1
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024:1-21. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
5
|
Lim B, Kim KS, Ahn JY, Na K. Overcoming antibiotic resistance caused by genetic mutations of Helicobacter pylori with mucin adhesive polymer-based therapeutics. Biomaterials 2024; 308:122541. [PMID: 38547832 DOI: 10.1016/j.biomaterials.2024.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
Herein, we describe the 3'-sialyllactose-polyethyleneimine-chlorine e6 conjugate (3PC), meticulously engineered to effectively target Helicobacter bacteria (H. pylori) within the gastric environment. The composition of 3PC comprises polyethyleneimine, a cationic polymer, 3'-sialyllactose, which exhibits a specific binding affinity for H. pylori surface proteins, and a photosensitizer capable of generating oxygen radicals in response to specific wavelengths. The distinctive feature of 3PC lies in its capacity to enhance interaction with the anionic mucus layer facilitated by electrostatic forces. This interaction results in prolonged residence within the intestinal environment. The extended vacation in the intestinal milieu overcomes inherent limitations that have historically impeded conventional antibiotics from efficiently reaching and targeting H. pylori. 3PC can be harnessed as a potent tool for antibacterial photodynamic therapy, and its versatility extends to addressing the challenges posed by various antibiotic-resistant strains. The exceptional efficacy of 3PC in enhancing intestinal residence time and eradicating H. pylori has been robustly substantiated in animal models, particularly in mice. In summary, 3PC is a formidable agent capable of eradicating H. pylori, irrespective of its antibiotic resistance status, by efficiently penetrating and selectively targeting the mucus layer within the gastric environment.
Collapse
Affiliation(s)
- Byoungjun Lim
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Ji Yong Ahn
- Department of Gastroenterology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
6
|
Sanji AS, J M, Gurav MJ, Batra SK, Chachadi VB. Cancer snap-shots: Biochemistry and glycopathology of O-glycans: A review. Int J Biol Macromol 2024; 260:129318. [PMID: 38232866 DOI: 10.1016/j.ijbiomac.2024.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.
Collapse
Affiliation(s)
- Ashwini S Sanji
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Manasa J
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Maruti J Gurav
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishwanath B Chachadi
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India.
| |
Collapse
|
7
|
Shibata C, Otsuka M, Ishigaki K, Seimiya T, Kishikawa T, Fujishiro M. CA19-9-Positive Extracellular Vesicle Is a Risk Factor for Cancer-Associated Thrombosis in Pancreatic Cancer. GASTRO HEP ADVANCES 2024; 3:551-561. [PMID: 39131719 PMCID: PMC11308089 DOI: 10.1016/j.gastha.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/21/2024] [Indexed: 08/13/2024]
Abstract
Background and Aims Cancer-associated venous thromboembolism (VTE) is a frequent complication associated with high mortality in patients with cancer, particularly pancreatic cancer. While biological factors such as coagulation factors released from cancer cells may underlie the mechanisms of cancer-associated VTE, the detailed mechanisms have not been determined. Here, we aimed to determine whether extracellular vesicles carrying a glycan sialyl-Lewisa, known as carbohydrate antigen 19-9 (CA19-9), which is a clinically used serum tumor marker and selectin ligand, are a significant cause of cancer-associated VTE. Methods Risk factors for cancer-associated VTE were determined using clinical data. EVs derived from CA19-9-deficient or overexpressing pancreatic cancer cells were characterized. The protein levels of coagulation factors on the surface of the EVs were quantified using our newly developed sensitive method. Results Higher CA19-9 levels in the sera of patients were significantly associated with the occurrence of VTE. Using CA19-9-negative or overexpressing pancreatic cancer cells, we found that EVs derived from these cells interacted with E-selectin of endothelial cells in a CA19-9-dependent manner in cell-based assays and in vitro blood vessel models. EVs derived from cancer cells have higher tissue factor levels on their surfaces, and increased tissue factor activity is induced locally, where CA19-9-positive EVs bind to activated endothelial cells. Conclusion These results suggest that the binding between CA19-9-positive EVs released from cancer cells and endothelial cell E-selectin explains the increased frequency of VTE in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunaga Ishigaki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
9
|
Shih PC, Chen HP, Hsu CC, Lin CH, Ko CY, Hsueh CW, Huang CY, Chu TH, Wu CC, Ho YC, Nguyen NUN, Huang SC, Fang CC, Tzou SJ, Wu YJ, Chen TY, Chang CF, Lee YK. Long-term DEHP/MEHP exposure promotes colorectal cancer stemness associated with glycosylation alterations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121476. [PMID: 36997141 DOI: 10.1016/j.envpol.2023.121476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.
Collapse
Affiliation(s)
- Pei-Chun Shih
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Pao Chen
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Chung-Hsien Lin
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chao-Wen Hsueh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Yi Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tian-Huei Chu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Shih-Chung Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Division of Cardiology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | | | - Shiow-Jyu Tzou
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yung-Kuo Lee
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
10
|
Arend LB, Verli H. Revisiting the structural basis for biological activity of GMI-1070, a sialyl Lewis x mimetic. Carbohydr Res 2023; 529:108829. [PMID: 37182470 DOI: 10.1016/j.carres.2023.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
When it comes to the treatment of pathologies in which aberrant cell adhesion and extravasation from the bloodstream have been implicated, the selectins represent a central therapeutic target. In this context, the present work investigates the conformational landscape of two prototypes for the design of new antineoplasic and anti-inflammatory agents: the natural selectin ligand sialyl Lewisx and its mimetic GMI-1070. Accordingly, a series of unbiased molecular dynamics simulations at the microsecond scale using GROMOS 53A6 (GLYC), CHARMM36m and GLYCAM06 force fields were employed, together with ConfID, an analytical method for the characterization of conformational populations of small molecules. Our results for sialyl Lewisx are in agreement with and expand upon prior work. As for the mimetic, our results indicate that, in spite of its conformational restriction, GMI-1070's behavior in solution deviates from what had been proposed, highlighting thus some features that could be optimized, as the development of sialyl Lewisx mimetics continues, and new candidates emerge.
