1
|
Han XQ, Pan YR, Zhong YQ, Tian TT, Liu X, Zhang XJ, Zhang YA. Identification and functional analyses of CD4-1 + cells in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109649. [PMID: 38797336 DOI: 10.1016/j.fsi.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRβ, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Tian-Tian Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Sun B, Vindas MA, Kavaliauskiene S, Bjørgen H, Koppang EO, Wisløff H, Frisk M, Lund H, Johansen IB. Persistent immune responses in the heart determine the outcome of cardiomyopathy syndrome in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109404. [PMID: 38325590 DOI: 10.1016/j.fsi.2024.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Cardiomyopathy syndrome (CMS) caused by piscine myocarditis virus (PMCV) is a severe cardiac disease in Atlantic salmon (Salmo salar) and one of the leading causes of morbidity and mortality in the Norwegian aquaculture industry. Previous research suggest a variation in individual susceptibility to develop severe disease, however the role of the immune response in determining individual outcome of CMS is poorly understood particularly in cases where fish are also challenged by stress. The present study's aim was therefore to characterize cardiac transcriptional responses to PMCV infection in Atlantic salmon responding to infection under stressful conditions with a high versus low degree of histopathological damage. The study was performed as a large-scale controlled experiment of Atlantic salmon smolts from pre-challenge to 12 weeks post infection (wpi) with PMCV, during which fish were exposed to intermittent stressors. RNA sequencing (RNAseq) was used to compare the heart transcriptome of high responders (HR) with atrium histopathology score '4' and low responders (LR) with score '0.5' at 12 wpi. A high-throughput quantitative PCR (qPCR) analysis was used to compare immune gene transcription between individuals sampled at 6, 9 and 12 wpi. Based on RNAseq and qPCR results, RNAscope in situ hybridization (ISH) was performed for visualization of IFN-γ - and IFNb producing immune cells in affected heart tissue. Compared to LR, the transcription of 1592 genes was increased in HR at 12 wpi. Of these genes, around. 40 % were immune-related, including various chemokines, key antiviral response molecules, and genes. associated with a Th1 pro-inflammatory immune response. Further, the qPCR analysis confirmed. increased immune gene transcription in HR at both 9 and 12 wpi, despite a decrease in PMCV. transcription between these time points. Interestingly, increased IFNb transcription in HR suggests the. presence of high-quantity IFN secreting cells in the hearts of these individuals. Indeed, RNAscope. confirmed the presence of IFN-γ and IFNb-positive cells in the heart ventricle of HR but not LR. To conclude, our data indicate that in severe outcomes of PMCV infection various chemokines attract leucocytes to the salmon heart, including IFN-γ and IFNb-secreting cells, and that these cells play important roles in maintaining persistent antiviral responses and a sustained host immunopathology despite decreasing heart viral transcription.
Collapse
Affiliation(s)
- Baojian Sun
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marco A Vindas
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Håvard Bjørgen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erling Olaf Koppang
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Michael Frisk
- Institute for Experimental Medical Research, University of Oslo, Oslo, Norway
| | - Hege Lund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ida B Johansen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
3
|
Dudzik T, Domański I, Makuch S. The impact of photodynamic therapy on immune system in cancer - an update. Front Immunol 2024; 15:1335920. [PMID: 38481994 PMCID: PMC10933008 DOI: 10.3389/fimmu.2024.1335920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic approach that has gained significant attention in recent years with its promising impact on the immune system. Recent studies have shown that PDT can modulate both the innate and adaptive arms of the immune system. Currently, numerous clinical trials are underway to investigate the effectiveness of this method in treating various types of cancer, as well as to evaluate the impact of PDT on immune system in cancer treatment. Notably, clinical studies have demonstrated the recruitment and activation of immune cells, including neutrophils, macrophages, and dendritic cells, at the treatment site following PDT. Moreover, combination approaches involving PDT and immunotherapy have also been explored in clinical trials. Despite significant advancements in its technological and clinical development, further studies are needed to fully uncover the mechanisms underlying immune activation by PDT. The main objective of this review is to comprehensively summarize and discuss both ongoing and completed studies that evaluate the impact of PDT of cancer on immune response.
Collapse
Affiliation(s)
- Tomasz Dudzik
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Igor Domański
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Zapata AG. The fish spleen. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109280. [PMID: 38086514 DOI: 10.1016/j.fsi.2023.109280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
In the present study, we review the structure and function of fish spleen with special emphasis on its condition in Elasmobranchs, Teleosts and Lungfish. Apart from the amount of splenic lymphoid tissue, the histological organization of the organ ensures the existence of areas involved in antigen trapping, the ellipsoids, and exhibit numerous melano-macrophages which appear isolated or forming the so-called melano-macrophage centres. An extensive discussion on the functional significance of these centres conclude that they are mere accumulations of macrophages consequence of tissue homeostasis rather than primitive germinal centres, as proposed by some authors.
