanocomposites combat biofilm formation and enhance antibacterial efficacy for improved wound healing. Commun Chem 2024; 7:131. [PMID: 38851819 PMCID: PMC11162491 DOI: 10.1038/s42004-024-01215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Nanoparticle-based therapies are emerging as a pivotal frontier in biomedical research, showing their potential in combating infections and facilitating wound recovery. Herein, selenium-tellurium dopped copper oxide nanoparticles (SeTe-CuO NPs) with dual photodynamic and photothermal properties were synthesized, presenting an efficient strategy for combating bacterial infections. In vitro evaluations revealed robust antibacterial activity of SeTe-CuO NPs, achieving up to 99% eradication of bacteria and significant biofilm inhibition upon near-infrared (NIR) irradiation. Moreover, in vivo studies demonstrated accelerated wound closure upon treatment with NIR-activated SeTe-CuO NPs, demonstrating their efficacy in promoting wound healing. Furthermore, SeTe-CuO NPs exhibited rapid bacterial clearance within wounds, offering a promising solution for wound care. Overall, this versatile platform holds great promise for combating multidrug-resistant bacteria and advancing therapeutic interventions in wound management.
Collapse
Affiliation(s)
- Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China.
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yushu Wang
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution, Gaozhou City, 525200, China.
| |
Collapse
|
9
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
10
|
Geremew A, Palmer L, Johnson A, Reeves S, Brooks N, Carson L. Multi-functional copper oxide nanoparticles synthesized using Lagerstroemia indica leaf extracts and their applications. Heliyon 2024; 10:e30178. [PMID: 38726176 PMCID: PMC11078880 DOI: 10.1016/j.heliyon.2024.e30178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using Lagerstroemia indica leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR). The colloid displayed surface plasmon resonance peaks at 320 nm, characteristic of LI-CuO NPs. DLS analysis revealed an average particle size of 93.5 nm and a negative zeta potential of -20.3 mV. FTIR and XPS analyses demonstrated that LI-CuO NPs possessed abundant functional groups that acted as stabilizing agents. XRD analysis indicated pure crystalline and spherical LI-CuO NPs measuring 36 nm in size. Antibacterial tests exhibited significant differential activity of LI-CuO NPs against both gram-negative (Escherichia coli, Salmonella typhimurium) and gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. In antioxidant tests, the LI-CuO NPs demonstrated a remarkable radical scavenging activity of 97.6 % at a concentration of 400 μg mL-1. These nanoparticles were also found to enhance mustard seed germination at low concentrations. With a remarkable reusability, LI-CuO NPs exhibited excellent photocatalytic performance, with a degradation efficiency of 97.6 % at 150 μg/mL as well as a 95.6 % reduction in turbidity when applied to wastewater treatment. In conclusion, this study presents environmentally friendly method for the facile synthesis of LI-CuO NPs that could potentially offer promising applications in biomedicine, agriculture, and environmental remediation due to their multifunctional properties.
Collapse
Affiliation(s)
- Addisie Geremew
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Lenaye Palmer
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Andre Johnson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Sheena Reeves
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Nigel Brooks
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, 77446, USA
| |
Collapse
|
11
|
Khandelwal M, Choudhary S, Harish, Kumawat A, Misra KP, Vyas Y, Singh B, Rathore DS, Soni K, Bagaria A, Khangarot RK. An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Coelastrella terrestris Algal Extract. Int J Nanomedicine 2024; 19:4137-4162. [PMID: 38756417 PMCID: PMC11096669 DOI: 10.2147/ijn.s452889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Background In the current scenario, the synthesis of nanoparticles (NPs) using environmentally benign methods has gained significant attention due to their facile processes, cost-effectiveness, and eco-friendly nature. Methods In the present study, copper oxide nanoparticles (CuO NPs) were synthesized using aqueous extract of Coelastrella terrestris algae as a reducing, stabilizing, and capping agent. The synthesized CuO NPs were characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Results XRD investigation revealed that the biosynthesized CuO NPs were nanocrystalline with high-phase purity and size in the range of 4.26 nm to 28.51 nm. FTIR spectra confirmed the existence of secondary metabolites on the surface of the synthesized CuO NPs, with characteristic Cu-O vibrations being identified around 600 cm-1, 496 cm-1, and 440 cm-1. The FE-SEM images predicted that the enhancement of the algal extract amount converted the flattened rice-like structures of CuO NPs into flower petal-like structures. Furthermore, the degradation ability of biosynthesized CuO NPs was investigated against Amido black 10B (AB10B) dye. The results displayed that the optimal degradation efficacy of AB10B dye was 94.19%, obtained at 6 pH, 50 ppm concentration of dye, and 0.05 g dosage of CuO NPs in 90 min with a pseudo-first-order rate constant of 0.0296 min-1. The CuO-1 NPs synthesized through algae exhibited notable antibacterial efficacy against S. aureus with a zone of inhibition (ZOI) of 22 mm and against P. aeruginosa with a ZOI of 17 mm. Conclusion Based on the findings of this study, it can be concluded that utilizing Coelastrella terrestris algae for the synthesis of CuO NPs presents a promising solution for addressing environmental contamination.
Collapse
Affiliation(s)
- Manisha Khandelwal
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sunita Choudhary
- Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Harish
- Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Ashok Kumawat
- Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Kamakhya Prakash Misra
- Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Yogeshwari Vyas
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Bhavya Singh
- Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Devendra Singh Rathore
- Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Kanchan Soni
- Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Ashima Bagaria
- Department of Physics, School of Basic Sciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Rama Kanwar Khangarot
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
12
|
Ekim R, Arikan B, Alp-Turgut FN, Koyukan B, Ozfidan-Konakci C, Yildiztugay E. Polyvinylpyrrolidone-coated copper nanoparticles dose-dependently conferred tolerance to wheat under salinity and/or drought stress by improving photochemical activity and antioxidant system. ENVIRONMENTAL RESEARCH 2024; 241:117681. [PMID: 37984786 DOI: 10.1016/j.envres.2023.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Copper (Cu) is one of the essential micronutrients for plants and has been used extensively in agricultural applications from the past to the present. However, excess copper causes toxic effects such as inhibiting photosynthesis, and disrupting biochemical processes in plants. Nanotechnology applications have offered a critical method for minimizing adverse effects and improving the effectiveness of copper nanoparticles. For this purpose, this study investigated the physiological and biochemical effects of polyvinylpyrrolidone (PVP)-coated Cu nanoparticles (PVP-Cu NP, N1, 100 mg L-1; N2, 400 mg L-1) in Triticum aestivum under alone or combined with salt (S, 150 mM NaCl) and/or drought (D, %10 PEG-6000) stress. Salinity and water deprivation caused 51% and 22% growth retardation in wheat seedlings. The combined stress condition (S + D) resulted in an approximately 3-fold reduction in the osmotic potential of the leaves. PVP-Cu NP treatments to plants under stress, especially N1 dose, were effective in restoring growth rate and regulating water relations. All stress treatments limited gas exchange in stomata and suppressed the maximal quantum yield of PSII (Fv/Fm). More than 50% improvement was observed in stomatal permeability and carbon assimilation rate under S + N1 and S + N2 applications. Examination of OJIP transient parameters revealed that N1 treatments protected photochemical reactions by reducing the dissipated energy flux (DIo/RC) in drought and S + D conditions. Exposure to S and/or D stress caused high hydrogen peroxide (H2O2) accumulation and lipid peroxidation in wheat leaves. The results indicated that S + N1 and S + N2 treatments reduced oxidative damage by stimulating the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Although similar effects were observed at D and S + D conditions with 100 mg L-1 PVP-Cu NP treatments (N1), the curative effect of the N2 dose was not observed. In D + N1 and S + D + N1 groups, AsA regeneration and GSH redox status were maintained by triggering APX, GR, and other enzyme activities belonging to the AsA-GSH cycle. In these groups, N2 treatment did not contribute to the availability of enzymatic and non-enzymatic antioxidants. As a result, this study revealed that N1 dose PVP-Cu NP application was successful in providing stress tolerance and limiting copper-induced adverse effects under all stress conditions.
