1
|
Aikwanich A, Eksombatchai D, Petnak T, Tassaneeyasin T, Boonsarngsuk V. Risk Factors for Secondary Organizing Pneumonia and Acute Fibrinous and Organizing Pneumonia in Patients with COVID-19 Pneumonia. Infect Drug Resist 2024; 17:5017-5026. [PMID: 39554470 PMCID: PMC11566205 DOI: 10.2147/idr.s481540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Secondary organizing pneumonia (OP) and acute fibrinous and organizing pneumonia (AFOP) are frequently observed in cases of COVID-19 pneumonia. Nevertheless, the identification of risk factors related to OP/AFOP and their impact on patient outcomes remain inadequately elucidated. Patients and Methods This retrospective study aimed to identify risk factors associated with OP/AFOP in patients with COVID-19 pneumonia and to compare clinical outcomes between patients with and without OP/AFOP. The study included hospitalized patients with COVID-19 pneumonia admitted between July 1 and September 30, 2021. Factors associated with OP/AFOP were identified using multivariable regression analysis. Additionally, a multivariable Cox proportional hazard model was used to evaluate the association of OP/AFOP with 90-day mortality. Results Among the 666 hospitalized patients with COVID-19 pneumonia, 53 (8%) developed OP/AFOP during their admission. When compared to patients younger than 50 years old, those aged 50-70 and over 70 years old exhibited an increased risk of developing OP/AFOP, with adjusted odds ratios (aOR) of 3.87 (95% CI, 1.24-12.11; P=0.02) and 5.74 (95% CI, 1.80-18.27; P=0.003), respectively. Other factors associated with OP/AFOP included a history of diabetes mellitus (aOR 2.37; 95% CI, 1.27-4.44; P=0.01) and patients with oxygen saturation at admission below 88% (aOR 4.52; 95% CI, 1.22-16.67; P=0.02). Furthermore, the presence of OP/AFOP was correlated with an increased risk of various complications, such as respiratory failure, acute kidney injury, secondary infections, pneumothorax, pneumomediastinum, and pulmonary embolism. Lastly, patients with OP/AFOP exhibited significantly higher 90-day mortality (adjusted hazard ratio 3.40; 95% CI, 1.68-6.92; P=0.001) compared to those without OP/AFOP. Conclusion We identified factors associated with an increased risk of OP/AFOP in patients with COVID-19 pneumonia, which included age ≥50 years, a history of DM, and hypoxemia on admission (SpO2 <88%). Furthermore, our study revealed that OP/AFOP was significantly linked to higher 90-day mortality.
Collapse
Affiliation(s)
- Alisa Aikwanich
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Dararat Eksombatchai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tananchai Petnak
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tanapat Tassaneeyasin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Viboon Boonsarngsuk
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Hadi R, Poddar A, Sonnaila S, Bhavaraju VSM, Agrawal S. Advancing CRISPR-Based Solutions for COVID-19 Diagnosis and Therapeutics. Cells 2024; 13:1794. [PMID: 39513901 PMCID: PMC11545109 DOI: 10.3390/cells13211794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Since the onset of the COVID-19 pandemic, a variety of diagnostic approaches, including RT-qPCR, RAPID, and LFA, have been adopted, with RT-qPCR emerging as the gold standard. However, a significant challenge in COVID-19 diagnostics is the wide range of symptoms presented by patients, necessitating early and accurate diagnosis for effective management. Although RT-qPCR is a precise molecular technique, it is not immune to false-negative results. In contrast, CRISPR-based detection methods for SARS-CoV-2 offer several advantages: they are cost-effective, time-efficient, highly sensitive, and specific, and they do not require sophisticated instruments. These methods also show promise for scalability, enabling diagnostic tests. CRISPR technology can be customized to target any genomic region of interest, making it a versatile tool with applications beyond diagnostics, including therapeutic development. The CRISPR/Cas systems provide precise gene targeting with immense potential for creating next-generation diagnostics and therapeutics. One of the key advantages of CRISPR/Cas-based therapeutics is the ability to perform multiplexing, where different sgRNAs or crRNAs can target multiple sites within the same gene, reducing the likelihood of viral escape mutants. Among the various CRISPR systems, CRISPR/Cas13 and CARVER (Cas13-assisted restriction of viral expression and readout) are particularly promising. These systems can target a broad range of single-stranded RNA viruses, making them suitable for the diagnosis and treatment of various viral diseases, including SARS-CoV-2. However, the efficacy and safety of CRISPR-based therapeutics must be thoroughly evaluated in pre-clinical and clinical settings. While CRISPR biotechnologies have not yet been fully harnessed to control the current COVID-19 pandemic, there is an optimism that the limitations of the CRISPR/Cas system can be overcome soon. This review discusses how CRISPR-based strategies can revolutionize disease diagnosis and therapeutic development, better preparing us for future viral threats.