Collapse
Affiliation(s)
- Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Okon EM, Okocha RC, Taiwo AB, Michael FB, Bolanle AM. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100096. [PMID: 37250211 PMCID: PMC10213192 DOI: 10.1016/j.fsirep.2023.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Co-infections can affect the transmission of a pathogen within a population and the pathogen's virulence, ultimately affecting the disease's dynamics. In addition, co-infections can potentially affect the host's immunological responses, clinical outcomes, survival, and disease control efficacy. Co-infections significantly impact fish production and can change several fish diseases' progression and severity. However, the effect of co-infection has only recently garnered limited attention in aquatic animals such as fish, and there is currently a dearth of studies on this topic. This study, therefore, presents an in-depth summary of the dynamics of co-infection in fish. This study reviewed the co-infection of fish pathogens, the interaction of pathogens and fish, clinical outcomes and impacts on fish immune responses, and fish survival. Most studies described the prevalence of co-infections in fish, with various parameters influencing their outcomes. Bacterial co-infection increased fish mortality, ulcerative dermatitis, and intestinal haemorrhage. Viral co-infection resulted in osmoregulatory effects, increased mortality and cytopathic effect (CPE). More severe histological alterations and clinical symptoms were related to the co-infection of fish than in single-infected fish. In parasitic co-infection, there was increased mortality, high kidney swelling index, and severe necrotic alterations in the kidney, liver, and spleen. In other cases, there were more severe kidney lesions, cartilage destruction and displacement. There was a dearth of information on mitigating co-infections in fish. Therefore, further studies on the mitigation strategies of co-infections in fish will provide valuable insights into this research area. Also, more research on the immunology of co-infection specific to each fish pathogen class (bacteria, viruses, fungi, and parasites) is imperative. The findings from such studies would provide valuable information on the relationship between fish immune systems and targeted responses.
Collapse
Affiliation(s)
| | - Reuben Chukwuka Okocha
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Climate Action Research Group, Landmark University SDG 13, Nigeria
| | | | - Falana Babatunde Michael
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Life Below Water Research Group, Landmark University SDG 14, Nigeria
| | - Adeniran Moji Bolanle
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
6
|
Braden LM, Michaud D, Groman D, Byrne P, Hori TS, Fast MD. Rejection of Lepeophtheirus salmonis driven in part by chitin sensing is not impacted by seawater acclimitization in Coho salmon (Oncorhynchus kisutch). Sci Rep 2023; 13:9685. [PMID: 37322246 PMCID: PMC10272145 DOI: 10.1038/s41598-023-36632-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
There is tremendous variation in life-history strategies among anadromous salmonids. Species that enter the ocean environment at small sizes (< 20 g) are likely under more physiological pressure from pathogens; however, little data is available on responses at these early stages. With this in mind, we performed salmon louse challenges with Coho salmon either immediately after seawater entry (SW; ca. 10 g) or after 30 days in SW (ca. 20 g). Irrespective of size or time in SW, parasites were rapidly rejected by the host, with > 90% of all parasites lost by 16 days post-infection (dpi). Rejection was concomitant with host epithelial granulomatous infiltrations that initially targeted the embedded frontal filament (4 dpi) and the entire parasite by 10 dpi. Illumina sequencing, followed by functional enrichment analysis, revealed a concerted defense response in the fin within 1 dpi that included multiple innate and adaptive immunity components. Strikingly, early indications of an allergic-type inflammatory response were associated with chitin sensing pathways orchestrated by early overexpression of the IgE-receptor, fcer1g. Additionally, there was profound overexpression of several classes of c-type lectin receptors, including dectin-2, mincle, and dc-sign at 1 dpi onward. These profiles and upregulation of cellular effector markers were corroborated by histopathological evaluation, revealing the simultaneous presence of mast cell/eosinophilic granular cells, sacciform cells, macrophages/histiocytes, and granulocytes in fin. At 10 dpi and concurrent with parasite expulsion, there was evidence of immunoregulation in addition to tissue remodelling pathways. At 16 dpi, the response was effectively abrogated. Simultaneous profiling of the parasite transcriptome revealed early induction of chitin metabolism and immunomodulation, toxin production and ECM degradation; however, after 7 dpi, these were replaced with overexpression of stress and immune defense genes. These data present the first evidence for Coho salmon demonstrating chitin- and sugar moiety-sensing as key drivers of salmon louse rejection.
Collapse
Affiliation(s)
- Laura M Braden
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, PE, Canada
- Department of Fish Health and Molecular Biology, AquaBounty Canada, Souris, PE, Canada
| | - Dylan Michaud
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - David Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - Phil Byrne
- Department of Fisheries and Oceans Canada, Charlottetown, PE, Canada
| | | | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, PE, Canada.