Collapse
Affiliation(s)
- Rumeysa Ekim
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Buket Koyukan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
13
|
Zain M, Ma H, Ur Rahman S, Nuruzzaman M, Chaudhary S, Azeem I, Mehmood F, Duan A, Sun C. Nanotechnology in precision agriculture: Advancing towards sustainable crop production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108244. [PMID: 38071802 DOI: 10.1016/j.plaphy.2023.108244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024]
Abstract
Nanotechnology offers many potential solutions for sustainable agroecosystem, including improvement in nutrient use efficiency, efficacy of pest management, and minimizing the adverse environmental effects of agricultural production. Herein, we first highlighted the integrated application of nanotechnology and precision agriculture for sustainable productivity. Application of nanoparticle mediated material and advanced biosensors in precision agriculture is only possible by nanochips or nanosensors. Nanosensors offers the measurement of various stresses, soil quality parameters and detection of heavy metals along with the enhanced data collection, enabling precise decision-making and resource management in agricultural systems. Nanoencapsulation of conventional chemical fertilizers (known as nanofertilizers), and pesticides (known as nanopesticides) helps in sustained and slow release of chemicals to soils and results in precise dosage to plants. Further, nano-based disease detection kits are popular tools for early and speedy detection of viral diseases. Many other innovative approaches including biosynthesized nanoparticles have been evaluated and proposed at various scales, but in fact there are some barriers for practical application of nanotechnology in soil-plant system, including safety and regulatory concerns, efficient delivery at field levels, and consumer acceptance. Finally, we outlined the policy options and actions required for sustainable agricultural productivity, and proposed various research pathways that may help to overcome the upcoming challenges regarding practical implications of nanotechnology.
Collapse
Affiliation(s)
- Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Haijiao Ma
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Md Nuruzzaman
- Faculty of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Faisal Mehmood
- Key Laboratory of Crop Water Use and Regulation, Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, 453003, China; Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, 453003, China
| | - Chengming Sun
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Nekoukhou M, Fallah S, Pokhrel LR, Abbasi-Surki A, Rostamnejadi A. Foliar co-application of zinc oxide and copper oxide nanoparticles promotes phytochemicals and essential oil production in dragonhead (Dracocephalum moldavica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167519. [PMID: 37804977 DOI: 10.1016/j.scitotenv.2023.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Individual nanoparticle application has been documented to promote plant production; however, whether co-application of two nanoparticles (NPs) is more sustainable and significantly promotes plant production is unclear. Herein, foliar co-applications of two NPs or their conventional fertilizer forms on the growth, micronutrient (copper and zinc) enrichment, primary productivity, and essential oil (EO) production in a medicinal annual, dragonhead (Dracocephalum moldavica L.), were investigated. Treatments included 1:1 ratio of zinc oxide nanoparticles (ZnONPs):copper oxide nanoparticles (CuONPs) (40-400 mg/L), and compared with individual NPs, individual zinc suspension (ZnS) and chelated copper (chelated-Cu), and their combination, at equivalent concentrations. Results showed that the highest bioenrichment of Zn and Cu was observed with 80-160 mg/L ZnS+chelated-Cu, 400 mg/L ZnONPs+CuONPs, or ionic combination treatments. A dose-dependent increase in hydrogen peroxide and malondialdehyde was observed with co-treatment of NPs or ions, and oxidative stress responses were higher with NPs or ions co-treatment than individual treatment. With 160 mg/L ZnONPs+CuONPs treatment, total chlorophyll, aboveground biomass, and essential oil production increased significantly compared to control, 160 mg/L CuONPs, and 160 mg/L ZnONPs (227, 157 and 823 %; 58, 79, and 51 %; and 46, 80, and 3 %, respectively). Flavonoid and anthocyanin content also increased significantly (58 and 50 %, respectively) with ZnONPs+CuONPs compared to ZnS+chelated-Cu and were higher than ZnONPs or CuONPs alone by 10 and 25 %, and 37 and 36 %, respectively. More importantly, EO production and quality improved with 160 mg/L ZnONPs+CuONPs treatment compared to control. Taken together, our findings showed that foliar co-treatment of 160 mg/L ZnONPs+CuONPs could significantly improve primary productivity, aboveground biomass, and EO quality and yield in dragonhead grown in semi-arid field conditions; and thus, 160 mg/L ZnONPs+CuONPs is recommended as an optimal foliar co-treatment strategy for promoting sustainable plant production in semi-arid regions where soil nutrients and water are limiting factors inhibiting crop yield.
Collapse
Affiliation(s)
- Marjan Nekoukhou
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Abbasi-Surki
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
15
|
Alhaithloul HAS, Ali B, Alghanem SMS, Zulfiqar F, Al-Robai SA, Ercisli S, Yong JWH, Moosa A, Irfan E, Ali Q, Irshad MA, Abeed AHA. Effect of green-synthesized copper oxide nanoparticles on growth, physiology, nutrient uptake, and cadmium accumulation in Triticum aestivum (L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115701. [PMID: 37979354 DOI: 10.1016/j.ecoenv.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.
Collapse
Affiliation(s)
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 1988, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk Universitesi, Erzurum 25240, Turkiye; HGF Agro, Ata Teknokent, Erzurum 25240, Turkiye
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden.
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Effa Irfan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
16
|
Abdelfattah NAH, Yousef MA, Badawy AA, Salem SS. Influence of biosynthesized magnesium oxide nanoparticles on growth and physiological aspects of cowpea (Vigna unguiculata L.) plant, cowpea beetle, and cytotoxicity. Biotechnol J 2023; 18:e2300301. [PMID: 37615241 DOI: 10.1002/biot.202300301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Recently, agricultural management innovation has incorporated engineered nanoparticles. The current investigation was carried out to produce magnesium oxide nanoparticles (MgONPs) for the first time applying S. cerevisiae extract. FTIR, XRD, HRTEM, and zeta potential analysis were used to characterize the MgONPs. The FTIR data show that the bioactive substances reduce and cap the synthesized MgONPs. The crystalline metallic MgONPs had four significant peaks in the XRD pattern. The size and form of MgONPs were validated by TEM, which exhibited spherical structures with an average size of 27 nm. The effect of various dosages of MgONPs administered to the cowpea (Vigna unguiculata L.) plant on all in vitro parameters was shown to be significant in the study. The concentration 200 ppm was the most significant treatment which increased shoot length, shoot dry-weight and root dry-weight by 27.35%, 45.09%, and 31.91% when compared with the untreated cowpea plants. MgONPs significantly increased photosynthetic pigments, with 150 ppm treatment significantly increasing soluble proteins and carbohydrates. MgONPs effectively treated cowpea C. maculatus, with dose and time-dependent insecticidal activity. MgONPs death rates varied by 82.66% and 100% on fifth day. Biochemical and histopathological studies of rats were investigated. Rats treated with MgONPs showed higher GOT, GPT, Urea levels, but lower creatinine, indicating significant differences. MgONPs-treated rats' liver showed mild to moderate histopathologic changes, including portal blood vessel congestion, lymphocytic cholangitis, and degenerative changes. MgONPs has the potential to improve cowpea development outcomes and suppress grain insects (C. maculatus).