Collapse
Affiliation(s)
- Roaa Hadi
- Cell and Molecular Biology Program, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Abhishek Poddar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shivakumar Sonnaila
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Shilpi Agrawal
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Ha KM, Ahn JY. Tourism promotion during emergency response to Omicron subvariant outbreak. Heliyon 2024; 10:e36629. [PMID: 39258205 PMCID: PMC11386039 DOI: 10.1016/j.heliyon.2024.e36629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to explore optimal ways to promote all kinds of tourism during the phase of emergency response to the current outbreak of Omicron subvariants. A framework-based systematic literature review was conducted as the primary methodology, supported by the preferred reporting items for systematic reviews and meta-analyses checklist. Four analytical units were allocated to include United Nations agencies, governments, tour businesses, and local communities. Economic interest-based tourism promotion was examined to develop local temperature-based tourism promotion via the same four variables. The study found that the pursuit of economic interests was not a productive solution for tourism promotion any longer due to the matter of local weather. It concluded that the four stakeholders should work to replace economic interest-based tourism promotion with local temperature-based tourism promotion. Results of this study can guide the positive effects of warm temperatures, brand image, psychological impacts, digital marketing, and others.
Collapse
Affiliation(s)
- Kyoo-Man Ha
- Rabdan Academy, Abu Dhabi, 114646, United Arab Emirates
| | - Ji-Young Ahn
- Seoul Balance Clinic, 73 Sangnam-ro, Seongsan-gu, Changwon-city, Gyeongsangnam-do, 51504, Republic of Korea
| |
Collapse
|
4
|
Kung YA, Chuang CH, Chen YC, Yang HP, Li HC, Chen CL, Janapatla RP, Chen CJ, Shih SR, Chiu CH. Worldwide SARS-CoV-2 Omicron variant infection: Emerging sub-variants and future vaccination perspectives. J Formos Med Assoc 2024:S0929-6646(24)00389-9. [PMID: 39179492 DOI: 10.1016/j.jfma.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has sparked widespread concern globally, particularly with the Omicron variant and its sub-lineages emerging as the predominant cause of infection for nearly two years. Taiwan's successful containment of COVID-19, underscored by broad vaccine coverage, the utilization of anti-viral therapeutics, and timely response strategies, has resulted in reduced excess mortality. Moreover, there is a crucial need for a phased exit strategy, balancing efforts to curtail disease transmission with the mitigation of socioeconomic impacts from rigorous measures. In this review, we examined the evolution and the epidemiological landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sub-variants in Taiwan as well as other countries of the world. We also critically evaluated the effectiveness of COVID-19 vaccines against various SARS-CoV-2 variants. Additionally, we addressed the advantages of heterologous immunization strategies, fluctuations in neutralizing antibody titers, and complexities in establishing protective correlates among swiftly mutating viral variants.
Collapse
Affiliation(s)
- Yu-An Kung
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsien Chuang
- Department of Pediatrics, St. Paul's Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yi-Ching Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Ping Yang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-Chieh Li
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chin-Jung Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Buschner A, Katz K, Beyerlein A. Comparison of fatalities due to COVID-19 and other nonexternal causes during the first five pandemic waves : Results from multiple cause of death statistics in Bavaria. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:939-946. [PMID: 39012367 PMCID: PMC11282133 DOI: 10.1007/s00103-024-03914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Older age is a risk factor for a fatal course of SARS-CoV‑2 infection, possibly due to comorbidities whose exact role in this context, however, is not yet well understood. In this paper, the characteristics and comorbidities of persons who had died of COVID-19 in Bavaria by July 2022 are shown and compared with the characteristics of other fatalities during the pandemic. METHODS Based on data from multiple cause of death statistics, odds ratios for dying from COVID-19 (compared to dying from other nonexternal causes of death) were calculated by using logistic regression models, stratified by age, sex, and pandemic waves. RESULTS In Bavaria, a total of 24,479 persons (6.5% of all deaths) officially died from COVID-19 between March 2020 and July 2022. In addition to increasing age and male sex, preexisting diseases and comorbidities such as obesity, degenerative diseases of the nervous system, dementia, renal insufficiency, chronic lower respiratory diseases, and diabetes mellitus were significantly associated with COVID-19-related deaths. Dementia was mainly associated with increased COVID-19 mortality during the first and second waves, while obesity was strongly associated during the fourth wave. DISCUSSION The frequency of specific comorbidities in COVID-19 deaths varied over the course of the pandemic. This suggests that wave-specific results also need to be interpreted against the background of circulating virus variants, changing immunisation levels, and nonpharmaceutical interventions in place at the time.