Collapse
Affiliation(s)
- Laís B Arend
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves, 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil.
| |
Collapse
|
11
|
Čaval T, Alisson-Silva F, Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics 2023; 13:2605-2615. [PMID: 37215580 PMCID: PMC10196828 DOI: 10.7150/thno.81760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Collapse
|
12
|
Duca M, Malagolini N, Dall'Olio F. The story of the Sd a antigen and of its cognate enzyme B4GALNT2: What is new? Glycoconj J 2023; 40:123-133. [PMID: 36287346 DOI: 10.1007/s10719-022-10089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
Abstract
The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Martina Duca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|
13
|
Sialyl Lewis X/A and Cytokeratin Crosstalk in Triple Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15030731. [PMID: 36765690 PMCID: PMC9913872 DOI: 10.3390/cancers15030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) encompasses multiple entities and is generally highly aggressive and metastatic. We aimed to determine the clinical and biological relevance of Sialyl-Lewis X and A (sLeX/A)-a fucosylated glycan involved in metastasis-in TNBC. Here, we studied tissues from 50 TNBC patients, transcripts from a TNBC dataset from The Cancer Genome Atlas (TCGA) database, and a primary breast cancer cell line. All 50 TNBC tissue samples analysed expressed sLeX/A. Patients with high expression of sLeX/A had 3 years less disease-free survival than patients with lower expression. In tissue, sLeX/A negatively correlated with cytokeratins 5/6 (CK5/6, which was corroborated by the inverse correlation between fucosyltransferases and CK5/6 genes. Our observations were confirmed in vitro when inhibition of sLeX/A remarkably increased expression of CK5/6, followed by a decreased proliferation and invasion capacity. Among the reported glycoproteins bearing sLeX/A and based on the STRING tool, α6 integrin showed the highest interaction score with CK5/6. This is the first report on the sLeX/A expression in TNBC, highlighting its association with lower disease-free survival and its inverse crosstalk with CK5/6 with α6 integrin as a mediator. All in all, sLeX/A is critical for TNBC malignancy and a potential prognosis biomarker and therapeutic target.
Collapse
|
14
|
Choi H, Ju S, Kang K, Seo MH, Kim JM, Miyoshi E, Yeo MK, Park SY. Terminal fucosylation of haptoglobin in cancer-derived exosomes during cholangiocarcinoma progression. Front Oncol 2023; 13:1183442. [PMID: 37168374 PMCID: PMC10165115 DOI: 10.3389/fonc.2023.1183442] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a silent tumor with a high mortality rate due to the difficulty of early diagnosis and prediction of recurrence even after timely surgery. Serologic cancer biomarkers have been used in clinical practice, but their low specificity and sensitivity have been problematic. In this study, we aimed to identify CCA-specific glycan epitopes that can be used for diagnosis and to elucidate the mechanisms by which glycosylation is altered with tumor progression. Methods The serum of patients with various cancers was fractioned into membrane-bound and soluble components using serial ultracentrifugation. Lectin blotting was conducted to evaluate glycosylation. Proteins having altered glycosylation were identified using proteomic analysis and further confirmed using immunoblotting analysis. We performed HPLC, gene analysis, real-time cargo tracking, and immunohistochemistry to determine the origin of CCA glycosylation and its underlying mechanisms. Extracellular vesicles (EV) were isolated from the sera of 62 patients with CCA at different clinical stages and inflammatory conditions and used for glycan analysis to assess their clinical significance. Results The results reveal that glycosylation patterns between soluble and membrane-bound fractions differ significantly even when obtained from the same donor. Notably, glycans with α1-3/4 fucose and β1-6GlcNAc branched structures increase specifically in membrane-bound fractions of CCA. Mechanically, it is primarily due to β-haptoglobin (β-Hp) originating from CCA expressing fucosyltransferase-3/4 (FUT 3/4) and N-acetylglucosaminyltransferase-V (MGAT5). Newly synthesized β-Hp is loaded into EVs in early endosomes via a KFERQ-like motif and then secreted from CCA cells to induce tumor progression. In contrast, β-Hp expressed by hepatocytes is secreted in a soluble form that does not affect CCA progression. Moreover, evaluation of EV glycosylation in CCA patients shows that fucosylation level of EV-Hp gradually increases with tumor progression and decreases markedly when the tumors are eliminated by surgery. Conclusion This study suggests that terminal fucosylation of Hp in cancer-derived exosomes can be a novel glycan marker for diagnosis and prognosis of CCA. These findings highlight the potential of glycan analysis in different fractions of serum for biomarker discover for other diseases. Further research is needed to understand the role of fucosylated EVs on CCA progression.
Collapse
Affiliation(s)
- Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Moon-Hyeong Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- *Correspondence: Min-Kyung Yeo, ; Seung-Yeol Park,
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
- *Correspondence: Min-Kyung Yeo, ; Seung-Yeol Park,
| |
Collapse
|
15
|
Li L, Wu L, Urschbach M, Straßburger D, Liu X, Besenius P, Chen G. Modular Platform of Carbohydrates-modified Supramolecular Polymers Based on Dendritic Peptide Scaffolds. ACS POLYMERS AU 2022; 2:478-485. [PMID: 36536888 PMCID: PMC9756342 DOI: 10.1021/acspolymersau.2c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/17/2023]
Abstract
Glycopeptide supramolecular polymers displaying multivalent carbohydrates are particularly suitable for immune-relevant biomaterials, due to the important functions of carbohydrates in mediating cell-cell communication and modulating immune responses. However, the diversity and complexity of carbohydrates limited the generation of glycopeptide supramolecular monomers. Thereby, a modular platform of presenting various carbohydrates, especially more complex oligosaccharides, is highly desirable but remains underexplored. Here, we first prepared the linear amphiphilic glycopeptides that self-assembled into spherical nanoparticles and worm-like nanoparticles. Furthermore, the dendritic glycopeptides that self-assembled into uniform nanorods were designed to generate modular supramolecular polymers with variable functionality, via redesigning the molecular backbone. With various functional oligosaccharide-modified supramolecular polymers, the in vitro studies further indicated that these polymers were not cytotoxic to macrophages, and significantly modulated the production of proinflammatory cytokines. These findings provide a promising platform to develop supramolecular glycopeptide biomaterials with potential applications in immunomodulation and immunotherapy.