Collapse
Affiliation(s)
| | - Manar Ali Yousef
- Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Rajabi HR, Alvand ZM, Mirzaei A. Sonochemical-assisted synthesis of copper oxide nanoparticles with the plant-mediated approach and comparative evaluation of some biological activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120236-120249. [PMID: 37938488 DOI: 10.1007/s11356-023-30684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023]
Abstract
The present study reported a green approach for the sonochemical-assisted synthesis (SAS) of copper oxide nanoparticles (CuO NPs) by using the aqueous extract of the Ficus johannis plant. The aqueous extract was obtained using ultrasonic-assisted extraction (15 min, 45 °C) and microwave-assisted extraction (15 min, 450 w). Next, the as-prepared extracts were used in a plant-mediated approach for the green synthesis of CuO NPs. The synthesized CuO NPs have been characterized via different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), ultraviolet-visible absorption, photoluminescence, and Fourier-transformed infrared (FT-IR) spectroscopic techniques. As observed, a broad absorption band around 375 nm clarified the successful synthesis of CuO NPs. From the SEM analysis, the average particle size of the prepared CuO NPs was estimated below 50 nm. In addition, the antimicrobial, antioxidant, and antifungal properties of the aqueous extracts as well as the as-prepared CuO NPs were evaluated by different assays. These included the release of protein, nucleic acids, disk diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and time-killing assays.
Collapse
Affiliation(s)
| | | | - Ali Mirzaei
- Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
18
|
Wang Q, Xu S, Zhong L, Zhao X, Wang L. Effects of Zinc Oxide Nanoparticles on Growth, Development, and Flavonoid Synthesis in Ginkgo biloba. Int J Mol Sci 2023; 24:15775. [PMID: 37958760 PMCID: PMC10649971 DOI: 10.3390/ijms242115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ginkgo biloba is a highly valuable medicinal plant known for its rich secondary metabolites, including flavonoids. Zinc oxide nanoparticles (ZnO-NPs) can be used as nanofertilizers and nano-growth regulators to promote plant growth and development. However, little is known about the effects of ZnO-NPs on flavonoids in G. biloba. In this study, G. biloba was treated with different concentrations of ZnO-NPs (25, 50, 100 mg/L), and it was found that 25 mg/L of ZnO-NPs enhanced G. biloba fresh weight, dry weight, zinc content, and flavonoids, while 50 and 100 mg/L had an inhibitory effect on plant growth. Furthermore, quantitative reverse transcription (qRT)-PCR revealed that the increased total flavonoids and flavonols were mainly due to the promotion of the expression of flavonol structural genes such as GbF3H, GbF3'H, and GbFLS. Additionally, when the GbF3H gene was overexpressed in tobacco and G. biloba calli, an increase in total flavonoid content was observed. These findings indicate that 25 mg/L of ZnO-NPs play a crucial role in G. biloba growth and the accumulation of flavonoids, which can potentially promote the yield and quality of G. biloba in production.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (S.X.); (L.Z.); (X.Z.)
| |
Collapse
|
19
|
Fernandes C, Jesudoss M N, Nizam A, Krishna SBN, Lakshmaiah VV. Biogenic Synthesis of Zinc Oxide Nanoparticles Mediated by the Extract of Terminalia catappa Fruit Pericarp and Its Multifaceted Applications. ACS OMEGA 2023; 8:39315-39328. [PMID: 37901498 PMCID: PMC10601049 DOI: 10.1021/acsomega.3c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) were biosynthesized by using the pericarp aqueous extract from Terminalia catappa Linn. These NPs were characterized using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), and XRD studies of the nanoparticles reported mean size as 12.58 nm nanocrystals with highest purity. Further SEM analysis emphasized the nanoparticles to be spherical in shape. The functional groups responsible for capping and stabilizing the NPs were identified with FTIR studies. DLS studies of the synthesized NPs reported ζ potential as -10.1 mV and exhibited stable colloidal solution. These characterized ZnO-NPs were evaluated for various biological applications such as antibacterial, antifungal, antioxidant, genotoxic, biocompatibility, and larvicidal studies. To explore its multidimensional application in the field of medicine. NPs reported a potential antimicrobial activity at a concentration of 200 μg/mL against bacterial strains in the decreasing order of Streptococcus pyogenes > Streptococcus aureus > Streptococcus typhi > Streptococcus aeruginosa and against the fungi Candida albicans. In vitro studies of RBC hemolysis with varying concentrations of NPs confirm their biocompatibility with IC50 value of 211.4 μg/mL. The synthesized NPs' DPPH free radical scavenging activity was examined to extend their antioxidant applications. The antiproliferation and genetic toxicity were studied with meristematic cells of Allium cepa reported with mitotic index (MI index) of 1.2% at the concentration of 1000 μg/mL. NPs exhibited excellent Larvicidal activity against Culex quinquefasciatus larvae with the highest mortality rate as 98% at 4 mg/L. Our findings elicit the therapeutic potentials of the synthesized zinc oxide NPs.
Collapse
Affiliation(s)
- Cannon
Antony Fernandes
- Department
of Life Sciences. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Nameeta Jesudoss M
- Department
of Life Sciences. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Aatika Nizam
- Department
of Chemistry. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Suresh Babu Naidu Krishna
- Department
of Biomedical and Clinical Technology. Durban
University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
20
|
Almurshedi AS, El-Masry TA, Selim H, El-Sheekh MM, Makhlof MEM, Aldosari BN, Alfagih IM, AlQuadeib BT, Almarshidy SS, El-Bouseary MM. New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization. Microb Cell Fact 2023; 22:173. [PMID: 37670273 PMCID: PMC10478239 DOI: 10.1186/s12934-023-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1β expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1β expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T AlQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
21
|
Ahmad CA, Haider MS, Akhter A. Physiological and biochemical characterization of biochar-induced resistance against bacterial wilt of eggplants. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230442. [PMID: 37564063 PMCID: PMC10410212 DOI: 10.1098/rsos.230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
The abrupt variation in climatic patterns has become a global concern in terms of food security. Biochar, known to ameliorate climatic adversities by sequestering carbon and activating systemic resistance pathways in plants, has become increasingly relevant. Therefore, the study was aimed to characterize leaf waste biochar (LWB) by Fourier-transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and X-ray diffraction analytical techniques as well as determination of its impact on the development of bacterial wilt (BW) in eggplant (Solanum melongena) caused by Ralstonia solanacearum (RS). The effect of LWB on the physiology and defence-associated biochemistry of eggplants was investigated thoroughly. Eggplants either inoculated (+RS) or uninoculated (-RS) were cultivated in potting mixture containing 3 and 6% (v/v) LWB separately. In comparison with substrate (soil only), percentage disease index was significantly reduced (71%) in plants grown in 6% LWB-amended treatments. Biochar-induced increase in level of total chlorophyll content as well as in biochemicals such as phenolics, flavonoids and peroxidases were evident on plants in terms of resistance response against BW. Moreover, biochar also significantly affected the level of NPK in the eggplants. In conclusion, biochar-triggered biochemical alterations played a pivotal role in the management of BW along with the curing of the disease-infested soils.