| |
Collapse
|
7
|
Zhang JY, Gao WD, Lin JY, Xu S, Zhang LJ, Lu XC, Luan X, Peng JQ, Chen Y. Nanotechnology-based photo-immunotherapy: a new hope for inhibition of melanoma growth and metastasis. J Drug Target 2023:1-14. [PMID: 37216425 DOI: 10.1080/1061186x.2023.2216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Melanoma is the most aggressive form of skin cancer and there is a need for the development of effective anti-melanoma therapies as it shows high metastatic ability and low response rate. In addition, it has been identified that traditional phototherapy could trigger immunogenic cell death (ICD) to activate antitumor immune response, which could not only effectively arrest primary tumor growth, but also exhibit superior effects in terms of anti-metastasis, anti-recurrence for metastatic melanoma treatment However, the limited tumor accumulation of photosensitizers/photothermal agents and immunosuppressive tumor microenvironment severely weaken the immune effects. The application of nanotechnology facilitates a higher accumulation of photosensitizers/photothermal agents at the tumor site, which can thus improve the antitumor effects of photo-immunotherapy (PIT). In this review, we summarize the basic principles of nanotechnology-based PIT and highlight novel nanotechnologies that are expected to enhance the antitumor immune response for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Ji-Yuan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Dong Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Chen Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
9
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
10
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Interactions of interleukin 2 (IL-2) and IL-2 receptors mediate the activities of B lymphocytes in flounder (Paralichthys olivaceus). Int J Biol Macromol 2023; 227:113-123. [PMID: 36539171 DOI: 10.1016/j.ijbiomac.2022.12.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Interleukin 2 (IL-2) is an immunoregulatory cytokine that plays significant role in the activation and proliferation of immune cells. In teleost, the functions of IL-2 signaling on the proliferation and differentiation of T lymphocytes were well documented. However, there is still unclear about the effects of IL-2 signaling on B cell immunity in fish. Hence, in this study, full-length transcriptome sequencing was performed to investigate the activation of IL-2 on flounder (Paralichthys olivaceus) lymphocytes in vitro, the effects of IL-2 on the immunity of B cells after its receptors (IL-2Rβ or IL-2Rγ) blocked were further investigated. The results shown that the differentially expressed genes in lymphocytes after IL-2 stimulation were annotated to the pathways related to the immune response of B cells. The percentages of mIgM+ B cells were increased, and the capacities of antibody secretion and phagocytosis of B cells were enhanced after IL-2 stimulation. However, the function of IL-2 on B lymphocytes immunity was significantly inhibited after IL-2 receptors were blocked, especially after IL-2Rβ was blocked. Collectively, we can conclude that IL-2 is able to promote the proliferation of B lymphocytes, antibody secretion, and enhance their phagocytosis in flounder, and these effects are mediated through IL-2/IL-2R signaling.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
11
|
Grimholt U, Sundaram AYM, Bøe CA, Dahle MK, Lukacs M. Tetraploid Ancestry Provided Atlantic Salmon With Two Paralogue Functional T Cell Receptor Beta Regions Whereof One Is Completely Novel. Front Immunol 2022; 13:930312. [PMID: 35784332 PMCID: PMC9247247 DOI: 10.3389/fimmu.2022.930312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Protective cellular immune responses have been difficult to study in fish, due to lack of basic understanding of their T cell populations, and tools to study them. Cellular immunity is thus mostly ignored in vaccination and infection studies compared to humoral responses. High throughput sequencing, as well as access to well assembled genomes, now advances studies of cellular responses. Here we have used such resources to describe organization of T cell receptor beta genes in Atlantic salmon. Salmonids experienced a unique whole genome duplication approximately 94 million years ago, which provided these species with many functional duplicate genes, where some duplicates have evolved new functions or sub-functions of the original gene copy. This is also the case for T cell receptor beta, where Atlantic salmon has retained two paralogue T cell receptor beta regions on chromosomes 01 and 09. Compared to catfish and zebrafish, the genomic organization in both regions is unique, each chromosomal region organized with dual variable- diversity- joining- constant genes in a head to head orientation. Sequence identity of the chromosomal constant sequences between TRB01 and TRB09 is suggestive of rapid diversification, with only 67 percent as opposed to the average 82-90 percent for other duplicated genes. Using virus challenged samples we find both regions expressing bona fide functional T cell receptor beta molecules. Adding the 292 variable T cell receptor alpha genes to the 100 variable TRB genes from 14 subgroups, Atlantic salmon has one of the most diverse T cell receptor alpha beta repertoire of any vertebrate studied so far. Perhaps salmonid cellular immunity is more advanced than we have imagined.
Collapse
Affiliation(s)
- Unni Grimholt
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
- *Correspondence: Unni Grimholt,
| | - Arvind Y. M. Sundaram
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Maria K. Dahle
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| | - Morten Lukacs
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
12
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
13
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
14
|
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int J Mol Sci 2021; 22:ijms222111453. [PMID: 34768884 PMCID: PMC8584056 DOI: 10.3390/ijms222111453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease can progress to end-stage chronic renal disease (ESRD), which requires the use of replacement therapy (dialysis or kidney transplant) in life-threatening conditions. In ESRD, irreversible changes in the kidneys are associated with systemic changes of proinflammatory nature and dysfunctions of internal organs, skeletal muscles, and integumentary tissues. The common components of ESRD pathogenesis, regardless of the initial nosology, are (1) local (in the kidneys) and systemic chronic low-grade inflammation (ChLGI) as a risk factor for diabetic kidney disease and its progression to ESRD, (2) inflammation of the classical type characteristic of primary and secondary autoimmune glomerulonephritis and infectious recurrent pyelonephritis, as well as immune reactions in kidney allograft rejection, and (3) chronic systemic inflammation (ChSI), pathogenetically characterized by latent microcirculatory disorders and manifestations of paracoagulation. The development of ChSI is closely associated with programmed hemodialysis in ESRD, as well as with the systemic autoimmune process. Consideration of ESRD pathogenesis from the standpoint of the theory of general pathological processes opens up the scope not only for particular but also for universal approaches to conducting pathogenetic therapies and diagnosing and predicting systemic complications in severe nephropathies.