Collapse
Affiliation(s)
- Long Li
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Libin Wu
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Moritz Urschbach
- Department
of Chemistry, Johannes Gutenberg-University
Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - David Straßburger
- Department
of Chemistry, Johannes Gutenberg-University
Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Xiaomei Liu
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Pol Besenius
- Department
of Chemistry, Johannes Gutenberg-University
Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Guosong Chen
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
- Multiscale
Research Institute of Complex Systems, Fudan
University, Shanghai 200433, China
| |
Collapse
|
16
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
17
|
Singh P, Joon A, Kumari M, Singh T, Bal A, Maan P, Ghosh S. Role of a Disease-associated ST3Gal-4 in Non-small Cell Lung Cancer. Cell Biochem Biophys 2022; 80:781-793. [PMID: 36083411 DOI: 10.1007/s12013-022-01091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Sialylation promotes tumorigenesis by affecting various cancer-related events, including apoptosis inhibition, cell growth, invasion, migration, metastasis, chemo-resistance, and immunomodulation in favor of tumor progression. An altered expression of sialyltransferase enzymes is responsible for synthesizing various tumor-associated sialylated structures. In the present study, our findings have revealed a significant up-regulation of ST3Gal-4 transcript in the two major subtypes of NSCLC cell lines [squamous cell carcinoma cell line (NCI-H520) and adenocarcinoma cell line (A549)]. Thus, the role of the ST3Gal-4 gene was assessed on cancer-associated signal transduction pathways in these cells in view of proliferation, invasion, and migration. ST3Gal-4 was silenced by transfection of both the cell lines with esi-ST3Gal-4-RNA, which RT-PCR and western immunoblotting confirmed. Silencing of ST3Gal-4 resulted in a decreased expression of MAL-I interacting membrane-HSP60, identified earlier as an α2,3-sialylated glycoprotein, thus pointing towards the possible role of ST3Gal-4 in its sialylation. The proliferation, invasion, and migration of both types of NSCLC cells were reduced significantly in the ST3Gal-4 silenced cells. Our findings were substantiated by the down-regulation of β-catenin and E-cadherin, a reduced expression of activated AKT1, ERK1/2, and NF-ƙB in these cells. We propose that ST3Gal-4 may be the disease-associated sialyltransferase involved in α2,3 sialylation of the membrane proteins, including HSP60 of the NSCLC cells. This may lead to the conformational alteration of these proteins, required for the activation of E-cadherin/β-catenin, AKT, and ERK/NF-ƙB mediated signal transduction pathways in these cells, resulting in their proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Munmun Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Tanya Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, 160012, India
| | - Pratibha Maan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
18
|
Wielgat P, Narejko K, Car H. SARS-CoV-2 Attacks in the Brain: Focus on the Sialome. Cells 2022; 11:1458. [PMID: 35563764 PMCID: PMC9104523 DOI: 10.3390/cells11091458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
The epidemiological observations suggest that respiratory and gastrointestinal symptoms caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) are accompanied by short- and long-term neurological manifestations. There is increasing evidence that the neuroinvasive potential of SARS-CoV-2 is closely related to its capacity to interact with cell membrane sialome. Given the wide expression of sialylated compounds of cell membranes in the brain, the interplay between cell membrane sialoglycans and the virus is crucial for its attachment and cell entry, transport, neuronal damage and brain immunity. Here, we focus on the significance of the brain sialome in the progress of coronavirus disease 2019 (COVID-19) and SARS-CoV-2-induced neuropathology.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-265 Bialystok, Poland
| |
Collapse
|
19
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
20
|
Tanio M, Fukiage Y, Muramoto A, Yokoyama O, Kobayashi M. Proposal of sialyl Lewis x/a as prognostic biomarkers in clear cell renal cell carcinoma: A study on a cohort of 117 patients submitted to curative surgery. JOURNAL OF CLINICAL UROLOGY 2022. [DOI: 10.1177/20514158221082884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Metastatic recurrence has been reported to occur in 20–30% of patients with clear cell renal cell carcinoma (ccRCC). Although the prognosis of these patients is poor, no marker has been established to predict metastatic potential and/or prognosis. Therefore, we investigated membrane expression of sialyl Lewis x (sLex) and sialyl Lewis a (sLea), which is generally considered to be associated with cancer metastasis. Materials and methods: We enrolled 117 patients who underwent curative surgery for RCC and were pathologically diagnosed as ccRCC. Immunohistochemistry for sLex and sLea was performed to evaluate the signal intensity on the cell membrane. We statistically analysed whether membrane expression of sLex/sLea is correlated with clinicopathological parameters and prognosis. Results: Of the 117 patients, 72 were classified as sLex-positive and 44 as sLea-positive. The sLex-positive group had significantly shorter progression-free survival (PFS) and overall survival (OS) than the negative group. Similarly, the sLea-positive group had significantly shorter PFS than the negative group, and it showed a trend towards a reduction of OS, although it did not reach statistical significance, a fact that could be due to the small sample size. Conclusion: Both sLex and sLea could be possible future prognostic indicators in ccRCC. Level of evidence: Level 3
Collapse
Affiliation(s)
- Makoto Tanio
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Japan
- Department of Urology, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yusuke Fukiage
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Japan
- Department of Urology, Faculty of Medical Sciences, University of Fukui, Japan
| | - Akifumi Muramoto
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Japan
- Division of Surgical Pathology, University of Fukui Hospital, Japan
| | - Osamu Yokoyama
- Department of Urology, Faculty of Medical Sciences, University of Fukui, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
21
|
Leon F, Seshacharyulu P, Nimmakayala RK, Chugh S, Karmakar S, Nallasamy P, Vengoji R, Rachagani S, Cox JL, Mallya K, Batra SK, Ponnusamy MP. Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene 2022; 41:57-71. [PMID: 34675409 PMCID: PMC8727507 DOI: 10.1038/s41388-021-02047-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Aberrant protein glycosylation has been shown to have a significant contribution in aggressive cancer, including pancreatic cancer (PC). Emerging evidence has implicated the involvement of cancer stem cells (CSCs) in PC aggressiveness; however, the contribution of glycosylation on self-renewal properties and maintenance of CSC is understudied. Here, using several in vitro and in vivo models lacking C1GALT1 expression, we identified the role of aberrant O-glycosylation in stemness properties and aggressive PC metastasis. A loss in C1GALT1 was found to result in the truncation of O-glycosylation on several glycoproteins with an enrichment of Tn carbohydrate antigen. Mapping of Tn-bearing glycoproteins in C1GALT1 KO cells identified significant Tn enrichment on CSC glycoprotein CD44. Notably, a loss of C1GALT1 in PC cells was found to enhance CSC features (side population-SP, ALDH1+, and tumorspheres) and self-renewal markers NANOG, SOX9, and KLF4. Furthermore, a loss of CD44 in existing C1GALT1 KO cells decreased NANOG expression and CSC features. We determined that O-glycosylation of CD44 activates ERK/NF-kB signaling, which results in increased NANOG expression in PC cells that facilitated the alteration of CSC features, suggesting that NANOG is essential for PC stemness. Finally, we identified that loss of C1GALT1 expression was found to augment tumorigenic and metastatic potential, while an additional loss of CD44 in these cells reversed the effects. Overall, our results identified that truncation of O-glycans on CD44 increases NANOG activation that mediates increased CSC activation.