Collapse
Affiliation(s)
- Chaudhry Ali Ahmad
- Faculty of Agricultural Sciences, Department of Plant Pathology, University of the Punjab, Quaid-e-Azam Campus, PO Box 54590, Lahore, Pakistan
| | - Muhammad Saleem Haider
- Faculty of Agricultural Sciences, Department of Plant Pathology, University of the Punjab, Quaid-e-Azam Campus, PO Box 54590, Lahore, Pakistan
| | - Adnan Akhter
- Faculty of Agricultural Sciences, Department of Plant Pathology, University of the Punjab, Quaid-e-Azam Campus, PO Box 54590, Lahore, Pakistan
| |
Collapse
|
22
|
Radwan AM, Ahmed EA, Donia AM, Mustafa AE, Balah MA. Priming of Citrullus lanatus var. Colocynthoides seeds in seaweed extract improved seed germination, plant growth and performance under salinity conditions. Sci Rep 2023; 13:11884. [PMID: 37482594 PMCID: PMC10363529 DOI: 10.1038/s41598-023-38711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
Citrullus lanatus var. Colocynthoide "Gurum" is an unconventional crop that can be utilized as a new source of edible oil and has the ability to grow in a variety of harsh conditions. To mitigate the adverse effects of salinity on seed germination and plant performance of C. lanatus, seeds were primed in the aqueous extracts of the seaweed Ulva lactuca before planting under greenhouse conditions. The aqueous extract of U. lactuca at 8% w/v led to maximal seed germination percentage and seedling growth of C. lanatus. Moreover, U. lactuca extract counteracted the negative effects of salt stress on the plant by significantly increasing the activity of SOD, CAT, and POD. The bioactive components of U. lactuca, e.g. glycine betaine and phenolic compounds can account for such beneficial role of algal extract on C. lanatus. Thus, priming of C. lanatus seeds in U. lactuca extract with various concentrations of U. lactuca extract can be employed as an effective practice for successful seed germination, improved plant growth and enhanced salt resistance, probably as a result of increased antioxidant enzymes activity and photosynthetic pigments.
Collapse
Affiliation(s)
- Asmaa M Radwan
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Entesar A Ahmed
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Abdelraheim M Donia
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Abeer E Mustafa
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Balah
- Plants Protection Department, Desert Research Center, Cairo, Egypt.
| |
Collapse
|
23
|
Basit F, He X, Zhu X, Sheteiwy MS, Minkina T, Sushkova S, Josko I, Hu J, Hu W, Guan Y. Uptake, accumulation, toxicity, and interaction of metallic-based nanoparticles with plants: current challenges and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4165-4179. [PMID: 37103657 DOI: 10.1007/s10653-023-01561-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of industrialization is causing several fundamental problems in plants due to the interaction between plants and soil contaminated with metallic nanoparticles (NPs). Numerous investigations have been conducted to address the severe toxic effects caused by nanoparticles in the past few decades. Based on the composition, size, concentration, physical and chemical characteristics of metallic NPs, and plant types, it enhances or lessens the plant growth at various developmental stages. Metallic NPs are uptaken by plant roots and translocated toward shoots via vascular system based on composition, size, shape as well as plant anatomy and cause austere phytotoxicity. Herein, we tried to summarize the toxicity induced by the uptake and accumulation of NPs in plants and also we explored the detoxification mechanism of metallic NPs adopted by plants via using different phytohormones, signaling molecules, and phytochelatins. This study was intended to be an unambiguous assessment including current knowledge on NPs uptake, accumulation, and translocation in higher plants. Furthermore, it will also provide sufficient knowledge to the scientific community to understand the metallic NPs-induced inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiang He
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Izabela Josko
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jin Hu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Shailaja N, Arulmozhi M, Balraj B, Siva C. Corallocarpus epigaeus mediated synthesis of ZnO/CuO integrated ZrO2 nanoparticles for enhanced in-vitro antibacterial, antifungal and antidiabetic activities. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
26
|
Nekoukhou M, Fallah S, Pokhrel LR, Abbasi-Surki A, Rostamnejadi A. Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160920. [PMID: 36529390 DOI: 10.1016/j.scitotenv.2022.160920] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
High alkaline and low organic carbon hinder micronutrients, such as copper (Cu), bioavailability in (semi-) arid soils, affecting plant nutrient quality and productivity. This study aimed at investigating the potential beneficial effects of foliar Cu oxide nanoparticles (CuONPs) and conventional chelated-Cu applications (0-400 mg Cu/L) on the biomass, physiological biomarkers of plant productivity and oxidative stress, Cu bioaugmentation, and essential oils and secondary metabolites in dragonhead (Dracocephalum moldavica [L.]) grown in Cu-limited alkaline soil in semi-arid condition. Employing a randomized complete block design with three replicates, two different sources of Cu (CuONPs and chelated-Cu), and a wide range of Cu concentrations (0, 40, 80, 160, and 400 mg Cu/L), plants were foliarly treated at day-60 and day-74. At day-120, plants were harvested at the end of the flowering stage. Results showed shoot Cu bioaccumulation, flavonoids and anthocyanin increased in a dose-dependent manner for both Cu compounds, but the beneficial effects were significantly higher with CuONPs compared to chelated-Cu treatments. Further, shoot biomass (23 %), photosynthetic pigments (chlorophyll-a and chlorophyll-b; 77 and 123 %, respectively), and essential oil content and yield (70 and 104 %, respectively) increased significantly with foliar application of 80 mg/L CuONPs compared to equivalent concentration of chelated-Cu, suggesting an optimal threshold beyond which toxicity was observed. Likewise, commercially important secondary metabolites' yield (such as geranyl acetate, geranial, neral, and geraniol) was higher with 80 mg/L CuONPs compared to 160 mg/L chelated-Cu (2.3, 0.5, 2.5, and 7.1 %, respectively). TEM analyses of leaf ultrastructure revealed altered cellular organelles for both compounds at 400 mg/L, corroborating the results of oxidative stress response (malondialdehyde and H2O2). In conclusion, these findings indicate significantly higher efficacy of CuONPs, with an optimal threshold of 80 mg/L, in promoting essential oil and bioactive compound yield in dragonhead and may pave a path for the use of nano-Cu as a sustainable fertilizer promoting agricultural production in semi-arid soils that are micronutrient Cu deficient.