Collapse
|
15
|
Lee CT, Huang KS, Shaw JF, Chen JR, Kuo WS, Shen G, Grumezescu AM, Holban AM, Wang YT, Wang JS, Hsiang YP, Lin YM, Hsu HH, Yang CH. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front Pharmacol 2020; 11:575704. [PMID: 33328984 PMCID: PMC7735063 DOI: 10.3389/fphar.2020.575704] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a fungus with a long history of widespread use in folk medicine, and its biological and medicinal functions are well studied. A crucial pharmacological effect of C. militaris is immunomodulation. In this review, we catalog the immunomodulatory effects of different extracts of C. militaris, namely total extracts, polysaccharides and cordycepin. Total extracts obtained using water or 50% ethyl alcohol and polysaccharides from C. militaris were discovered to tend to promote type 1 immunity, whereas total extracts obtained using 70-80% ethyl alcohol and cordycepin from C. militaris were more likely to promote type 2 immunity. This article is the first to classify the immunomodulatory effects of different extracts of C. militaris. In addition, we discovered a relationship between different segments or extracts and differing types of immunity. This review can provide the readers a comprehensive understanding on the immunomodulatory effects of the precious folk medicine and guidance on its use for both health people and those with an immunodeficiency.
Collapse
Affiliation(s)
- Chun-Ting Lee
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gangxu Shen
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Polytechnic University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, University of Bucharest, Bucharest, Romania
| | - Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jun-Sheng Wang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Ping Hsiang
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| | - Yu-Mei Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Hsiao-Han Hsu
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
16
|
Yamaguchi T, Chang CJ, Karger A, Keller M, Pfaff F, Wangkahart E, Wang T, Secombes CJ, Kimoto A, Furihata M, Hashimoto K, Fischer U, Dijkstra JM. Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Front Immunol 2020; 11:549319. [PMID: 33193315 PMCID: PMC7658486 DOI: 10.3389/fimmu.2020.549319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in trans" presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4-CD8-(IgM-) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4+CD8+ thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Chia Jung Chang
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Azusa Kimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, Nagano, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Uwe Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
17
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Wentzel AS, Petit J, van Veen WG, Fink IR, Scheer MH, Piazzon MC, Forlenza M, Spaink HP, Wiegertjes GF. Transcriptome sequencing supports a conservation of macrophage polarization in fish. Sci Rep 2020; 10:13470. [PMID: 32778701 PMCID: PMC7418020 DOI: 10.1038/s41598-020-70248-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian macrophages can adopt polarization states that, depending on the exact stimuli present in their extracellular environment, can lead to very different functions. Although these different polarization states have been shown primarily for macrophages of humans and mice, it is likely that polarized macrophages with corresponding phenotypes exist across mammals. Evidence of functional conservation in macrophages from teleost fish suggests that the same, or at least comparable polarization states should also be present in teleosts. However, corresponding transcriptional profiles of marker genes have not been reported thus far. In this study we confirm that macrophages from common carp can polarize into M1- and M2 phenotypes with conserved functions and corresponding transcriptional profiles compared to mammalian macrophages. Carp M1 macrophages show increased production of nitric oxide and a transcriptional profile with increased pro-inflammatory cytokines and mediators, including il6, il12 and saa. Carp M2 macrophages show increased arginase activity and a transcriptional profile with increased anti-inflammatory mediators, including cyr61, timp2b and tgm2b. Our RNA sequencing approach allowed us to list, in an unbiased manner, markers discriminating between M1 and M2 macrophages of teleost fish. We discuss the importance of our findings for the evaluation of immunostimulants for aquaculture and for the identification of gene targets to generate transgenic zebrafish for detailed studies on M1 and M2 macrophages. Above all, we discuss the striking degree of evolutionary conservation of macrophage polarization in a lower vertebrate.
Collapse
Affiliation(s)
- Annelieke S Wentzel
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Jules Petit
- Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Wouter G van Veen
- Experimental Zoology Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Inge Rosenbek Fink
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Marleen H Scheer
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Maria Forlenza
- Cell Biology and Immunology Group, Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2332 CC, Leiden, The Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Bailey C, Holland JW, Secombes CJ, Tafalla C. A portrait of the immune response to proliferative kidney disease (PKD) in rainbow trout. Parasite Immunol 2020; 42:e12730. [PMID: 32403171 PMCID: PMC7507176 DOI: 10.1111/pim.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Proliferative kidney disease (PKD), caused by the myxozoan Tetracapsuloides bryosalmonae, is one of the most serious parasitic diseases of salmonids in which outbreaks cause severe economic constraints for the aquaculture industry and declines of wild species throughout Europe and North America. Given that rainbow trout (Oncorhynchus mykiss) is one of the most widely farmed freshwater fish and an important model species for fish immunology, most of the knowledge on how the fish immune response is affected during PKD is from this organism. Once rainbow trout are infected, PKD pathogenesis results in a chronic kidney immunopathology mediated by decreasing myeloid cells and increasing lymphocytes. Transcriptional studies have revealed the regulation of essential genes related to T-helper (Th)-like functions and a dysregulated B-cell antibody type response. Recent reports have discovered unique details of teleost B-cell differentiation and functionality and characterized the differential immunoglobulin (Ig)-mediated response. These studies have solidified the rainbow trout T. bryosalmonae system as a sophisticated disease model capable of feeding key advances into mainstream immunology and have contributed essential information to design novel parasite disease prevention strategies. In our following perspective, we summarize these efforts to evaluate the immune mechanisms of rainbow trout during PKD pathogenesis.
