1
|
Li L, Chen Y, Zhang M, Li S, Feng S, He YQ, Zhang N, Liu Z, Liu M, Wang Q. A hydroxychloroquine platinum(IV) conjugate displaying potent antimetastatic activities by suppressing autophagy to improve the tumor microenvironment. Dalton Trans 2024; 53:13890-13905. [PMID: 39092626 DOI: 10.1039/d4dt01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Protective autophagy is a promising target for antitumor drug exploration. A hydroxychloroquine (HCQ) platinum(IV) complex with autophagy suppressing potency was developed, which displayed potent antitumor activities with a TGI rate of 44.2% against 4T1 tumors in vivo and exhibited a rather lower toxicity than cisplatin. Notably, it exhibited satisfactory antimetastatic activities toward lung pulmonary metastasis models with an inhibition rate of 49.6% and was obviously more potent than CDDP, which has an inhibition rate of 21.6%. Mechanism detection revealed that it caused serious DNA damage and upregulated the expression of γ-H2AX and p53. More importantly, the incorporation of an autophagy inhibitor HCQ endowed the platinum(IV) complex with potent autophagy impairing properties by perturbing the lysosomal function in tumor cells, which promoted apoptosis synergistically with DNA injury. Then, the impaired autophagy further led to the suppression of hypoxia and inflammation in the tumor microenvironment by downregulating ERK1/2, HIF-1α, iNOS, caspase1 and COX-2. Adaptive immune response was improved by inhibiting the immune checkpoint PD-L1 and further increasing CD4+ and CD8+ T cells in tumors. Then, tumor metastasis was effectively inhibited by restraining angiogenesis through inhibiting VEGFA, MMP-9, and CD34.
Collapse
Affiliation(s)
- Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yan-Qin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
2
|
Xin Q, Wang D, Wang S, Zhang L, Liang Q, Yan X, Fan K, Jiang B. Tackling Esophageal Squamous Cell Carcinoma with ITFn-Pt(IV): A Novel Fusion of PD-L1 Blockade, Chemotherapy, and T-cell Activation. Adv Healthc Mater 2024; 13:e2303623. [PMID: 38142309 DOI: 10.1002/adhm.202303623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Indexed: 12/25/2023]
Abstract
PD-1/PD-L1 blockade immunotherapy has gained approval for the treatment of a diverse range of tumors; however, its efficacy is constrained by the insufficient infiltration of T lymphocytes into the tumor microenvironment, resulting in suboptimal patient responses. Here, a pioneering immunotherapy ferritin nanodrug delivery system denoted as ITFn-Pt(IV) is introduced. This system orchestrates a synergistic fusion of PD-L1 blockade, chemotherapy, and T-cell activation, aiming to augment the efficacy of tumor immunotherapy. Leveraging genetic engineering approach and temperature-regulated channel-based drug loading techniques, the architecture of this intelligent responsive system is refined. It is adept at facilitating the precise release of T-cell activating peptide Tα1 in the tumor milieu, leading to an elevation in T-cell proliferation and activation. The integration of PD-L1 nanobody KN035 ensures targeted engagement with tumor cells and mediates the intracellular delivery of the encapsulated Pt(IV) drugs, culminating in immunogenic cell death and the subsequent dendritic cell maturation. Employing esophageal squamous cell carcinoma (ESCC) as tumor model, the potent antitumor efficacy of ITFn-Pt(IV) is elucidated, underscored by augmented T-cell infiltration devoid of systemic adverse effects. These findings accentuate the potential of ITFn-Pt(IV) for ESCC treatment and its applicability to other malignancies resistant to established PD-1/PD-L1 blockade therapies.
Collapse
Affiliation(s)
- Qi Xin
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Daji Wang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shenghui Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan, 450001, China
| | - Qian Liang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| |
Collapse
|
3
|
Galsky MD, Guan X, Rishipathak D, Rapaport AS, Shehata HM, Banchereau R, Yuen K, Varfolomeev E, Hu R, Han CJ, Li H, Liang Y, Vucic D, Wang L, Zhu J, Yu H, Herbst RH, Hajaj E, Kiner E, Bamias A, De Santis M, Davis ID, Arranz JÁ, Kikuchi E, Bernhard S, Williams P, Lee C, Mellman I, Sanjabi S, Johnston R, Black PC, Grande E, Mariathasan S. Immunomodulatory effects and improved outcomes with cisplatin- versus carboplatin-based chemotherapy plus atezolizumab in urothelial cancer. Cell Rep Med 2024; 5:101393. [PMID: 38280376 PMCID: PMC10897541 DOI: 10.1016/j.xcrm.2024.101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/09/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
In metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations. Our findings indicate that improved outcomes with GemCis versus GemCarbo are primarily observed in patients with pretreatment tumors exhibiting features of restrained adaptive immunity. In addition, GemCis versus GemCarbo ± atezolizumab induces transcriptional changes in circulating immune cells, including upregulation of antigen presentation and T cell activation programs. In vitro experiments demonstrate that cisplatin, compared with carboplatin, exerts direct immunomodulatory effects on cancer cells, promoting dendritic cell activation and antigen-specific T cell killing. These results underscore the key role of immune modulation in cisplatin's efficacy in mUC and highlight the importance of specific chemotherapy backbones in immunotherapy combination regimens.