Collapse
Affiliation(s)
- Marjan Nekoukhou
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Abbasi-Surki
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
27
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
28
|
Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AB. Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics (Basel) 2023; 12:338. [PMID: 36830248 PMCID: PMC9951924 DOI: 10.3390/antibiotics12020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | | | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| |
Collapse
|
29
|
Geremew A, Carson L, Woldesenbet S, Wang H, Reeves S, Brooks N, Saganti P, Weerasooriya A, Peace E. Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard ( Brassica juncea). FRONTIERS IN PLANT SCIENCE 2023; 14:1108186. [PMID: 36755696 PMCID: PMC9900026 DOI: 10.3389/fpls.2023.1108186] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The sustainability of crop production is impacted by climate change and land degradation, and the advanced application of nanotechnology is of paramount importance to overcome this challenge. The development of nanomaterials based on essential nutrients like zinc could serve as a basis for nanofertilizers and nanocomposite synthesis for broader agricultural applications and quality human nutrition. Therefore, this study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using pecan (Carya illinoinensis) leaf extract and investigate their effect on the growth, physiology, nutrient content, and antioxidant properties of mustard (Brassica juncea). METHODS The ZnO NPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). Mustard plants were subjected to different concentrations of ZnONPs (0, 20, 40, 60, 80, 100 and 200 mg L-1) during the vegetative growth stage. RESULTS The UV-Vis spectra of ZnO NPs revealed the absorption maxima at 362 nm and FTIR identified numerous functional groups that are responsible for capping and stabilizing ZnO NPs. DLS analysis presented monodispersed ZnO NPs of 84.5 nm size and highly negative zeta potential (-22.4 mV). Overall, the application of ZnO NPs enhanced the growth, chlorophyll content (by 53 %), relative water content (by 46 %), shoot biomass, membrane stability (by 54 %) and net photosynthesis significantly in a dose-dependent manner. In addition, the supplement of the ZnO NPs augmented K, Fe, Zn and flavonoid contents as well as overcome the effect of reactive oxygen species by increasing antioxidant capacity in mustard leaves up to 97 %. CONCLUSIONS In conclusion, ZnO NPs can be potentially used as a plant growth stimulant and as a novel soil amendment for enhancing crop yields. Besides, the biofortification of B. juncea plants with ZnO NPs helps to improve the nutritional quality of the crop and perhaps potentiates its pharmaceutical effects.
Collapse
Affiliation(s)
- Addisie Geremew
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Huichen Wang
- Department of Chemistry and Physics, College of Arts and Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Sheena Reeves
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Nigel Brooks
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Premkumar Saganti
- Department of Chemistry and Physics, College of Arts and Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Aruna Weerasooriya
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Elisha Peace
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
30
|
Hussein AS, Hashem AH, Salem SS. Mitigation of the hyperglycemic effect of streptozotocin-induced diabetes albino rats using biosynthesized copper oxide nanoparticles. Biomol Concepts 2023; 14:bmc-2022-0037. [PMID: 38230658 DOI: 10.1515/bmc-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder described by compromised insulin synthesis or resistance to insulin inside the human body. Diabetes is a persistent metabolic condition defined by elevated amounts of glucose in the bloodstream, resulting in a range of potential consequences. The main purpose of this study was to find out how biosynthesized copper oxide nanoparticles (CuONPs) affect the blood sugar levels of diabetic albino rats induced by streptozotocin (STZ). In the current study, CuONPs were successfully biosynthesized using Saccharomyes cervisiae using an eco-friendly method. Characterization results revealed that biosynthesized CuONPs appeared at 376 nm with a spherical shape with sizes ranging from 4 to 47.8 nm. Furthermore, results illustrated that administration of 0.5 and 5 mg/kg CuONP in diabetic rats showed a significant decrease in blood glucose levels accompanied by elevated insulin levels when compared to the diabetic control group; however, administration of 0.5 mg/kg is the best choice for diabetic management. Furthermore, it was found that the group treated with CuONPs exhibited a noteworthy elevation in the HDL-C level, along with a depletion in triglycerides, total cholesterol, LDL-C, and VLDL-cholesterol levels compared to the diabetic control group. This study found that administration of CuONPs reduced hyperglycemia and improved pancreatic function as well as dyslipidemia in diabetic rats exposed to STZ, suggesting their potential as a promising therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Ahmed Saber Hussein
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
31
|
Soliman MKY, Salem SS, Abu-Elghait M, Azab MS. Biosynthesis of Silver and Gold Nanoparticles and Their Efficacy Towards Antibacterial, Antibiofilm, Cytotoxicity, and Antioxidant Activities. Appl Biochem Biotechnol 2023; 195:1158-1183. [PMID: 36342621 PMCID: PMC9852169 DOI: 10.1007/s12010-022-04199-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
The World Health Organization (WHO) reports that the emergence of multidrug-resistant and the slow advent of novel and more potent antitumor and antimicrobial chemotherapeutics continue to be of the highest concern for human health. Additionally, the stability, low solubility, and negative effects of existing drugs make them ineffective. Studies into alternative tactics to tackle such tenacious diseases was sparked by anticancer and antibacterial. Silver (Ag) and gold (Au) nanoparticles (NPs) were created from Trichoderma saturnisporum, the much more productive fungal strain. Functional fungal extracellular enzymes and proteins carried out the activities of synthesis and capping of the generated nano-metals. Characterization was done on the obtained Ag-NPs and Au-NPs through UV-vis, FTIR, XRD, TEM, and SEM. Additionally, versus methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae, the antibacterial activities of Ag-NPs and Au-NPs were assessed. In particular, the Ag-NPs were more effective against pathogenic bacteria than Au-NPs. Furthermore, antibiofilm study that shown Au-NPs had activity more than Ag-NPs. Interestingly, applying the DPPH procedure, these noble metallic NPs had antioxidant activity, in which the IC50 for Ag-NPs and Au-NPs was 73.5 μg/mL and 190.0 μg/mL, respectively. According to the cytotoxicity evaluation results, the alteration in the cells was shown as loss of their typical shape, partial or complete loss of monolayer, granulation, shrinking, or cell rounding with IC50 for normal Vero cell were 693.68 μg/mL and 661.24 μg/mL, for Ag-NPs and Au-NPs, respectively. While IC50 for cancer cell (Mcf7) was 370.56 μg/mL and 394.79 μg/mL for Ag-NPs and Au-NPs, respectively. Ag-NPs and Au-NPs produced via green synthesis have the potential to be employed in the medical industry as beneficial nanocompounds.