Collapse
Affiliation(s)
- Christyn Bailey
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
| | - Jason W. Holland
- Aberdeen Oomycete LaboratoryInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research CentreInstitute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
| |
Collapse
|
20
|
Bottiglione F, Dee CT, Lea R, Zeef LAH, Badrock AP, Wane M, Bugeon L, Dallman MJ, Allen JE, Hurlstone AFL. Zebrafish IL-4-like Cytokines and IL-10 Suppress Inflammation but Only IL-10 Is Essential for Gill Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 205:994-1008. [PMID: 32641385 PMCID: PMC7416321 DOI: 10.4049/jimmunol.2000372] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Mucosal surfaces such as fish gills interface between the organism and the external environment and as such are major sites of foreign Ag encounter. In the gills, the balance between inflammatory responses to waterborne pathogens and regulatory responses toward commensal microbes is critical for effective barrier function and overall fish health. In mammals, IL-4 and IL-13 in concert with IL-10 are essential for balancing immune responses to pathogens and suppressing inflammation. Although considerable progress has been made in the field of fish immunology in recent years, whether the fish counterparts of these key mammalian cytokines perform similar roles is still an open question. In this study, we have generated IL-4/13A and IL-4/13B mutant zebrafish (Danio rerio) and, together with an existing IL-10 mutant line, characterized the consequences of loss of function of these cytokines. We demonstrate that IL-4/13A and IL-4/13B are required for the maintenance of a Th2-like phenotype in the gills and the suppression of type 1 immune responses. As in mammals, IL-10 appears to have a more striking anti-inflammatory function than IL-4-like cytokines and is essential for gill homeostasis. Thus, both IL-4/13 and IL-10 paralogs in zebrafish exhibit aspects of conserved function with their mammalian counterparts.
Collapse
Affiliation(s)
- Federica Bottiglione
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Christopher T Dee
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Robert Lea
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Leo A H Zeef
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Andrew P Badrock
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Madina Wane
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Laurence Bugeon
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Margaret J Dallman
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Adam F L Hurlstone
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| |
Collapse
|
21
|
Nishiya K, Sawada M, Dijkstra JM, Miyamae J, Okano M, Katakura F, Moritomo T. A fish cytokine related to human IL-3, IL-5, and GM-CSF, induces development of eosinophil/basophil/mast-cell type (EBM) granulocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103671. [PMID: 32147469 DOI: 10.1016/j.dci.2020.103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) are related cytokines that signal through receptors possessing the β common (βc) chain. As a family, these cytokines combine rather non-specific hematopoietic growth factor properties with a special importance for eosinophils, basophils, and mast cells. In fish the cytokines of this family are called IL-5fam, and the present study, using carp, constitutes their first functional analysis. Carp il-5fam expression was enhanced by stimulation with phytohemagglutinin and killed bacteria. Reminiscent of mammalian IL-3/IL-5/GM-CSF family members, recombinant carp IL-5fam (rcIL-5fam) induced activation of transcription factor STAT5 and efficiently promoted proliferation and colony-formation of eosinophil/basophil/mast-cell type (EBM) granulocytes. Upon addition of recombinant carp βc the growth effect of rcIL-5fam was reduced, suggesting βc participation in the signaling route. In summary, despite differences in individual cytokines and cell populations, fish and mammalian IL-3/IL-5/GM-CSF family members share growth factor functions for non-neutrophil granulocytes.
Collapse
Affiliation(s)
- Kohei Nishiya
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mai Sawada
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi, 470-1192, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 794-8555, Japan
| | - Masaharu Okano
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
22
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy and Immunity: An Update. Photochem Photobiol 2020; 96:550-559. [PMID: 32128821 DOI: 10.1111/php.13253] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Dr. Thomas Dougherty and his Oncology Foundation of Buffalo were the first to support my (S.O.G.) research into the effects of photodynamic therapy (PDT) on the host immune system. The small grant I was awarded in 2002 launched my career as an independent researcher; at the time, there were few studies on the importance of the immune response on the efficacy of PDT and no studies demonstrating the ability of PDT to enhance antitumor immunity. Over the last decades, the interest in PDT as an enhancer of antitumor immunity and our understanding of the mechanisms by which PDT enhances antitumor immunity have dramatically increased. In this review article, we look back on the studies that laid the foundation for our understanding and provide an update on current advances and therapies that take advantage of PDT enhancement of immunity.