Collapse
Affiliation(s)
- Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Rama K Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
22
|
Hu Z, Bie L, Gao J, Wang X. Insights into Selectin Inhibitor Design from Endogenous Isomeric Ligands of SLe a and SLe x. J Chem Inf Model 2021; 61:6085-6093. [PMID: 34905361 DOI: 10.1021/acs.jcim.1c01356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selectins interact with cell-surface glycans to promote the initial tethering and rolling of leukocytes, and these interactions are targets for designs of inhibitors to neutralize diseases related to excessive inflammatory responses in many cardiovascular and immune dysfunctions, as well as tumor markers in different cancers. The isomeric endogenous tetrasaccharides, sialyl Lewis X (sLex) and sialyl Lewis A (sLea), are minimal sugar structures required for selectin binding. Understanding their subtle structural variances and significant advanced binding strengths of sLea over sLex could benefit the rational designs for selectin inhibitors. Modeling based on the E-selectin-sLex crystal structure in the present study demonstrated that the N-acetyl group of GlcNAc in sLex could form steric hindrances in the E-selectin-sLex complex, but the hydroxy methylene group of GlcNAc in sLea at the same position allows for stronger binding interactions. The subsequent designed inhibitor with a synthetic accessible linker molecule that has no exo-cyclic moieties replacing GlcNAc displayed comparable dynamic and energetic binding features to sLea. The present study deciphered the clues from endogenous isomeric sLea and sLex and provided insights into designing selectin inhibitors with simplified synthesis.
Collapse
Affiliation(s)
- Zhicheng Hu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lihua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
23
|
Houvast RD, Thijse K, Groen JV, Chua J, Vankemmelbeke M, Durrant LG, Mieog JSD, Bonsing BA, Vahrmeijer AL, Kuppen PJK, Crobach ASLP, Sier CFM. An Immunohistochemical Evaluation of Tumor-Associated Glycans and Mucins as Targets for Molecular Imaging of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13225777. [PMID: 34830932 PMCID: PMC8616289 DOI: 10.3390/cancers13225777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Distinguishing pancreatic cancer from healthy tissue before and during surgery can be enhanced by using molecular tracers directed at molecules on tumor cells allowing high-contrast visualization of tumor tissue, eventually improving diagnosis and surgical removal. Albeit sugar molecules and proteins carrying a large amount of sugars-mucins- have gained significant interest as tumor-specific targets, their relative presence on structures surrounding tumor tissues and lymph node metastases is unknown. The current study shows that the presence of several, but not all, investigated sugar molecules and mucins on pancreatic cancer cells is higher compared to surrounding tissues. Moreover, given their abundance on tumor cells in lymph nodes and their absence on normal lymph nodes, all investigated targets are high-potential targets for visualization of lymph node metastases. This study paves the way for the development of molecular tracers against the targets evaluated herein to allow improvement of pancreatic cancer treatment. Abstract Targeted molecular imaging may overcome current challenges in the preoperative and intraoperative delineation of pancreatic ductal adenocarcinoma (PDAC). Tumor-associated glycans Lea/c/x, sdi-Lea, sLea, sLex, sTn as well as mucin-1 (MUC1) and mucin-5AC (MU5AC) have gained significant interest as targets for PDAC imaging. To evaluate their PDAC molecular imaging potential, biomarker expression was determined using immunohistochemistry on PDAC, (surrounding) chronic pancreatitis (CP), healthy pancreatic, duodenum, positive (LN+) and negative lymph node (LN−) tissues, and quantified using a semi-automated digital image analysis workflow. Positive expression on PDAC tissues was found on 83% for Lea/c/x, 94% for sdi-Lea, 98% for sLea, 90% for sLex, 88% for sTn, 96% for MUC1 and 67% for MUC5AC, where all were not affected by the application of neoadjuvant therapy. Compared to PDAC, all biomarkers were significantly lower expressed on CP, healthy pancreatic and duodenal tissues, except for sTn and MUC1, which showed a strong expression on duodenum (sTn tumor:duodenum ratio: 0.6, p < 0.0001) and healthy pancreatic tissues (MUC1 tumor:pancreas ratio: 1.0, p > 0.9999), respectively. All biomarkers are suitable targets for correct identification of LN+, as well as the distinction of LN+ from LN− tissues. To conclude, this study paves the way for the development and evaluation of Lea/c/x-, sdi-Lea-, sLea-, sLex- and MUC5AC-specific tracers for molecular imaging of PDAC imaging and their subsequent introduction into the clinic.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - Kira Thijse
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - Jesse V. Groen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - JiaXin Chua
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (J.C.); (M.V.); (L.G.D.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (J.C.); (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (J.C.); (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
| | - A. Stijn L. P. Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (K.T.); (J.V.G.); (J.S.D.M.); (B.A.B.); (A.L.V.); (P.J.K.K.)
- Percuros BV, 2333 CL Leiden, The Netherlands
- Correspondence: ; Tel.: +31-07152662610
| |
Collapse
|
24
|
Cid E, Yamamoto M, Yamamoto F. Mixed-Up Sugars: Glycosyltransferase Cross-Reactivity in Cancerous Tissues and Their Therapeutic Targeting. Chembiochem 2021; 23:e202100460. [PMID: 34726327 DOI: 10.1002/cbic.202100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Indexed: 11/11/2022]
Abstract
The main categories of glycan changes in cancer are: (1) decreased expression of histo-blood group A and/or B antigens and increased Lewis-related antigens, (2) appearance of cryptic antigens, such as Tn and T, (3) emergence of genetically incompatible glycans, such as A antigen expressed in tumors of individuals of group B or O and heterophilic expression of Forssman antigen (FORS1), and (4) appearance of neoglycans. This review focuses on the expression of genetically incompatible A/B/FORS1 antigens in cancer. Several possible molecular mechanisms are exemplified, including missense mutations that alter the sugar specificity of A and B glycosyltransferases (AT and BT, respectively), restoration of the correct codon reading frame of O alleles, and modification of acceptor specificity of AT to synthesize the FORS1 antigen by missense mutations and/or altered splicing. Taking advantage of pre-existing natural immunity, the potential uses of these glycans for immunotherapeutic targeting will also be discussed.