Collapse
Affiliation(s)
- Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Mohammed Abu-Elghait
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Mohamed Salah Azab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| |
Collapse
|
32
|
Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Appl Biochem Biotechnol 2023; 195:467-485. [PMID: 36087233 PMCID: PMC9832084 DOI: 10.1007/s12010-022-04120-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Mycosynthesis of nanoparticle (NP) production is a potential ecofriendly technology for large scale production. In the present study, copper oxide nanoparticles (CuONPs) have been synthesized from the live cell filtrate of the fungus Penicillium chrysogenum. The created CuONPs were characterized via several techniques, namely Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the biosynthesized CuONPs were performed against biofilm forming Klebsiella oxytoca ATCC 51,983, Escherichia coli ATCC 35,218, Staphylococcus aureus ATCC 25,923, and Bacillus cereus ATCC 11,778. The anti-bacterial activity result was shown with the zone of inhibition determined to be 14 ± 0.31 mm, 16 ± 0.53 mm, 11 ± 0.57 mm, and 10 ± 0.57 mm respectively. Klebsiella oxytoca and Escherichia coli were more susceptible to CuONPs with minimal inhibitory concentration (MIC) values 6.25 and 3.12 µg/mL, respectively, while for Staphylococcus aureus and Bacillus cereus, MIC value was 12.5 and 25 μg/mL, respectively. The minimum biofilm inhibition concentration (MBIC) result was more evident, that the CuONPs have excellent anti-biofilm activity at sub-MIC levels reducing biofilm formation by 49% and 59% against Klebsiella oxytoca and Escherichia coli, while the results indicated that the MBIC of CuONPs on Bacillus cereus and Staphylococcus aureus was higher than 200 μg/mL and 256 μg/mL, respectively, suggesting that these CuONPs could not inhibit mature formatted biofilm of Bacillus cereus and Staphylococcus aureus in vitro. Overall, all the results were clearly confirmed that the CuONPs have excellent anti-biofilm ability against Klebsiella oxytoca and Escherichia coli. The prepared CuONPs offer a smart approach for biomedical therapy of resistant microorganisms because of its promoted antimicrobial action, but only for specified purposes.
Collapse
|
33
|
Facile synthesis of hexagonal-shaped CuO NPs from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of dyes and antimicrobial studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Alharbi K, Amin MA, Ismail MA, Ibrahim MTS, Hassan SED, Fouda A, Eid AM, Said HA. Alleviate the Drought Stress on Triticum aestivum L. Using the Algal Extracts of Sargassum latifolium and Corallina elongate Versus the Commercial Algal Products. Life (Basel) 2022; 12:1757. [PMID: 36362916 PMCID: PMC9695858 DOI: 10.3390/life12111757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/31/2023] Open
Abstract
Herein, two seaweed extracts (Sargassum latifolium and Corallina elongate), and two commercial seaweed products (Canada power and Oligo-X) with a concentration of 5% were used to alleviate the drought stress on wheat plants. The extract of C. elongate had the highest capacity to ameliorate the deleterious effects of water scarcity followed by S. latifolium and the commercial products. The drought stress reduced wheat shoots length and the contents of pigments (chlorophyll and carotenoids), carbohydrates, and proteins. While the highest increment in the total carbohydrates and protein contents of the wheat shoot after two stages, 37-and 67-days-old, were noted in drought-stressed plants treated with C. elongate extract with values of (34.6% and 22.8%) and (51.9% and 39.5%), respectively, compared to unstressed plants. Decreasing the activity of antioxidant enzymes, peroxidase, superoxidase dismutase, and polyphenol oxidase in drought-stressed plants treated with algal extracts indicated amelioration of the response actions. Analysis of phytohormones in wheat plants exhibited increasing GA3 and IAA contents with percentages of (20.3-13.8%) and (72.7-25%), respectively. Interestingly, all morphological and metabolic characteristics of yield were improved due to the algal treatments compared with untreated drought-stressed plants. Overall, the algal extracts, especially those from seaweed of C. elongate, could represent a sustainable candidate to overcome the damage effects of water deficiency in the wheat plant.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed A. Amin
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Mohamed A. Ismail
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Mariam T. S. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Ahmed M. Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hanan A. Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
35
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
36
|
Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract. Bioengineering (Basel) 2022; 9:bioengineering9090452. [PMID: 36134998 PMCID: PMC9495838 DOI: 10.3390/bioengineering9090452] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022] Open
Abstract
In the study reported in this manuscript, silver/iron oxide nanocomposites (Ag/Fe2O3) were phytosynthesized using the extract of Buddleja lindleyana via a green, economical and eco-friendly strategy. The biosynthesized Ag/Fe2O3 nanocomposites were characterized using UV-Vis spectrophotometry, FTIR, XRD, TEM, DLS and SEM-EDX analyses. The particulates showed a triangular and spherical morphology having sizes between 25 and 174 nm. FTIR studies on the nanoparticles showed functional groups corresponding to organic metabolites, which reduce and stabilize the Ag/Fe2O3 nanocomposite. The antimicrobial efficacy of the phytosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibition zones of 23.4 ± 0.75, 22.3 ± 0.57, 20.8 ± 1.6, and 19.5 ± 0.5 mm, respectively. The Ag/Fe2O3 composites obtained showed promising antibacterial action against human bacterial pathogens (S. aureus, E. coli, B. subtilis and P. aeruginosa), making them candidates for medical applications.
Collapse
|
37
|
Gaba S, Rai AK, Varma A, Prasad R, Goel A. Biocontrol potential of mycogenic copper oxide nanoparticles against Alternaria brassicae. Front Chem 2022; 10:966396. [PMID: 36110132 PMCID: PMC9468977 DOI: 10.3389/fchem.2022.966396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The biological synthesis of nanoparticles using fungal cultures is a promising and novel tool in nano-biotechnology. The potential culture of Trichoderma asperellum (T. asperellum) has been used to synthesize copper oxide nanoparticles (CuO NPs) in the current study. The necrotrophic infection in Brassica species is caused due to a foliar pathogen Alternaria brassicae (A. brassicae). Mycogenic copper oxide nanoparticles (M-CuO NPs) were characterized by spectroscopic and microscopic techniques such as UV-visible spectrophotometry (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antifungal potential of CuO NPs was studied against A. brassicae. M-CuO NPs exhibited a surface plasmon resonance (SPR) at 303 nm, and XRD confirmed the crystalline phase of NPs. FTIR spectra confirmed the stretching of amide bonds, and the carbonyl bond indicated the presence of enzymes in T. asperellum filtrate. SEM and TEM confirmed the spherical shape of M-CuO NPs with an average size of 22 nm. Significant antifungal potential of M-CuO NPs was recorded, as it inhibited the growth of A. brassicae up to 92.9% and 80.3% in supplemented media with C-CuO NPs at 200 ppm dose. Mancozeb and propiconazole inhibited the radial growth up to 38.7% and 44.2%. SEM confirmed the morphological changes in hyphae and affected the sporulation pattern. TEM revealed hardly recognizable organelles, abnormal cytoplasmic distribution, and increased vacuolization, and light microscopy confirmed the conidia with reduced diameter and fewer septa after treatment with both types of NPs. Thus, M-CuO NPs served as a promising alternative to fungicides.