Collapse
Affiliation(s)
| | - Sandra O Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
23
|
Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon. BIOLOGY 2020; 9:biology9040082. [PMID: 32326041 PMCID: PMC7235720 DOI: 10.3390/biology9040082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
The overexpression of GATA-3, T-bet and TGF-ß may theoretically induce IL-4/A, IFN-γ and IL-17A expression, respectively. Whether this also applies to fish is not yet known. The plasmid vectors encoding reporter gene (RFP)-tagged T-bet, GATA-3 and TGF-ß were used as overexpression tools, transfected into cells or injected intramuscularly to monitor the expression of IFN-γ, IL-4/13A and IL-17A. In addition, the fish were either experimentally challenged with Vibrio anguillarum (VA group) or Piscirickettsia salmonis (PS group). The reporter gene (RFP) inserted upstream of the GATA-3, T-bet and TGF-ß genes, was observed in muscle cell nuclei and in inflammatory cells after intramuscular (i.m.) injection. PS group: following the injection of GATA-3 and T-bet-encoding plasmids, the expression of GATA-3 and T-bet was high at the injection site. The spleen expression of IFN-γ, following the injection of a T-bet-encoding plasmid, was significantly higher on day 2. VA group: The T-bet and GATA-3-overexpressing fish expressed high T-bet and GATA-3 mRNA levels in the muscles and on day 4 post-challenge. The expression of TGF-ß in the muscles of fish injected with TGF-ß-encoding plasmids was significantly higher on days 7 (8 days pre-challenge) and 19 (4 days after challenge). The protective effects of the overexpression of T-bet, GATA-3 and TGF-ß on both bacterial infections were negligible.
Collapse
|
24
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
25
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
26
|
Abstract
Macrophages exist in most tissues and play a variety of functions in vertebrates. Teleost fish species are found in most aquatic environments throughout the world and are quite diverse for a group of vertebrate animals. Due to whole genome duplication and environmental adaptation, teleost monocytes/macrophages possess a variety of different functions and modulations compared with those of mammals. A deeper understanding of teleost monocytes/macrophages in the immune system will not only help develop teleost-specific methods of disease prevention but will also help improve our understanding of the various immune mechanisms in mammals. In this review, we summarize the differences in polarization and phagocytosis of teleost and mammalian macrophages to improve our understanding of the various immune mechanisms in vertebrates.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo Zhejiang 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo Zhejiang 315211, China
| |
Collapse
|
27
|
Abstract
Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4+ T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions.
Collapse
|
28
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Effects of Sex Steroids on Fish Leukocytes. BIOLOGY 2018; 7:biology7010009. [PMID: 29315244 PMCID: PMC5872035 DOI: 10.3390/biology7010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish.
Collapse
|
30
|
Dalmo RA. DNA vaccines for fish: Review and perspectives on correlates of protection. JOURNAL OF FISH DISEASES 2018; 41:1-9. [PMID: 29064091 DOI: 10.1111/jfd.12727] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Recently in 2016, the European Medicines Agency (EMA) recommended granting a marketing authorization in the EU for "Clynav," a DNA vaccine against salmon pancreas disease (salmonid alphavirus-3). Generally, DNA vaccines induce both early and late immune responses in fish that may be protective against disease. Several transcriptomic approaches have been performed to map immunome profiles following DNA vaccination, but the precise immune mechanism(s) that is responsible for protection is not known, although reasonable suggestions have been made. The current review includes an overview on main transcriptomic findings from microarray experiments after DNA vaccination against VHSV, IHNV, HIRRV and IPNV-with considerations of what can be considered as correlates of protection (CoP) or merely a surrogate of protection. Identification and use of correlates of protection (COPs) may be a strategic tool for accelerated and targeted vaccine design, testing and licensure. General rules on what can be considered as CoPs can be extracted from past knowledge on protective immune responses following vaccination that induced protection. Lastly, there will be an overview on non-viral molecular adjuvants that have been exploited to obtain higher vaccine potencies and efficacies.
Collapse
Affiliation(s)
- R A Dalmo
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
31
|
Abram QH, Dixon B, Katzenback BA. Impacts of Low Temperature on the Teleost Immune System. BIOLOGY 2017; 6:E39. [PMID: 29165340 PMCID: PMC5745444 DOI: 10.3390/biology6040039] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an individual fish species can have negative impacts on the physiology of the animal, including the immune system. As a result, acute or chronic exposure to suboptimal temperatures can impair an organisms' ability to defend against pathogens and thus compromise the overall health of the animal. This review focuses on the advances made towards understanding the impacts of suboptimal temperature on the soluble and cellular mediators of the innate and adaptive immune systems of fishes. Although cold stress can result in varying effects in different fish species, acute and chronic suboptimal temperature exposure generally yield suppressive effects, particularly on adaptive immunity. Knowledge of the effects of environmental temperature on fish species is critical for both the optimal management of wild species and the best management practices for aquaculture species.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
32
|
Bailey C, Segner H, Casanova-Nakayama A, Wahli T. Who needs the hotspot? The effect of temperature on the fish host immune response to Tetracapsuloides bryosalmonae the causative agent of proliferative kidney disease. FISH & SHELLFISH IMMUNOLOGY 2017; 63:424-437. [PMID: 28238860 DOI: 10.1016/j.fsi.2017.02.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Proliferative kidney disease (PKD) of salmonids, caused by Tetracapsuloides bryosalmonae may lead to high mortalities at elevated water temperatures. However, it has not yet been investigated how temperature affects the fish host immune response to T. bryosalmonae. We exposed YOY (young of the year) rainbow trout (Oncorhynchus mykiss) to T. bryosalmonae at two temperatures (12 °C and 15 °C) that reflect a realistic environmental scenario and could occur in the natural habitat of salmonids. We followed the development of the parasite, host pathology and immune response over seven weeks. We evaluated the composition and kinetics of the leukocytes and their major subgroups in the anterior and posterior kidney. We measured immune gene expression profiles associated with cell lineages and functional pathways in the anterior and posterior kidney. At 12 °C, both infection prevalence and pathogen load were markedly lower. While the immune response was characterized by subtle changes, mainly an increased amount of lymphocytes present in the kidney, elevated expression of Th1-like signature cytokines and strong upregulation of the natural killer cell enhancement factor, NKEF at week 6 P.E. At 15 °C the infection prevalence and pathogen burden were ominously greater. While the immune response as the disease progressed was associated with a Th2-like switch at week 6 P.E and a prominent B cell response, evidenced at the tissue, cell and transcript level. Our results highlight how a subtle, environmentally relevant difference in temperature resulted in diverse outcomes in terms of the immune response strategy, altering the type of interaction between a host and a parasite.