Collapse
Affiliation(s)
- Emili Cid
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Miyako Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Fumiichiro Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| |
Collapse
|
25
|
The Cancer-Associated Antigens Sialyl Lewis a/x and Sd a: Two Opposite Faces of Terminal Glycosylation. Cancers (Basel) 2021; 13:cancers13215273. [PMID: 34771437 PMCID: PMC8582462 DOI: 10.3390/cancers13215273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The glycosyltransferase β1,4-N-acetylgalactosaminyltransferae 2 (B4GALNT2), product of the B4GALNT2 gene is responsible for the biosynthesis of the carbohydrate antigen Sda. Both the enzyme and its cognate antigen display a restricted pattern of tissue expression and modulation in colorectal, gastric, and mammary cancers. In colorectal cancer, B4GALNT2 is generally downregulated, but patients displaying higher expression survive longer. The sialyl Lewisa and sialyl Lewisx antigens are associated with malignancy. Their biosynthesis and that of Sda are mutually exclusive. Forced expression of B4GALNT2 in colorectal cancer cell lines modulates the transcriptome towards lower malignancy, reducing stemness. These effects are independent of B4GALNT2-induced sLea/sLex inhibition. Thus, B4GALNT2 is a marker of better prognosis and a cancer-restraining enzyme in colorectal cancer, with a therapeutic potential. Abstract Terminal carbohydrate structures are particularly relevant in oncology because they can serve as cancer markers and alter the phenotype of cancer cells. The Sda antigen and the sialyl Lewisx and sialyl Lewisa (sLex and sLea) antigens are terminal structures whose biosynthesis is mutually exclusive. In this review, we describe the main features of the Sda antigen in cancer and its relationship with sLex/a antigens. Information was obtained from an extensive literature search and from The Cancer Genome Atlas (TCGA) public database. The Sda biosynthetic enzyme B4GALNT2 undergoes downregulation in colorectal (CRC) and stomach cancer, while it is ectopically expressed by a minority of breast cancer (BRCA) patients. High expression of B4GALNT2 is associated with better prognosis and a less malignant gene expression profile in CRC, while the opposite occurs in BRCA. The regulation of B4GALNT2 expression in CRC is multifactorial, involving gene methylation and miRNA expression. Forced expression of B4GALNT2 inhibited sLea/sLex and reduced malignancy and stemness in cells constitutively expressing sLex/a antigens. However, consistent effects were observed upon B4GALNT2 forced expression and in cells not expressing sLex/a antigens. Thus, B4GALNT2 and the Sda antigen exert a tumor-restraining activity in CRC and probably other gastrointestinal cancers, independently of sLex/a antigens.
Collapse
|
26
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
FUT6 deficiency compromises basophil function by selectively abrogating their sialyl-Lewis x expression. Commun Biol 2021; 4:832. [PMID: 34215830 PMCID: PMC8253766 DOI: 10.1038/s42003-021-02295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Sialyl-Lewis x (sLex, CD15s) is a tetra-saccharide on the surface of leukocytes required for E-selectin-mediated rolling, a prerequisite for leukocytes to migrate out of the blood vessels. Here we show using flow cytometry that sLex expression on basophils and mast cell progenitors depends on fucosyltransferase 6 (FUT6). Using genetic association data analysis and qPCR, the cell type-specific defect was associated with single nucleotide polymorphisms (SNPs) in the FUT6 gene region (tagged by rs17855739 and rs778798), affecting coding sequence and/or expression level of the mRNA. Heterozygous individuals with one functional FUT6 gene harbor a mixed population of sLex+ and sLex- basophils, a phenomenon caused by random monoallelic expression (RME). Microfluidic assay demonstrated FUT6-deficient basophils rolling on E-selectin is severely impaired. FUT6 null alleles carriers exhibit elevated blood basophil counts and a reduced itch sensitivity against insect bites. FUT6-deficiency thus dampens the basophil-mediated allergic response in the periphery, evident also in lower IgE titers and reduced eosinophil counts. Puan and San Luis et al. find that FUT6, encoding a fucosyltransferase, is required for the “rolling” behavior of certain white blood cells that enables them to move from blood vessels to tissues. They show that FUT6 deficiency leads to a loss of the tetrasaccharide sLex on the surface of basophils, resulting in cells that are less sticky and therefore less able to form the necessary adhesions for exiting the blood vessel to drive the allergic reaction.
Collapse
|
28
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
30
|
Im BN, Shin H, Lim B, Lee J, Kim KS, Park JM, Na K. Helicobacter pylori-targeting multiligand photosensitizer for effective antibacterial endoscopic photodynamic therapy. Biomaterials 2021; 271:120745. [PMID: 33740616 DOI: 10.1016/j.biomaterials.2021.120745] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori (H. pylori) infection is closely associated with the development of gastric inflammatory diseases and cancer. However, the continued abuse and misuse of antibiotics has accelerated the spread of antibiotic-resistant strains, which poses a tremendous challenge for antibiotic-based H. pylori treatment. In this study, a H. pylori-targeting photodynamic therapy (PDT) system is proposed that multiple 3'-sialyllactose (3SL)-conjugated, poly-l-lysine-based photosensitizer (p3SLP). p3SLP facilitates H. pylori-targeting PDT via the specific interaction between 3SL and sialic acid-binding adhesin (SabA) in the H. pylori membrane. p3SLP can be orally administered to H. pylori infected mice and irradiated using an endoscopic laser system. The gastrointestinal pathological analysis of the H. pylori-infected mice demonstrated significant H. pylori specific antibacterial effects of PDT without side effects to normal tissue. In addition, an anti-inflammatory response was observed at the site of infection after p3SLP treatment. Consequently, this study demonstrates the superior efficacy of anti-H. pylori PDT with p3SLP in H. pylori-infected mice, and this approach shows great potential for replacing antibiotic-based therapy.
Collapse
Affiliation(s)
- Byeong Nam Im
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi Do, 14662, South Korea
| | - Heejun Shin
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi Do, 14662, South Korea
| | - Byoungjun Lim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi Do, 14662, South Korea
| | - Jonghwan Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi Do, 14662, South Korea
| | - Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jae Myeong Park
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi Do, 14662, South Korea; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi Do, 14662, South Korea.
| |
Collapse
|
31
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
32
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
33
|
Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer 2020; 124:76-90. [PMID: 33144696 PMCID: PMC7782833 DOI: 10.1038/s41416-020-01126-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Upregulation of sialyltransferases—the enzymes responsible for the addition of sialic acid to growing glycoconjugate chains—and the resultant hypersialylation of up to 40–60% of tumour cell surfaces are established hallmarks of several cancers, including lung, breast, ovarian, pancreatic and prostate cancer. Hypersialylation promotes tumour metastasis by several routes, including enhancing immune evasion and tumour cell survival, and stimulating tumour invasion and migration. The critical role of enzymes that regulate sialic acid in tumour cell growth and metastasis points towards targeting sialylation as a potential new anti-metastatic cancer treatment strategy. Herein, we explore insights into the mechanisms by which hypersialylation plays a role in promoting metastasis, and explore the current state of sialyltransferase inhibitor development.