Collapse
Affiliation(s)
- Swati Gaba
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, BR, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
38
|
Attia MS, Hashem AH, Badawy AA, Abdelaziz AM. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities. BOTANICAL STUDIES 2022; 63:26. [PMID: 36030517 PMCID: PMC9420682 DOI: 10.1186/s40529-022-00357-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND The eggplant suffers from many biotic stresses that cause severe damage to crop production. One of the most destructive eggplant pathogens is Alternaria solani, which causes early blight disease. A pot experiment was conducted to evaluate the role of fungal endophytes in protecting eggplant against early blight as well as in improving its growth performance. RESULTS Endophytic Aspergillus terreus was isolated from Ocimum basilicum leaves and identified morphologically and genetically. In vitro, crude extract of endophytic A. terreus exhibited promising antifungal activity against A. solani where minimum inhibitory concentration (MIC) was 1.25 mg/ml. Severity of the disease and rate of protection from the disease were recorded. Vegetative growth indices, physiological resistance signs (photosynthetic pigments, carbohydrates, proteins, phenols, proline, malondialdehyde (MDA), antioxidant enzymes), and isozymes were estimated. Alternaria solani caused a highly disease severity (87.5%) and a noticeable decreasing in growth characteristics and photosynthetic pigments except for carotenoids. Also, infection with A. solani caused significant decreases in the contents of carbohydrate and protein by 29.94% and 10.52%, respectively. Infection with A. solani caused enhancement in phenolics (77.21%), free proline (30.56%), malondialdehyde (30.26%), superoxide dismutase (SOD) (125.47%), catalase (CAT) (125.93%), peroxidase (POD) (25.07%) and polyphenol oxidase (PPO) (125.37%) compared to healthy plants. In contrast, the use of A. terreus on infected plants succeeded in recovering eggplants from the disease, as the disease severity was recorded (caused protection by 66.67%). Application of A. terreus either on healthy or infected eggplants showed several responses in number and density of peroxidase (POD) and polyphenol oxidase (PPO) isozymes. CONCLUSION It is necessary for us to address the remarkable improvement in the photosynthetic pigments, protein, carbohydrates, and enzymatic activity compared to infected control, which opens the way for more studies on the use of biocides as safe alternatives against fungal diseases.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
39
|
Baker’s Yeast-Mediated Silver Nanoparticles: Characterisation and Antimicrobial Biogenic Tool for Suppressing Pathogenic Microbes. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01026-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Salem SS, Hashem AH, Sallam AAM, Doghish AS, Al-Askar AA, Arishi AA, Shehabeldine AM. Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities. Polymers (Basel) 2022; 14:polym14163352. [PMID: 36015608 PMCID: PMC9412901 DOI: 10.3390/polym14163352] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Traditional cancer treatments include surgery, radiation, and chemotherapy. According to medical sources, chemotherapy is still the primary method for curing or treating cancer today and has been a major contributor to the recent decline in cancer mortality. Nanocomposites based on polymers and metal nanoparticles have recently received the attention of researchers. In the current study, a nanocomposite was fabricated based on carboxymethyl cellulose and silver nanoparticles (CMC-AgNPs) and their antibacterial, antifungal, and anticancer activities were evaluated. The antibacterial results revealed that CMC-AgNPs have promising antibacterial activity against Gram-negative (Klebsiella oxytoca and Escherichia coli) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). Moreover, CMC-AgNPs exhibited antifungal activity against filamentous fungi such as Aspergillus fumigatus, A. niger, and A. terreus. Concerning the HepG2 hepatocellular cancer cell line, the lowest IC50 values (7.9 ± 0.41 µg/mL) were recorded for CMC-AgNPs, suggesting a strong cytotoxic effect on liver cancer cells. As a result, our findings suggest that the antitumor effect of these CMC-Ag nanoparticles is due to the induction of apoptosis and necrosis in hepatic cancer cells via increased caspase-8 and -9 activities and diminished levels of VEGFR-2. In conclusion, CMC-AgNPs exhibited antibacterial, antifungal, and anticancer activities, which can be used in the pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Correspondence: (A.H.H.); (A.S.D.); (A.M.S.)
| | - Al-Aliaa M. Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Cairo, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
- Correspondence: (A.H.H.); (A.S.D.); (A.M.S.)
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Amr A. Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Correspondence: (A.H.H.); (A.S.D.); (A.M.S.)
| |
Collapse
|
41
|
Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste. J Funct Biomater 2022; 13:jfb13030112. [PMID: 35997450 PMCID: PMC9397004 DOI: 10.3390/jfb13030112] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, prickly pear peel waste (PPPW) extract was used for the biosynthesis of selenium nanoparticles through a green and eco-friendly method for the first time. The biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping. Characterization results revealed that biosynthesized SeNPs were spherical, polydisperse, highly crystalline, and had sizes in the range of 10–87.4 nm. Antibacterial, antifungal, and insecticidal activities of biosynthesized SeNPs were evaluated. Results revealed that SeNPs exhibited promising antibacterial against Gram negative (E. coli and P. aeruginosa) and Gram positive (B. subtilis and S. aureus) bacteria where MICs were 125, 125, 62.5, and 15.62 µg/mL, respectively. Moreover, SeNPs showed potential antifungal activity toward Candida albicans and Cryptococcus neoformans where MICs were 3.9 and 7.81 µg/mL, respectively. Furthermore, tested crud extract and SeNPs severely induced larvicidal activity for tested mosquitoes with LC50 and LC90 of 219.841, 950.087 mg/L and 75.411, 208.289 mg/L, respectively. The fecundity and hatchability of C. pipiens mosquito were significantly decreased as applied concentrations increased either for the crude or the fabricated SeNPs extracts. In conclusion, the biosynthesized SeNPs using prickly pear peel waste have antibacterial, antifungal, and insecticidal activities, which can be used in biomedical and environmental applications.
Collapse
|
42
|
Gamedze NP, Mthiyane DMN, Babalola OO, Singh M, Onwudiwe DC. Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO 2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds. Heliyon 2022; 8:e10187. [PMID: 36033256 PMCID: PMC9404262 DOI: 10.1016/j.heliyon.2022.e10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The green synthesis approach to nanoparticles has been widely received as an alternative to the conventional methods, specifically for applications in areas such as biology, agriculture and medicine, where toxicity is of great concern. In this study, copper oxide (CuO) and titanium oxide (TiO2) nanoparticles (NPs) were synthesized using an aqueous extract of Mucuna pruriens utilis seed. The morphology and structural characterization of the NPs were achieved by using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction (XRD) measurement, while the elemental composition was studied using electron diffraction X-ray spectroscopy (EDS). A monoclinic phase of CuO and anatase phases of TiO2 with high crystallinity were confirmed from the diffraction patterns of the XRD. Both TEM and SEM micrographs of the CuO confirmed short rod-shaped nanostructure, while spherical morphologies were obtained for the TiO2 NPs. The EDS study indicated that the composition of the samples conformed with the identified products in the XRD and attest to the purity of the NPs. The nanoparticles exhibited a dose-dependent profile in MTT cytotoxicity assay with some cell specificity. However, the anticancer potential of these NPs was still lower than that of the standard anticancer drug, 5-fluorouracil.
Collapse
Affiliation(s)
- Nozipho P Gamedze
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Department of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
43
|
Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci Rep 2022; 12:11834. [PMID: 35821239 PMCID: PMC9276666 DOI: 10.1038/s41598-022-15903-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023] Open
Abstract
Selenium nanoparticles (Se-NPs) has recently received great attention over owing to their superior optical properties and wide biological and biomedical applications. Herein, crystallographic and dispersed spherical Se-NPs were green synthesized using endophytic fungal strain, Penicillium crustosum EP-1. The antimicrobial, anticancer, and catalytic activities of biosynthesized Se-NPs were investigated under dark and light (using Halogen tungsten lamp, 100 Watt, λ > 420 nm, and light intensity of 2.87 W m−2) conditions. The effect of Se-NPs was dose dependent and higher activities against Gram-positive and Gram-negative bacteria as well different Candida spp. were attained in the presence of light than obtained under dark conditions. Moreover, the viabilities of two cancer cells (T47D and HepG2) were highly decreased from 95.8 ± 2.9% and 93.4 ± 3.2% in dark than those of 84.8 ± 2.9% and 46.4 ± 3.3% under light-irradiation conditions, respectively. Significant decreases in IC50 values of Se-NPs against T47D and HepG2 were obtained at 109.1 ± 3.8 and 70.4 ± 2.5 µg mL−1, respectively in dark conditions than 19.7 ± 7.2 and 4.8 ± 4.2 µg mL−1, respectively after exposure to light-irradiation. The photoluminescence activity of Se-NPs revealed methylene blue degradation efficiency of 89.1 ± 2.1% after 210 min under UV-irradiation compared to 59.7 ± 0.2% and 68.1 ± 1.03% in dark and light conditions, respectively. Moreover, superior stability and efficient MB degradation efficiency were successfully achieved for at least five cycles.