Collapse
Affiliation(s)
- Andrea Buschner
- Bavarian State Office for Statistics, Division: Population Statistics and Demography, Fürth, Germany
| | - Katharina Katz
- Bavarian Health and Food Safety Authority, State Institute for Health II - Task Force for Infectious Diseases Infectious Disease Epidemiology, Surveillance and Modelling Unit (GI-TFI2), Oberschleißheim, Germany
| | - Andreas Beyerlein
- Bavarian Health and Food Safety Authority, State Institute for Health II - Task Force for Infectious Diseases Infectious Disease Epidemiology, Surveillance and Modelling Unit (GI-TFI2), Oberschleißheim, Germany.
| |
Collapse
|
6
|
Tachibana K, Nakamura Y, Do TL, Kihara T, Kawada H, Yamamoto N, Ando K. Mutations in the SARS-CoV-2 spike proteins affected the ACE2-binding affinity during the development of Omicron pandemic variants. Biochem Biophys Res Commun 2024; 719:150120. [PMID: 38759524 DOI: 10.1016/j.bbrc.2024.150120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Mutations in SARS-CoV-2 caused multiple waves of pandemics. To identify the function of such mutations, we investigated the binding affinity of the S protein with its receptor, ACE2. Omicron BA.1 showed significantly lower binding affinity with human ACE2 than prototype SARS-CoV-2 and Alpha strain, indicating that pre-Omicron to Omicron transition was not mediated by increasing the ACE2-binding affinity. Meanwhile, the later Omicron variants, BA.5 and XBB.1.5, showed significantly higher ACE2-binding affinity, suggesting that the increased ACE2-binding could be involved in the variant transition within Omicron strains. Furthermore, Alpha and Omicron variants, but not prototype SARS-CoV-2, bound mouse ACE2, which lead to a hypothesis that early Omicron strains evolved from Alpha strain by acquiring multiple mutations in mice.
Collapse
Affiliation(s)
- Kouichi Tachibana
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Yoshihiko Nakamura
- Tokai University School of Medicine, Center for Regenerative Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Thi Ly Do
- The University of Kitakyusyu, Department of Life and Environment Engineering, 1-1 Hibikino, Wakamatu, Kitakyusyu, Fukuoka, Japan
| | - Takanori Kihara
- The University of Kitakyusyu, Department of Life and Environment Engineering, 1-1 Hibikino, Wakamatu, Kitakyusyu, Fukuoka, Japan
| | - Hiroshi Kawada
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Norio Yamamoto
- Tokai University School of Medicine, Department of Microbiology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
7
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Jang G, Kim J, Lee Y, Son C, Ko KT, Lee H. Analysis of the impact of COVID-19 variants and vaccination on the time-varying reproduction number: statistical methods. Front Public Health 2024; 12:1353441. [PMID: 39022412 PMCID: PMC11253806 DOI: 10.3389/fpubh.2024.1353441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction The COVID-19 pandemic has profoundly impacted global health systems, requiring the monitoring of infection waves and strategies to control transmission. Estimating the time-varying reproduction number is crucial for understanding the epidemic and guiding interventions. Methods Probability distributions of serial interval are estimated for Pre-Delta and Delta periods. We conducted a comparative analysis of time-varying reproduction numbers, taking into account population immunity and variant differences. We incorporated the regional heterogeneity and age distribution of the population, as well as the evolving variants and vaccination rates over time. COVID-19 transmission dynamics were analyzed with variants and vaccination. Results The reproduction number is computed with and without considering variant-based immunity. In addition, values of reproduction number significantly differed by variants, emphasizing immunity's importance. Enhanced vaccination efforts and stringent control measures were effective in reducing the transmission of the Delta variant. Conversely, Pre-Delta variant appeared less influenced by immunity levels, due to lower vaccination rates. Furthermore, during the Pre-Delta period, there was a significant difference between the region-specific and the non-region-specific reproduction numbers, with particularly distinct pattern differences observed in Gangwon, Gyeongbuk, and Jeju in Korea. Discussion This research elucidates the dynamics of COVID-19 transmission concerning the dominance of the Delta variant, the efficacy of vaccinations, and the influence of immunity levels. It highlights the necessity for targeted interventions and extensive vaccination coverage. This study makes a significant contribution to the understanding of disease transmission mechanisms and informs public health strategies.