Collapse
Affiliation(s)
- Christopher Dobie
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; and Molecular Horizons, University of Wollongong, NSW, 2522, Wollongong, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; and Molecular Horizons, University of Wollongong, NSW, 2522, Wollongong, Australia. .,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
34
|
Dissecting Total Plasma and Protein-Specific Glycosylation Profiles in Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:ijms21207635. [PMID: 33076454 PMCID: PMC7589176 DOI: 10.3390/ijms21207635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Protein N-glycosylation is a multifactorial process involved in many biological processes. A broad range of congenital disorders of glycosylation (CDGs) have been described that feature defects in protein N-glycan biosynthesis. Here, we present insights into the disrupted N-glycosylation of various CDG patients exhibiting defects in the transport of nucleotide sugars, Golgi glycosylation or Golgi trafficking. We studied enzymatically released N-glycans of total plasma proteins and affinity purified immunoglobulin G (IgG) from patients and healthy controls using mass spectrometry (MS). The applied method allowed the differentiation of sialic acid linkage isomers via their derivatization. Furthermore, protein-specific glycan profiles were quantified for transferrin and IgG Fc using electrospray ionization MS of intact proteins and glycopeptides, respectively. Next to the previously described glycomic effects, we report unprecedented sialic linkage-specific effects. Defects in proteins involved in Golgi trafficking (COG5-CDG) and CMP-sialic acid transport (SLC35A1-CDG) resulted in lower levels of sialylated structures on plasma proteins as compared to healthy controls. Findings for these specific CDGs include a more pronounced effect for α2,3-sialylation than for α2,6-sialylation. The diverse abnormalities in glycomic features described in this study reflect the broad range of biological mechanisms that influence protein glycosylation.
Collapse
|
35
|
Indellicato R, Domenighini R, Malagolini N, Cereda A, Mamoli D, Pezzani L, Iascone M, dall'Olio F, Trinchera M. A novel nonsense and inactivating variant of ST3GAL3 in two infant siblings suffering severe epilepsy and expressing circulating CA19.9. Glycobiology 2020; 30:95-104. [PMID: 31584066 DOI: 10.1093/glycob/cwz079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
Three missense variants of ST3GAL3 are known to be responsible for a congenital disorder of glycosylation determining a neurodevelopmental disorder (intellectual disability/epileptic encephalopathy). Here we report a novel nonsense variant, p.Y220*, in two dichorionic infant twins presenting a picture of epileptic encephalopathy with impaired neuromotor development. Upon expression in HEK-293T cells, the variant appears totally devoid of enzymatic activity in vitro, apparently accumulated with respect to the wild-type or the missense variants, as detected by western blot, and in large part properly localized in the Golgi apparatus, as assessed by confocal microscopy. Both patients were found to efficiently express the CA19.9 antigen in the serum despite the total loss of ST3GAL3 activity, which thus appears replaceable from other ST3GALs in the synthesis of the sialyl-Lewis a epitope. Kinetic studies of ST3GAL3 revealed a strong preference for lactotetraosylceramide as acceptor and gangliotetraosylceramide was also efficiently utilized in vitro. Moreover, the p.A13D missense variant, the one maintaining residual sialyltransferase activity, was found to have much lower affinity for all suitable substrates than the wild-type enzyme with an overall catalytic efficiency almost negligible. Altogether the present data suggest that the apparent redundancy of ST3GALs deduced from knock-out mouse models only partially exists in humans. In fact, our patients lacking ST3GAL3 activity synthesize the CA19.9 epitope sialyl-Lewis a, but not all glycans necessary for fine brain functions, where the role of minor gangliosides deserves further attention.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy
| | - Ruben Domenighini
- Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Daniela Mamoli
- Neuropsichiatria infantile, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Lidia Pezzani
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Fabio dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
36
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
37
|
Pucci M, Gomes Ferreira I, Malagolini N, Ferracin M, Dall’Olio F. The Sd a Synthase B4GALNT2 Reduces Malignancy and Stemness in Colon Cancer Cell Lines Independently of Sialyl Lewis X Inhibition. Int J Mol Sci 2020; 21:ijms21186558. [PMID: 32911675 PMCID: PMC7555213 DOI: 10.3390/ijms21186558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The Sda antigen and its biosynthetic enzyme B4GALNT2 are highly expressed in healthy colon but undergo a variable down-regulation in colon cancer. The biosynthesis of the malignancy-associated sialyl Lewis x (sLex) antigen in normal and cancerous colon is mediated by fucosyltransferase 6 (FUT6) and is mutually exclusive from that of Sda. It is thought that the reduced malignancy associated with high B4GALNT2 was due to sLex inhibition. Methods: We transfected the cell lines SW480 and SW620, derived respectively from a primary tumor and a metastasis of the same patient, with the cDNAs of FUT6 or B4GALNT2, generating cell variants expressing either the sLex or the Sda antigens. Transfectants were analyzed for growth in poor adherence, wound healing, stemness and gene expression profile. Results: B4GALNT2/Sda expression down-regulated all malignancy-associated phenotypes in SW620 but only those associated with stemness in SW480. FUT6/sLex enhanced some malignancy-associated phenotypes in SW620, but had little effect in SW480. The impact on the transcriptome was stronger for FUT6 than for B4GALNT2 and only partially overlapping between SW480 and SW620. Conclusions: B4GALNT2/Sda inhibits the stemness-associated malignant phenotype, independently of sLex inhibition. The impact of glycosyltransferases on the phenotype and the transcriptome is highly cell-line specific.