Collapse
Affiliation(s)
- Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | | | | | | | | | - Kobe Yuen
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Ruozhen Hu
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Haocheng Li
- Hoffmann-La Roche Ltd, Mississauga, ON, Canada
| | - Yuxin Liang
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Li Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; GeneDx, Stamford, CT, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; GeneDx, Stamford, CT, USA
| | | | | | | | | | | | - Maria De Santis
- Department of Urology, Charité - Universitätsmedizin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Ian D Davis
- Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Eiji Kikuchi
- St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | - Chooi Lee
- Roche Products Ltd, Welwyn Garden City, UK
| | - Ira Mellman
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | - Peter C Black
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
4
|
Neuperger P, Szalontai K, Gémes N, Balog JÁ, Tiszlavicz L, Furák J, Lázár G, Puskás LG, Szebeni GJ. Single-cell mass cytometric analysis of peripheral immunity and multiplex plasma marker profiling of non-small cell lung cancer patients receiving PD-1 targeting immune checkpoint inhibitors in comparison with platinum-based chemotherapy. Front Immunol 2023; 14:1243233. [PMID: 37901220 PMCID: PMC10611454 DOI: 10.3389/fimmu.2023.1243233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The effect of platinum-based chemotherapy (Chem.) and second- or multiple- line immune checkpoint PD-1 blocking therapy by Nivolumab or Pembrolizumab (ICI) was assayed in the peripheral blood of non-small cell lung cancer (NSCLC) patients. Methods Flow cytometry was used to detect NSCLC-related antigen binding IgG antibodies. The Luminex MagPix multiplex bead-based cytokine/chemokine detecting system was used to quantitatively measure 17 soluble markers in the plasma samples. Single-cell mass cytometry was applied for the immunophenotyping of peripheral leukocytes. Results The incubation of patient derived plasma with human NSCLC tumor cell lines, such as A549, H1975, and H1650, detected NSCLC-specific antibodies reaching a maximum of up to 32% reactive IgG-positive NSCLC cells. The following markers were detected in significantly higher concentration in the plasma of Chem. group versus healthy non-smoker and smoker controls: BTLA, CD27, CD28, CD40, CD80, CD86, GITRL, ICOS, LAG-3, PD-1, PD-L1, and TLR-2. The following markers were detected in significantly higher concentration in the plasma of ICI group versus healthy non-smoker and smoker controls: CD27, CD28, CD40, GITRL, LAG-3, PD-1, PD-L1, and TLR-2. We showed the induction of CD69 and IL-2R on CD4+ CD25+ T-cells upon chemotherapy; the exhaustion of one CD8+ T-cell population was detected by the loss of CD127 and a decrease in CD27. CD19+CD20+, CD79B+, or activated B-cell subtypes showed CD69 increase and downregulation of BTLA, CD27, and IL-2R in NSCLC patients following chemotherapy or ICI. Discussion Peripheral immunophenotype caused by chemotherapy or PD-1 blocking was shown in the context of advanced NSCLC.