Collapse
|
44
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
45
|
Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NANOIMPACT 2022; 27:100411. [PMID: 35803478 DOI: 10.1016/j.impact.2022.100411] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 05/21/2023]
Abstract
Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.
Collapse
Affiliation(s)
- Ali Murad Jakhar
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Rasheed Kaleri
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jiahua Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China.
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
46
|
Dhanjal DS, Mehra P, Bhardwaj S, Singh R, Sharma P, Nepovimova E, Chopra C, Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int J Nanomedicine 2022; 17:2505-2533. [PMID: 35677678 PMCID: PMC9170235 DOI: 10.2147/ijn.s363282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Mehra
- Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| |
Collapse
|
47
|
Omer AM, Osman MS, Badawy AA. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. BOTANICAL STUDIES 2022; 63:15. [PMID: 35587317 PMCID: PMC9120335 DOI: 10.1186/s40529-022-00345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Salinized soils negatively affect plant growth, so it has become necessary to use safe and eco-friendly methods to mitigate this stress. In a completely randomized design, a pot experiment was carried out to estimate the influence of the inoculation with endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata and their co-inoculation on growth and metabolic aspects of flax (Linum usitatissimum) plants that already grown in salinized soil. RESULTS The results observed that inoculation of salinity-stressed flax plants with the endophytes A. brasilense and P. geniculata (individually or in co-inoculation) increases almost growth characteristics (shoot and root lengths, fresh and dry weights as well as number of leaves). Moreover, contents of chlorophylls and carotenoids pigments, soluble sugars, proteins, free proline, total phenols, ascorbic acid, and potassium (K+) in flax plants grown in salinized soil were augmented because of the inoculation with A. brasilense and P. geniculata. Oppositely, there are significant decreases in free proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and sodium (Na+) contents. Regarding antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), the inoculation with the tested endophytes led to significant enhancements in the activities of antioxidant enzymes in stressed flax plants. CONCLUSIONS The results of this work showed that the use of the endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata (individually or in co-inoculation) could be regarded as an uncommon new model to alleviate salinity stress, especially in salinized soils.
Collapse
Affiliation(s)
- Amal M Omer
- Soil Fertility and Microbiology Department, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Mahmoud S Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
48
|
Hasanin M, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hashem AH. Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Biol Trace Elem Res 2022; 200:2099-2112. [PMID: 34283366 DOI: 10.1007/s12011-021-02812-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
In recent years, polysaccharides-based nanocomposites have been used for biomedical applications. In the current study, a nanocomposite based on myco-synthesized copper nanoparticles (CuNPs) and starch was prepared. The prepared nanocomposite was fully characterized using UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, transmission electron microscope (TEM), and dynamic light scattering (DLS). Results revealed that this nanocomposite is characterized by nano spherical shape ranged around 200 nm as well as doped with CuNPs with size about 9 nm. Antimicrobial, antioxidant, and anticancer activities of the prepared nanocomposite were evaluated. Results revealed that CuNPs-based nanocomposite exhibited outstanding antibacterial and antifungal activity toward Escherichia coli ATCC25922, Bacillus subtilis ATCC605, Candida albicans ATCC90028, Cryptococcus neoformance ATCC 14,116, Aspergillus niger RCMB 02,724, A. terreus RCMB 02,574, and A. fumigatus RCMB 02,568. Moreover, CuNPs-based nanocomposite has a strong antioxidant activity as compared to ascorbic acid, where IC50 was 18 µg/mL. Cytotoxicity test of CuNPs-based nanocomposite revealed that this nanocomposite is safe in use, where IC50 was 185.1 µg/mL. Furthermore, CuNPs-based nanocomposite exhibited potential anticancer activity against MCF7 cancerous cell line where IC50 was 62.8 µg/mL which was better than CuNPs alone. In conclusion, the prepared CuNPs with starch-based nanocomposite is promising for different biomedical applications as antimicrobial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Mohamed A Al Abboud
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohamed M Alawlaqi
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Tarek M Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| |
Collapse
|
49
|
Wan J, Lin L, Yang T, Li Y. Newly generated Cu2O-Cu interface for CO2 electroreduction in the presence of reconstructed aluminum hydroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Hussein HAA, Alshammari SO, Kenawy SKM, Elkady FM, Badawy AA. Grain-Priming with L-Arginine Improves the Growth Performance of Wheat ( Triticum aestivum L.) Plants under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091219. [PMID: 35567220 PMCID: PMC9100063 DOI: 10.3390/plants11091219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Drought is the main limiting abiotic environmental stress worldwide. Water scarcity restricts the growth, development, and productivity of crops. Wheat (Triticum aestivum L.) is a fundamentally cultivated cereal crop. This study aimed to evaluate the effect of grain-priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions. Morphological growth parameters, photosynthetic pigments, soluble sugars, free amino acids, proline, total phenols, flavonoids, and proteins profiles were determined. Drought stress lowered plant growth parameters and chlorophyll a and b contents while increasing carotenoids, soluble sugars, free amino acids, proline, total phenols, and flavonoids. Soaking wheat grains with arginine (0.25, 0.5, and 1 mM) improves plant growth and mitigates the harmful effects of drought stress. The most effective treatment to alleviate the effects of drought stress on wheat plants was (1 mM) arginine, that increased root length (48.3%), leaves number (136%), shoot fresh weight (110.5%), root fresh weight (110.8%), root dry weight (107.7%), chlorophyll a (11.4%), chlorophyll b (38.7%), and carotenoids content (41.9%) compared to the corresponding control values. Arginine enhanced the synthesis of soluble sugars, proline, free amino acids, phenols, and flavonoids in wheat plants under normal or stressed conditions. Furthermore, the protein profile varies in response to drought stress and arginine pretreatments. Ultimately, pretreatment with arginine had a powerful potential to face the impacts of drought stress on wheat plants by promoting physiological and metabolic aspects.
Collapse
Affiliation(s)
- Hebat-Allah A. Hussein
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (H.-A.A.H.); (S.K.M.K.)
- Biology Department, University College of Nairiyah, University of Hafr Al-Batin, Nairiyah 31991, Saudi Arabia
| | - Shifaa O. Alshammari
- Biology Department, College of Science, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Sahar K. M. Kenawy
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (H.-A.A.H.); (S.K.M.K.)
| | - Fatma M. Elkady
- National Research Centre, Department of Botany, Dokki, Giza 12311, Egypt;
| | - Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: ; Tel.: +20-1006069161
| |
Collapse
|