Collapse
|
38
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
39
|
Wielgat P, Rogowski K, Godlewska K, Car H. Coronaviruses: Is Sialic Acid a Gate to the Eye of Cytokine Storm? From the Entry to the Effects. Cells 2020; 9:E1963. [PMID: 32854433 PMCID: PMC7564400 DOI: 10.3390/cells9091963] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses (CoVs) are a diverse family of the enveloped human and animal viruses reported as causative agents for respiratory and intestinal infections. The high pathogenic potential of human CoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, is closely related to the invasion mechanisms underlying the attachment and entry of viral particles to the host cells. There is increasing evidence that sialylated compounds of cellular glycocalyx can serve as an important factor in the mechanism of CoVs infection. Additionally, the sialic acid-mediated cross-reactivity with the host immune lectins is known to exert the immune response of different intensity in selected pathological stages. Here, we focus on the last findings in the field of glycobiology in the context of the role of sialic acid in tissue tropism, viral entry kinetics and immune regulation in the CoVs infections.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| | - Katarzyna Godlewska
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15276 Bialystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| |
Collapse
|
40
|
Colomb F, Giron LB, Kuri-Cervantes L, Adeniji OS, Ma T, Dweep H, Battivelli E, Verdin E, Palmer CS, Tateno H, Kossenkov AV, Roan NR, Betts MR, Abdel-Mohsen M. Sialyl-Lewis X Glycoantigen Is Enriched on Cells with Persistent HIV Transcription during Therapy. Cell Rep 2020; 32:107991. [PMID: 32755584 PMCID: PMC7432956 DOI: 10.1016/j.celrep.2020.107991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Opeyemi S Adeniji
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Harsh Dweep
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Eric Verdin
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Clovis S Palmer
- The Burnet Institute, Melbourne, VIC 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Hiroaki Tateno
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020; 219:133536. [PMID: 31874115 PMCID: PMC7039198 DOI: 10.1083/jcb.201910070] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Buffone and Weaver discuss how the structure of the backbones and glycans of the tumor glycocalyx governs cell–matrix interactions and directs cancer progression. Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and the future challenges in leveraging these tools into a novel tractable approach to treat cancer.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.,Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA.,Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
42
|
Lu HH, Lin SY, Weng RR, Juan YH, Chen YW, Hou HH, Hung ZC, Oswita GA, Huang YJ, Guu SY, Khoo KH, Shih JY, Yu CJ, Tsai HC. Fucosyltransferase 4 shapes oncogenic glycoproteome to drive metastasis of lung adenocarcinoma. EBioMedicine 2020; 57:102846. [PMID: 32629386 PMCID: PMC7339020 DOI: 10.1016/j.ebiom.2020.102846] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant fucosylation plays a critical role in lung cancer progression. Nevertheless, the key fucosyltransferase with prognostic significance in lung cancer patients, the enzyme's intracellular targets, and complex molecular mechanisms underlying lung cancer metastasis remain incompletely understood. METHODS We performed a large-scale transcriptome-clinical correlation to identify major fucosyltransferases with significant prognostic values. Invasion, migration, cell adhesion assays were performed using lung cancer cells subject to genetic manipulation of FUT4 levels. Genome-wide RNA-seq and immunoprecipitation-mass spectrometry were used to characterize major cellular processes driven by FUT4, as well as profiling its intracellular protein targets. We also performed lung homing and metastasis assays in mouse xenograft models to determine in vivo phenotypes of high FUT4-expressing cancer cells. FINDINGS We show that FUT4 is associated with poor overall survival in lung adenocarcinoma patients. High FUT4 expression promotes lung cancer invasion, migration, epithelial-to-mesenchymal transition, and cell adhesion. FUT4-mediated aberrant fucosylation markedly activates multiple cellular processes, including membrane trafficking, cell cycle, and major oncogenic signaling pathways. The effects are independent of receptor tyrosine kinase mutations. Notably, genetic depletion of FUT4 or targeting FUT4-driven pathways diminishes lung colonization and distant metastases of lung cancer cells in mouse xenograft models. INTERPRETATION We propose that FUT4 can be a prognostic predictor and therapeutic target in lung cancer metastasis. Our data provide a scientific basis for a potential therapeutic strategy using targeted therapy in a subset of patients with high FUT4-expressing tumors with no targetable mutations.
Collapse
Affiliation(s)
- Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan
| | - Shu-Yung Lin
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Rueyhung Roc Weng
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan
| | - Yen-Wei Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen Ai Rd, Section 1, Zhongzheng District, Taipei 10051, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine National Taiwan University, Taipei 10051, Taiwan
| | - Zheng-Ci Hung
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan
| | - Giovanni Audrey Oswita
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen Ai Rd, Section 1, Zhongzheng District, Taipei 10051, Taiwan
| | - Yi-Jhen Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen Ai Rd, Section 1, Zhongzheng District, Taipei 10051, Taiwan
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei 10002, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen Ai Rd, Section 1, Zhongzheng District, Taipei 10051, Taiwan.
| |
Collapse
|
43
|
Jian Y, Xu Z, Xu C, Zhang L, Sun X, Yang D, Wang S. The Roles of Glycans in Bladder Cancer. Front Oncol 2020; 10:957. [PMID: 32596162 PMCID: PMC7303958 DOI: 10.3389/fonc.2020.00957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors of the urogenital system with high morbidity and mortality worldwide. Early diagnosis and personalized treatment are the keys to successful bladder cancer treatment. Due to high postoperative recurrence rates and poor prognosis, it is urgent to find suitable therapeutic targets and biomarkers. Glycans are one of the four biological macromolecules in the cells of an organism, along with proteins, nucleic acids, and lipids. Glycans play important roles in nascent peptide chain folding, protein processing, and translation, cell-to-cell adhesion, receptor-ligand recognition, and binding and cell signaling. Glycans are mainly divided into N-glycans, O-glycans, proteoglycans, and glycosphingolipids. The focus of this review is the discussion of glycans related to bladder cancer. Additionally, this review also addresses the clinical value of glycans in the diagnosis and treatment of bladder cancer. Abnormal glycans are likely to be potential biomarkers for bladder cancer.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Chen C, Wang S, Gadi MR, Zhu H, Liu F, Liu CC, Li L, Wang F, Ling P, Cao H. Enzymatic modular synthesis and microarray assay of poly-N-acetyllactosamine derivatives. Chem Commun (Camb) 2020; 56:7549-7552. [PMID: 32579622 DOI: 10.1039/d0cc03268a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A facile enzymatic modular assembly strategy for the preparative-scale synthesis of poly-N-acetyllactosamine (poly-LacNAc) glycans with varied lengths and designed sialylation and/or fucosylation patterns is described. These glycans were printed as a microarray to investigate their interactions with a panel of glycan binding proteins (GBPs). Binding affinities revealed that the avidity of GBPs could be largely affected by the length and the patterns of sialylation and fucosylation.