Collapse
Affiliation(s)
- Patrícia Neuperger
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | | | - Nikolett Gémes
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - József Furák
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - György Lázár
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- Avicor Ltd., Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- CS-Smartlab Devices Ltd., Kozármisleny, Hungary
| |
Collapse
|
5
|
Wang RN, Yu Q, Wang XB, Zhu D, Li GL, Li ZX, Jiang W, Li W, Dang YJ. Bis(benzonitrile) dichloroplatinum (II) interrupts PD-1/PD-L1 interaction by binding to PD-1. Acta Pharmacol Sin 2023; 44:2103-2112. [PMID: 37193754 PMCID: PMC10545660 DOI: 10.1038/s41401-023-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 μM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 μM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 μM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Rui-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Bo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guo-Long Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Zeng-Xia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yong-Jun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Redman JM, O’Sullivan Coyne G, Reed CT, Madan RA, Strauss J, Steinberg SJ, Marté J, Cordes L, Heery C, Gulley JL. Avelumab in Patients With Metastatic Colorectal Cancer. Oncologist 2023; 28:823-e804. [PMID: 37310790 PMCID: PMC10485289 DOI: 10.1093/oncolo/oyad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) is incurable, and median overall survival is less than 2½ years. Although monoclonal antibodies that block PD-1/PD-L1 interactions are active in microsatellite unstable/mismatch repair deficient tumors, a growing dataset shows that most patients with microsatellite stable/mismatch repair proficient tumors will not benefit from the blockade of PD-1/PD-L1 interactions. Here we present results from patients with mCRC (n = 22) treated with the anti-PD-L1 monoclonal antibody avelumab. METHODS Patients received treatment on a phase I, open-label, dose-escalation trial via a consecutive parallel-group expansion in colorectal cancer. Patients aged 18 years and older with mCRC measurable by RECIST v1.1 who had received at least 1 line of systemic therapy for metastatic disease enrolled. Patients with prior immune checkpoint inhibitor treatment were excluded. Patients received avelumab 10 mg/kg intravenously every 2 weeks. The primary endpoint was the objective response rate. RESULTS Twenty-two participants received treatment from July 2013 to August 2014. There were no objective responses and median progression-free survival was 2.1 months (95% CI: 1.4-5.5 months). There were 5 grade 3 treatment-related adverse events: GGT elevation (n = 2), PRESS (n = 1), lymphopenia (n = 1), and asymptomatic amylase/lipase elevation (n = 1). CONCLUSION As demonstrated with other anti-PD-1/PD-L1 monoclonal antibodies, avelumab is not active in unselected patients with mCRC (ClinicalTrials.gov Identifier: NCT01772004).
Collapse
Affiliation(s)
- Jason M Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Geraldine O’Sullivan Coyne
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Clay T Reed
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Seth J Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer Marté
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lisa Cordes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Heery
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wu C, Spector SA, Theodoropoulos G, Nguyen DJM, Kim EY, Garcia A, Savaraj N, Lim DC, Paul A, Feun LG, Bickerdike M, Wangpaichitr M. Dual inhibition of IDO1/TDO2 enhances anti-tumor immunity in platinum-resistant non-small cell lung cancer. Cancer Metab 2023; 11:7. [PMID: 37226257 DOI: 10.1186/s40170-023-00307-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The impact of non-small cell lung cancer (NSCLC) metabolism on the immune microenvironment is not well understood within platinum resistance. We have identified crucial metabolic differences between cisplatin-resistant (CR) and cisplatin-sensitive (CS) NSCLC cells with elevated indoleamine 2,3-dioxygenase-1 (IDO1) activity in CR, recognized by increased kynurenine (KYN) production. METHODS Co-culture, syngeneic, and humanize mice models were utilized. C57BL/6 mice were inoculated with either Lewis lung carcinoma mouse cells (LLC) or their platinum-resistant counterpart (LLC-CR) cells. Humanized mice were inoculated with either A (human CS cells) or ALC (human CR cells). Mice were treated with either IDO1 inhibitor or TDO2 (tryptophan 2,3-dioxygenase-2) inhibitor at 200 mg/kg P.O. once a day for 15 days; or with a new-in-class, IDO1/TDO2 dual inhibitor AT-0174 at 170 mg/kg P.O. once a day for 15 days with and without anti-PD1 antibody (10 mg/kg, every 3 days). Immune profiles and KYN and tryptophan (TRP) production were evaluated. RESULTS CR tumors exhibited a more highly immunosuppressive environment that debilitated robust anti-tumor immune responses. IDO1-mediated KYN production from CR cells suppressed NKG2D on immune effector natural killer (NK) and CD8+ T cells and enhanced immunosuppressive populations of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Importantly, while selective IDO1 inhibition attenuated CR tumor growth, it concomitantly upregulated the TDO2 enzyme. To overcome the compensatory induction of TDO2 activity, we employed the IDO1/TDO2 dual inhibitor, AT-0174. Dual inhibition of IDO1/TDO2 in CR mice suppressed tumor growth to a greater degree than IDO1 inhibition alone. Significant enhancement in NKG2D frequency on NK and CD8+ T cells and a reduction in Tregs and MDSCs were observed following AT-1074 treatment. PD-L1 (programmed death-ligand-1) expression was increased in CR cells; therefore, we assessed dual inhibition + PD1 (programmed cell death protein-1) blocking and report profound anti-tumor growth and improved immunity in CR tumors which in turn extended overall survival in mice. CONCLUSION Our study reports the presence of platinum-resistant lung tumors that utilize both IDO1/TDO2 enzymes for survival, and to escape immune surveillance as a consequence of KYN metabolites. We also report early in vivo data in support of the potential therapeutic efficacy of the dual IDO1/TDO2 inhibitor AT-0174 as a part of immuno-therapeutic treatment that disrupts tumor metabolism and enhances anti-tumor immunity.