Collapse
Affiliation(s)
- Christyn Bailey
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | - Helmut Segner
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | - Ayako Casanova-Nakayama
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | - Thomas Wahli
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
33
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
34
|
Origgi FC, Benedicenti O, Segner H, Sattler U, Wahli T, Frey J. Aeromonas salmonicida type III secretion system-effectors-mediated immune suppression in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 60:334-345. [PMID: 27923746 DOI: 10.1016/j.fsi.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen in aquaculture. Together with other pathogens, it is characterized by the presence of a type 3 secretion system (T3SS). The T3SS is the main virulence mechanism of A. salmonicida. It is used by the bacterium to secrete and translocate several toxins and effector proteins into the host cell. Some of these factors have a detrimental impact on the integrity of the cell cytoskeleton, likely contributing to impair phagocytosis. Furthermore, it has been suggested that effectors of the T3SS are able to modulate the host's immune response. Here we present the first partial characterization of the immune response in rainbow trout (Oncorhynchus mykiss) infected with distinct strains of A. salmonicida either carrying (i) a fully functional T3SS or (ii) a functionally impaired T3SS or (iii) devoid of T3SS ("cured" strain). Infection with an A. salmonicida strain either carrying a fully functional or a secretion-impaired T3SS was associated with a strong and persistent immune suppression. However, the infection appeared to be fatal only in the presence of a fully functional T3SS. In contrast, the absence of T3SS was neither associated with immune suppression nor fish death. These findings suggest that the T3SS and T3SS-delivered effector molecules and toxins of A. salmonicida do not only impair the host cells' cytoskeleton thus damaging cell physiology and phagocytosis, but also heavily affect the transcription of critical immune mediators including the shut-down of important warning signals to recognize infection and induce immune defense.
Collapse
Affiliation(s)
- F C Origgi
- Institute of Veterinary Bacteriology, University of Bern, Bern-CH, Switzerland; Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland.
| | - O Benedicenti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - H Segner
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - U Sattler
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - T Wahli
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern-CH, Switzerland
| | - J Frey
- Institute of Veterinary Bacteriology, University of Bern, Bern-CH, Switzerland
| |
Collapse
|
35
|
Dee CT, Nagaraju RT, Athanasiadis EI, Gray C, Fernandez Del Ama L, Johnston SA, Secombes CJ, Cvejic A, Hurlstone AFL. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3520-3530. [PMID: 27694495 PMCID: PMC5073357 DOI: 10.4049/jimmunol.1600959] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
CD4+ T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4+ T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4+ cells allowing us to scrutinize the development and specialization of teleost CD4+ leukocytes in vivo. We provide further evidence that CD4+ macrophages have an ancient origin and had already emerged in bony fish. We demonstrate the utility of this zebrafish resource for interrogating the complex behavior of immune cells at cellular resolution by the imaging of intimate contacts between teleost CD4+ T cells and mononuclear phagocytes. Most importantly, we reveal the conserved subspecialization of teleost CD4+ T cells in vivo. We demonstrate that the ancient and specialized tissues of the gills contain a resident population of il-4/13b-expressing Th2-like cells, which do not coexpress il-4/13a Additionally, we identify a contrasting population of regulatory T cell-like cells resident in the zebrafish gut mucosa, in marked similarity to that found in the intestine of mammals. Finally, we show that, as in mammals, zebrafish CD4+ T cells will infiltrate melanoma tumors and obtain a phenotype consistent with a type 2 immune microenvironment. We anticipate that this unique resource will prove invaluable for future investigation of T cell function in biomedical research, the development of vaccination and health management in aquaculture, and for further research into the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Christopher T Dee
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Raghavendar T Nagaraju
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Emmanouil I Athanasiadis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Caroline Gray
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | | | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom;
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Adam F L Hurlstone
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
36
|
Livernois A, Hardy K, Domaschenz R, Papanicolaou A, Georges A, Sarre SD, Rao S, Ezaz T, Deakin JE. Identification of interleukin genes in Pogona vitticeps using a de novo transcriptome assembly from RNA-seq data. Immunogenetics 2016; 68:719-31. [PMID: 27255409 DOI: 10.1007/s00251-016-0922-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
Interleukins are a group of cytokines with complex immunomodulatory functions that are important for regulating immunity in vertebrate species. Reptiles and mammals last shared a common ancestor more than 350 million years ago, so it is not surprising that low sequence identity has prevented divergent interleukin genes from being identified in the central bearded dragon lizard, Pogona vitticeps, in its genome assembly. To determine the complete nucleotide sequences of key interleukin genes, we constructed full-length transcripts, using the Trinity platform, from short paired-end read RNA sequences from stimulated spleen cells. De novo transcript reconstruction and analysis allowed us to identify interleukin genes that are missing from the published P. vitticeps assembly. Identification of key cytokines in P. vitticeps will provide insight into the essential molecular mechanisms and evolution of interleukin gene families and allow for characterization of the immune response in a lizard for comparison with mammals.