Collapse
Affiliation(s)
- Geunsoo Jang
- Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jihyeon Kim
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Yeonsu Lee
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Changdae Son
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong Tae Ko
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Hyojung Lee
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Kim EJ, Byun M. Factors Affecting Adherence to Social Distancing among Adults Aged 19-44 Years: Insights from a Nationwide Survey during COVID-19 Pandemic. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:827. [PMID: 38793010 PMCID: PMC11122991 DOI: 10.3390/medicina60050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Before COVID-19 vaccinations became available, adhering to non-pharmaceutical interventions (NPIs), like social distancing (SD), wearing masks, and hand hygiene, were crucial to mitigating viral spread. Many studies reported that younger individuals were more reluctant to follow these measures compared with older ones. We hypothesized that it would be worthwhile to find factors that influenced SD compliance among young people during the pre-vaccination phase of a pandemic. Materials and Methods: We analyzed data of adults aged 19-44 from the 2020 South Korean Community Health Survey and compared socio-demographic, health-related behavioral, and psychological factors between compliant and non-compliant cohorts. Results: A total of 59,943 participants were enrolled and we found that older age groups (30-39 and 40-44) and safety concerns (such as viral infection, virus-related death, economic damage, and transmitting virus to vulnerable people) were significantly associated with adherence to SD. Conversely, participants who were not living with a spouse, were unable to stay at home despite symptoms, smoked, drank, and had a negative attitude toward government policy statistically correlated with non-compliance. Conclusions: In times when NPIs were the primary defense against the pandemic, it is essential to identify factors that positively or negatively affect individual compliance with them, especially among young people. Using a large-scale, well-designed national survey, we could gain insights into the early recognition of risk factors for non-compliance and appropriate follow-up interventions (i.e., education campaigns, clear communication of public guidelines, and implementation of guidelines), which will help people to avoid suffering from other waves of future infectious diseases.
Collapse
Affiliation(s)
- Eun Jung Kim
- Department of Nursing, Seoil College, Seoul 02192, Republic of Korea;
| | - Mikyong Byun
- Department of Nursing, Deajeon University, 62, Daehak-ro, Dong-gu, Daejeon 300716, Republic of Korea
| |
Collapse
|
10
|
Kumar DS, Prasanth K, Bhandari A, Kumar Jha V, Naveen A, Prasanna M. Innovations and Challenges in the Development of COVID-19 Vaccines for a Safer Tomorrow. Cureus 2024; 16:e60015. [PMID: 38854201 PMCID: PMC11162516 DOI: 10.7759/cureus.60015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Vaccination, a historically effective public health intervention, has shielded millions from various diseases. Lessons from severe acute respiratory syndrome coronavirus (SARS-CoV) have improved COVID-19 vaccine development. Despite mRNA vaccines' efficacy, emerging variants pose challenges, exhibiting increased transmissibility, infectivity, and severity. Developing COVID-19 vaccines has faced hurdles due to urgency, limited virus understanding, and the need for safe solutions. Genetic variability necessitates continuous vaccine adjustments and production challenges demand scaling up manufacturing with stringent quality control. This review explores SARS-CoV-2's evolution, upcoming mutations that challenge vaccines, and strategies such as structure-based, T cell-based, respiratory mucosal-based, and nanotechnology approaches for vaccine development. This review insight provides a roadmap for navigating virus evolution and improving vaccine development.