Collapse
Affiliation(s)
- Congcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|
46
|
Moayedi S, Yadegar A, Balalaie S, Yarmohammadi M, Zali MR, Suzuki H, Fricker G, Haririan I. Sugar Codes Conjugated Alginate: An Innovative Platform to Make a Strategic Breakthrough in Simultaneous Prophylaxis of GERD and Helicobacter pylori Infection. Drug Des Devel Ther 2020; 14:2405-2412. [PMID: 32606607 PMCID: PMC7306573 DOI: 10.2147/dddt.s255611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Currently, gastroesophageal reflux disease (GERD) is one of the most ubiquitous problems in clinical practice. An antacid-alginate combination (under the trade name Gaviscon) is a natural-based product that effectively suppresses GERD. This product acts via the formation of viscous gel that floats on the top of the gastric content. On the other hand, efficient management of Helicobacter pylori infection with minimal side effects is an important goal for gastroenterologists. Furthermore, some H. pylori-positive patients suffer from GERD. METHODS Here, we present the results of investigations on alginate conjugated to sugar codes in order to find initial clues regarding the potential ability of this conjugate in the simultaneous prophylaxis of GERD and H. pylori infection in an in vitro assay. RESULTS It is noteworthy that our results reveal that sugar codes conjugated alginate considerably decrease (approximately 74%) the adhesion of H. pylori to gastric epithelial cells in vitro. Moreover, surprisingly after conjugation of sugar codes, alginate can maintain its ability to create gel. Our results demonstrate that alginate conjugated to sugar codes is not cytotoxic. CONCLUSION The preparation of these conjugates can be regarded as the first step to establish a new roadmap for the simultaneous prevention of GERD and H. pylori infection in future studies on in vivo models.
Collapse
Affiliation(s)
- Saeed Moayedi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Mahdiyeh Yarmohammadi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa259-1193, Japan
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Complementary Use of Carbohydrate Antigens Lewis a, Lewis b, and Sialyl-Lewis a (CA19.9 Epitope) in Gastrointestinal Cancers: Biological Rationale Towards A Personalized Clinical Application. Cancers (Basel) 2020; 12:cancers12061509. [PMID: 32527016 PMCID: PMC7352550 DOI: 10.3390/cancers12061509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.
Collapse
|
48
|
Intensive therapy with gastropodan hemocyanins increases their antitumor properties in murine model of colon carcinoma. Int Immunopharmacol 2020; 84:106566. [PMID: 32416451 DOI: 10.1016/j.intimp.2020.106566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
Various natural compounds have been tested as anticancer therapeutics in clinical trials. Most promising direction for antitumor therapy is the use of substances which enhance the immune system response stimulating tumor-specific lymphocytes. Hemocyanins are large extracellular oxygen transport glycoproteins isolated from different arthropod and mollusk species which exhibit strong anticancer properties. Immunized in mammals they trigger Th1 immune response that promotes unspecific stimulation and adjuvant activity in experimental therapeutic vaccines for cancer and antibody development. In the present study we used two hemocyanins - one isolated from marine snail Rapana thomasiana (RtH) and another one, from the terrestrial snail Helix pomatia (HpH) which have been investigated by using different administration schedules (intensive and mild) in murine model of colon carcinoma. The treatment with RtH and HpH generated high levels of antitumor IgG antibodies, antibody-producing plasma cells and tumor-specific CTLs, stimulated secretion of proinflammatory cytokines, suppressed the manifestation of carcinoma symptoms as tumor growth and size, and prolonged the life span of treated mice. Our results showed a significant anti-cancer effect of RtH and HpH hemocyanins on a murine model of colon carcinoma with promising potential for immunotherapy in various schemes of administration based on cross-reactive tumor-associated epitopes.
Collapse
|
49
|
Awad S, Alkashash AM, Amin M, Baker SJ, Rose JB. Biochemical Predictors of Response to Neoadjuvant Therapy in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:620. [PMID: 32477933 PMCID: PMC7235358 DOI: 10.3389/fonc.2020.00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is becoming increasingly more common. Treatment for PDAC is dependent not only on stage at diagnosis, but complex anatomical relationships. Recently, the therapeutic approach to this disease has shifted from upfront surgery for technically resectable lesions to a neoadjuvant therapy first approach. Selecting an appropriate regimen and determining treatment response is crucial for optimal oncologic outcome, especially since radiographic imaging has proven unreliable in this setting. Tumor biomarkers have the potential to play a key role in treatment planning, treatment monitoring, and surveillance as an adjunct laboratory test. In this review, we will discuss common chemotherapeutic options, mechanisms of resistance, and potential biomarkers for PDAC. The aim of this paper is to present currently available biomarkers for PDAC and to discuss how these markers may be affected by neoadjuvant chemotherapy treatment. Understanding current chemotherapy regiments and mechanism of resistance can help us understand which markers may be most affected and why; therefore, determining to what ability we can use them as a marker for treatment progression, prognosis, or potential relapse.
Collapse
Affiliation(s)
- Seifeldin Awad
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Ahmad M Alkashash
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Magi Amin
- Department of Gastroenterology, Cairo Fatimid Hospital, Cairo, Egypt
| | - Samantha J Baker
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - J Bart Rose
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| |
Collapse
|
50
|
Pucci M, Gomes Ferreira I, Orlandani M, Malagolini N, Ferracin M, Dall’Olio F. High Expression of the Sd a Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer. Cells 2020; 9:cells9040948. [PMID: 32290493 PMCID: PMC7226961 DOI: 10.3390/cells9040948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The carbohydrate antigen Sda and its biosynthetic enzyme B4GALNT2 are highly expressed in normal colonic mucosa but are down-regulated to a variable degree in colon cancer tissues. Here, we investigated the clinical and biological importance of B4GALNT2 in colon cancer. METHODS Correlations of B4GALNT2 mRNA with clinical data were obtained from The Cancer Genome Atlas (TCGA) database; the phenotypic and transcriptomic changes induced by B4GALNT2 were studied in LS174T cells transfected with B4GALNT2 cDNA. RESULTS TCGA data indicate that patients with high B4GALNT2 expression in cancer tissues display longer survival than non-expressers. In LS174T cells, expression of B4GALNT2 did not affect the ability to heal a scratch wound or to form colonies in standard growth conditions but markedly reduced the growth in soft agar, the tridimensional (3D) growth as spheroids, and the number of cancer stem cells, indicating a specific effect of B4GALNT2 on the growth in poor adherence and stemness. On the transcriptome, B4GALNT2 induced the down-regulation of the stemness-associated gene SOX2 and modulated gene expression towards an attenuation of the cancer phenotype. CONCLUSIONS The level of B4GALNT2 can be proposed as a marker to identify higher- and lower-risk colorectal cancer patients.
Collapse
|