Collapse
Affiliation(s)
- Alexandra Livernois
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Kristine Hardy
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT, 2617, Australia
| | - Renae Domaschenz
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Alexie Papanicolaou
- The Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT, 2617, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia.
| |
Collapse
|
37
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
38
|
Takizawa F, Magadan S, Parra D, Xu Z, Korytář T, Boudinot P, Sunyer JO. Novel Teleost CD4-Bearing Cell Populations Provide Insights into the Evolutionary Origins and Primordial Roles of CD4+ Lymphocytes and CD4+ Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 196:4522-35. [PMID: 27183628 DOI: 10.4049/jimmunol.1600222] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
Abstract
Tetrapods contain a single CD4 coreceptor with four Ig domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four Ig domains, whereas CD4-2 contains only two. Because CD4-2 is reminiscent of the prototypic two-domain CD4 coreceptor, we hypothesized that by characterizing the cell types bearing CD4-1 and CD4-2, we would shed light into the evolution and primordial roles of CD4-bearing cells. Using newly established mAbs against CD4-1 and CD4-2, we identified two bona-fide CD4(+) T cell populations: a predominant lymphocyte population coexpressing surface CD4-1 and CD4-2 (CD4 double-positive [DP]), and a minor subset expressing only CD4-2 (CD4-2 single-positive [SP]). Although both subsets produced equivalent levels of Th1, Th17, and regulatory T cell cytokines upon bacterial infection, CD4-2 SP lymphocytes were less proliferative and displayed a more restricted TCRβ repertoire. These data suggest that CD4-2 SP cells represent a functionally distinct population and may embody a vestigial CD4(+) T cell subset, the roles of which reflect those of primeval CD4(+) T cells. Importantly, we also describe the first CD4(+) monocyte/macrophage population in a nonmammalian species. Of all myeloid subsets, we found the CD4(+) population to be the most phagocytic, whereas CD4(+) lymphocytes lacked this capacity. This study fills in an important gap in the knowledge of teleost CD4-bearing leukocytes, thus revealing critical insights into the evolutionary origins and primordial roles of CD4(+) lymphocytes and CD4(+) monocytes/macrophages.
Collapse
Affiliation(s)
- Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Susana Magadan
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - David Parra
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; and
| | - Zhen Xu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
39
|
Yamaguchi T, Miyata S, Katakura F, Nagasawa T, Shibasaki Y, Yabu T, Fischer U, Nakayasu C, Nakanishi T, Moritomo T. Recombinant carp IL-4/13B stimulates in vitro proliferation of carp IgM(+) B cells. FISH & SHELLFISH IMMUNOLOGY 2016; 49:225-229. [PMID: 26766176 DOI: 10.1016/j.fsi.2015.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Teleost IL-4/13B is a cytokine related to mammalian IL-4 and IL-13, of which hitherto the function had not been studied at the protein level. We identified an IL-4/13B gene in common carp (Cyprinus carpio) and expressed the recombinant protein (rcIL-4/13B). RcIL-4/13B was shown to stimulate proliferation of IgM(+) B cells, because after four days of stimulation the IgM(+) fraction of carp kidney and spleen leukocytes had formed many cell colonies, whereas such colonies were not found in the absence of rcIL-4/13B stimulation. After nine days of incubation with rcIL-4/13B these cells had proliferated to more than 3-to-7-fold higher numbers when compared to untreated cells. The proliferating cells contained a majority of IgM(+) cells but also other cells, as indicated by FACS and RT-PCR analyses. The important conclusion is that in fish not only IL-4/13A has B cell stimulating properties, as a previous publication has shown, but also IL-4/13B.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Shunsuke Miyata
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takahiro Nagasawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresourse and Bioenvironment, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | - Yasuhiro Shibasaki
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takeshi Yabu
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Chihaya Nakayasu
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise, Mie 516-0193, Japan
| | - Teruyuki Nakanishi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
40
|
Polarization of immune responses in fish: The ‘macrophages first’ point of view. Mol Immunol 2016; 69:146-56. [DOI: 10.1016/j.molimm.2015.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/01/2023]
|