Collapse
Affiliation(s)
- Devika S Kumar
- Research, Panimalar Medical College Hospital and Research Institute, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Ashni Bhandari
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Vivek Kumar Jha
- Department of Audiology and Speech Language Pathology, Shree Guru Gobind Singh Tricentenary (SGT) University, Haryana, IND
| | - Avula Naveen
- Pharmacology and Therapeutics, All India Institute Of Medical Science Bilaspur, Bilaspur, IND
| | - Muthu Prasanna
- Pharmaceutics, Pharmaceutical Biotechnology, Surya School of Pharmacy, Surya Group of Institutions, Villupuram, IND
| |
Collapse
|
11
|
Ghasemiyeh P, Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol J 2024; 21:98. [PMID: 38671455 PMCID: PMC11055380 DOI: 10.1186/s12985-024-02370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
About four years have passed since the detection of the first cases of COVID-19 in China. During this lethal pandemic, millions of people have lost their lives around the world. Since the first waves of COVID-19 infection, various pharmacotherapeutic agents have been examined in the management of COVID-19. Despite all these efforts in pharmacotherapy, drug repurposing, and design and development of new drugs, multiple organ involvement and various complications occurred during COVID-19. Some of these complications became chronic and long-lasting which led to the "long COVID" syndrome appearance. Therefore, the best way to eradicate this pandemic is prophylaxis through mass vaccination. In this regard, various vaccine platforms including inactivated vaccines, nucleic acid-based vaccines (mRNA and DNA vaccines), adenovirus-vectored vaccines, and protein-based subunit vaccines have been designed and developed to prevent or reduce COVID-19 infection, hospitalization, and mortality rates. In this focused review, at first, the most commonly reported clinical presentations of COVID-19 during these four years have been summarized. In addition, different therapeutic regimens and their latest status in COVID-19 management have been listed. Furthermore, the "long COVID" and related signs, symptoms, and complications have been mentioned. At the end, the effectiveness of available COVID-19 vaccines with different platforms against early SARS-CoV-2 variants and currently circulating variants of interest (VOI) and the necessity of booster vaccine shots have been summarized and discussed in more detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Shengule S, Alai S, Bhandare S, Patil S, Gautam M, Mangaonkar B, Gupta S, Shaligram U, Gairola S. Validation and Suitability Assessment of Multiplex Mesoscale Discovery Immunogenicity Assay for Establishing Serological Signatures Using Vaccinated, Non-Vaccinated and Breakthrough SARS-CoV-2 Infected Cases. Vaccines (Basel) 2024; 12:433. [PMID: 38675815 PMCID: PMC11053742 DOI: 10.3390/vaccines12040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are multi-targeted and variable over time. Multiplex quantitative serological assays are needed to provide accurate and robust seropositivity data for the establishment of serological signatures during vaccination and or infection. We describe here the validation and evaluation of an electro-chemiluminescence (ECL)-based Mesoscale Discovery assay (MSD) for estimation of total and functional IgG relative to SARS-CoV-2 spike, nucleocapsid and receptor binding (RBD) proteins in human serum samples to establish serological signatures of SARS-CoV-2 natural infection and breakthrough cases. The 9-PLEX assay was validated as per ICH, EMA, and US FDA guidelines using a panel of sera samples, including the NIBSC/WHO reference panel (20/268). The assay demonstrated high specificity and selectivity in inhibition assays, wherein the homologous inhibition was more than 85% and heterologous inhibition was below 10%. The assay also met predetermined acceptance criteria for precision (CV < 20%), accuracy (70-130%) and dilutional linearity. The method's applicability to serological signatures was demonstrated using sera samples (n = 45) representing vaccinated, infected and breakthrough cases. The method was able to establish distinct serological signatures and thus provide a potential tool for seroprevalence of SARS-CoV-2 during vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sunil Gairola
- Clinical Bioanalytical Department, Serum Institute of India Pvt. Ltd., Pune 411028, India; (S.S.); (S.A.); (M.G.); (U.S.)
| |
Collapse
|
13
|
Luo S, Xiong D, Tang B, Liu B, Zhao X, Duan L. Evaluating mAbs binding abilities to Omicron subvariant RBDs: implications for selecting effective mAb therapies. Phys Chem Chem Phys 2024; 26:11414-11428. [PMID: 38591159 DOI: 10.1039/d3cp05893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The ongoing evolution of the Omicron lineage of SARS-CoV-2 has led to the emergence of subvariants that pose challenges to antibody neutralization. Understanding the binding dynamics between the receptor-binding domains (RBD) of these subvariants spike and monoclonal antibodies (mAbs) is pivotal for elucidating the mechanisms of immune escape and for advancing the development of therapeutic antibodies. This study focused on the RBD regions of Omicron subvariants BA.2, BA.5, BF.7, and XBB.1.5, employing molecular dynamics simulations to unravel their binding mechanisms with a panel of six mAbs, and subsequently analyzing the origins of immune escape from energetic and structural perspectives. Our results indicated that the antibody LY-COV1404 maintained binding affinities across all studied systems, suggesting the resilience of certain antibodies against variant-induced immune escape, as seen with the mAb 1D1-Fab. The newly identified mAb 002-S21F2 showed a similar efficacy profile to LY-COV1404, though with a slightly reduced binding to BF.7. In parallel, mAb REGN-10933 emerged as a potential therapeutic candidate against BF.7 and XBB.1.5, reflecting the importance of identifying variant-specific antibody interactions, akin to the binding optimization observed in BA.4/5 and XBB.1.5. And key residues that facilitate RBD-mAb binding were identified (T345, L441, K444, V445, and T500), alongside residues that hinder protein-protein interactions (D420, L455, K440, and S446). Particularly noteworthy was the inhibited binding of V445 and R509 with mAbs in the presence of mAb 002-S21F2, suggesting a mechanism for immune escape, especially through the reduction of V445 hydrophobicity. These findings enhance our comprehension of the binding interactions between mAbs and RBDs, contributing to the understanding of immune escape mechanisms. They also lay the groundwork for the design and optimization of antiviral drugs and have significant implications for the development of treatments against current and future coronaviruses.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bangyu Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
14
|
Yin Q, Liu W, Jiang Y, Feng Q, Wang X, Dou H, Liu Z, He F, Fan Y, Jiao B, Jiao B. Comprehensive genomic analysis of the SARS-CoV-2 Omicron variant BA.2.76 in Jining City, China, 2022. BMC Genomics 2024; 25:378. [PMID: 38632523 PMCID: PMC11022347 DOI: 10.1186/s12864-024-10246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Wei Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Qiang Feng
- Department of Laboratory, Rencheng Center for Disease Control and Prevention, Jining, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Zanzan Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Arizona, USA
| | - Yingying Fan
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| |
Collapse
|
15
|
Mallela A, Chen Y, Lin YT, Miller EF, Neumann J, He Z, Nelson KE, Posner RG, Hlavacek WS. Impacts of Vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 Variants Alpha and Delta on Coronavirus Disease 2019 Transmission Dynamics in Four Metropolitan Areas of the United States. Bull Math Biol 2024; 86:31. [PMID: 38353870 DOI: 10.1007/s11538-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data.
Collapse
Affiliation(s)
- Abhishek Mallela
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Yen Ting Lin
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Information Sciences Group, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ely F Miller
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jacob Neumann
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Zhili He
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kathryn E Nelson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - William S Hlavacek
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
16
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
17
|
Singh P, Anand A, Rana S, Kumar A, Goel P, Kumar S, Gouda KC, Singh H. Impact of COVID-19 vaccination: a global perspective. Front Public Health 2024; 11:1272961. [PMID: 38274537 PMCID: PMC10808156 DOI: 10.3389/fpubh.2023.1272961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The COVID-19 pandemic has caused widespread morbidity, mortality, and socio-economic disruptions worldwide. Vaccination has proven to be a crucial strategy in controlling the spread of the virus and mitigating its impact. Objective The study focuses on assessing the effectiveness of COVID-19 vaccination in reducing the incidence of positive cases, hospitalizations, and ICU admissions. The presented study is focused on the COVID-19 fully vaccinated population by considering the data from the first positive case reported until 20 September 2021. Methods Using data from multiple countries, time series analysis is deployed to investigate the variations in the COVID-19 positivity rates, hospitalization rates, and ICU requirements after successful vaccination campaigns at the country scale. Results Analysis of the COVID-19 positivity rates revealed a substantial decline in countries with high pre-vaccination rates. Within 1-3 months of vaccination campaigns, these rates decreased by 20-44%. However, certain countries experienced an increase in positivity rates with the emergence of the new Delta variant, emphasizing the importance of ongoing monitoring and adaptable vaccination strategies. Similarly, the analysis of hospitalization rates demonstrated a steady decline as vaccination drive rates rose in various countries. Within 90 days of vaccination, several countries achieved hospitalization rates below 200 per million. However, a slight increase in hospitalizations was observed in some countries after 180 days of vaccination, underscoring the need for continued vigilance. Furthermore, the ICU patient rates decreased as vaccination rates increased across most countries. Within 120 days, several countries achieved an ICU patient rate of 20 per million, highlighting the effectiveness of vaccination in preventing severe cases requiring intensive care. Conclusion COVID-19 vaccination has proven to be very much effective in reducing the incidence of cases, hospitalizations, and ICU admissions. However, ongoing surveillance, variant monitoring, and adaptive vaccination strategies are crucial for maximizing the benefits of vaccination and effectively controlling the spread of the virus.
Collapse
Affiliation(s)
- Priya Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Aditya Anand
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Amit Kumar
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Prabudh Goel
- Department of Pediatrics Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sujeet Kumar
- Centre for Proteomics and Drug Discovery, Amity University Maharashtra, Mumbai, India
| | - Krushna Chandra Gouda
- Earth and Engineering Sciences Division, CSIR Fourth Paradigm Institute, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
18
|
Biskupek I, Gieldon A. Two-Stage Recognition Mechanism of the SARS-CoV-2 Receptor-Binding Domain to Angiotensin-Converting Enzyme-2 (ACE2). Int J Mol Sci 2024; 25:679. [PMID: 38203850 PMCID: PMC10779479 DOI: 10.3390/ijms25010679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The SARS-CoV-2 virus, commonly known as COVID-19, occurred in 2019. It is a highly contagious illness with effects ranging from mild symptoms to severe illness. It is also one of the best-known pathogens since more than 200,000 scientific papers occurred in the last few years. With the publication of the SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in a complex with human ACE2 (hACE2) (PDB (6LZG)), the molecular analysis of one of the most crucial steps on the infection pathway was possible. The aim of this manuscript is to simulate the most widely spread mutants of SARS-CoV-2, namely Alpha, Beta, Gamma, Delta, Omicron, and the first recognized variant (natural wild type). With the wide search of the hypersurface of the potential energy performed using the UNRES force field, the intermediate state of the ACE2-RBD complex was found. R403, K/N/T417, L455, F486, Y489, F495, Y501, and Y505 played a crucial role in the protein recognition mechanism. The intermediate state cannot be very stable since it will prevent the infection cascade.
Collapse
Affiliation(s)
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
19
|
Ivanova NG. A Rare Case of Pulmonary Embolism, Deep Vein Thrombosis, Bilateral Avascular Necrosis of the Femoral Head, and Miscarriage following COVID-19 in a Patient with Multiple Genetic Coagulation Factor Deficiency-A Case Report. Life (Basel) 2023; 13:2240. [PMID: 38137842 PMCID: PMC10744566 DOI: 10.3390/life13122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most common symptoms of COVID-19 are respiratory symptoms, but some patients develop severe thrombotic complications. Studies have looked into the association between the disease severity in COVID-19 patients and polymorphisms in the genes encoding prothrombotic and cardiovascular risk factors. The presented rare case describes inflammatory and acute thrombotic complications with musculoskeletal involvement in a patient with combined coagulation genetic defects. A 37-year-old woman was hospitalized with a respiratory infection of coronavirus etiology complicated by pneumonia and pulmonary embolism and confirmed using computed tomography and elevated D-dimer. Sixteen days after discharge, she developed deep vein thrombosis after discontinuation of antiplatelet and anticoagulant therapy due to bleeding. Four months after infection, we found bilateral avascular necrosis of the femoral head. The patient had a miscarriage with considerable blood loss and was given genetic testing, which confirmed the presence of a combined defect with a risk of both thrombosis and bleeding-heterozygous for the Leiden G1691A mutation, homozygous for the 677C>T mutation (MTHFR), heterozygous for the Val34Leu (factor XIII) mutation, and 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor 1 (PAI-1) genes. The described rare clinical case poses a serious challenge regarding the anticoagulant and antiplatelet therapy, especially in the presence of thrombotic complications in COVID-19 and the underlying genetic defect associated with a risk of bleeding, including life-threatening intracranial bleeding. More research is needed to better understand the major medical concern about antithrombotic treatment in COVID-19 patients with bleeding risk in the context of genetic coagulation disorders. The case raises the vigilance of clinicians to search for a genetic predisposition to the development of severe thrombotic events in COVID-19 patients with no other known underlying diseases.
Collapse
Affiliation(s)
- Nevena Georgieva Ivanova
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; ; Tel.: +35-98-8913-0416
- St. Karidad MHAT, Karidad Medical Health Center, Cardiology, 4004 Plovdiv, Bulgaria
| |
Collapse
|