Collapse
Affiliation(s)
- Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Sydney A Spector
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | | | - Dan J M Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Emily Y Kim
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Ashley Garcia
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Niramol Savaraj
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Diane C Lim
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Ankita Paul
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Lynn G Feun
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | | | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA.
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Alfonso-Triguero P, Lorenzo J, Candiota AP, Arús C, Ruiz-Molina D, Novio F. Platinum-Based Nanoformulations for Glioblastoma Treatment: The Resurgence of Platinum Drugs? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1619. [PMID: 37242036 PMCID: PMC10223043 DOI: 10.3390/nano13101619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Current therapies for treating Glioblastoma (GB), and brain tumours in general, are inefficient and represent numerous challenges. In addition to surgical resection, chemotherapy and radiotherapy are presently used as standards of care. However, treated patients still face a dismal prognosis with a median survival below 15-18 months. Temozolomide (TMZ) is the main chemotherapeutic agent administered; however, intrinsic or acquired resistance to TMZ contributes to the limited efficacy of this drug. To circumvent the current drawbacks in GB treatment, a large number of classical and non-classical platinum complexes have been prepared and tested for anticancer activity, especially platinum (IV)-based prodrugs. Platinum complexes, used as alkylating agents in the anticancer chemotherapy of some malignancies, are though often associated with severe systemic toxicity (i.e., neurotoxicity), especially after long-term treatments. The objective of the current developments is to produce novel nanoformulations with improved lipophilicity and passive diffusion, promoting intracellular accumulation, while reducing toxicity and optimizing the concomitant treatment of chemo-/radiotherapy. Moreover, the blood-brain barrier (BBB) prevents the access of the drugs to the brain and accumulation in tumour cells, so it represents a key challenge for GB management. The development of novel nanomedicines with the ability to (i) encapsulate Pt-based drugs and pro-drugs, (ii) cross the BBB, and (iii) specifically target cancer cells represents a promising approach to increase the therapeutic effect of the anticancer drugs and reduce undesired side effects. In this review, a critical discussion is presented concerning different families of nanoparticles able to encapsulate platinum anticancer drugs and their application for GB treatment, emphasizing their potential for increasing the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
Bazsefidpar P, Eftekhar E, Jahromi MZ, Nikpoor AR, Moghadam ME, Zolghadri S. In-vitro cytotoxicity and in-vivo antitumor activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand against breast cancer. J Inorg Biochem 2023; 241:112144. [PMID: 36706492 DOI: 10.1016/j.jinorgbio.2023.112144] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Platinum (Pt) derivatives are good candidates for discovering new anti-tumor agents. The present research aims to explore the in-vivo and in-vitro anticancer activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand (DMPG), [Pt(bpy)(13DMPG)]NO3 and [Pt(dach)(13DMPG)]NO3, against breast cancer cells. The present study was conducted to investigate the cytotoxic potential of these compounds (2-400 μM) compared to standard drugs (cisplatin, oxaliplatin, and carboplatin) on SKBR3 cells using the methyl thiazol-tetrazolium (MTT) assay. Furthermore, the gene expression changes of Bak, Bim, Bcl-2, Caspase-3, and Caspase-9 were carried out by real-time polymerase chain reaction (PCR), and flow cytometric analysis was performed to confirm the cell apoptosis in the presence of the compounds. For more validation, in-vivo anticancer activities of both compounds were investigated against breast transplanted tumors in the BALB/c mice model. The cytotoxic studies by MTT assay revealed the anti-proliferative potential of both derivatives. [Pt(dach)(13DMPG)]NO3 with an IC50 value of 15 μM, exhibited higher cytotoxicity against SKBR3 cells as compared to [Pt(bpy)(13DMPG)]NO3, oxaliplatin, and carboplatin. Based on the flow cytometry analysis, both derivatives demonstrated apoptotic effects. Also, real-time PCR analysis revealed an up-regulation of Bak, Bim, Bax, Caspases-3, and Caspase-9 genes and a significant reduction in Bcl-2 gene expression in treated cells with both compounds compared to the control group. In-vivo results validated in-vitro analysis and showed the anticancer activity of compounds against breast transplanted tumors in the BALB/c mice model. According to the results, [Pt(dach)(13DMPG)]NO3 displayed a significant anticancer activity.
Collapse
Affiliation(s)
- Parisa Bazsefidpar
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| |
Collapse
|
11
|
Liu J, Cao Y, Hu B, Li T, Zhang W, Zhang Z, Gao J, Niu H, Ding T, Wu J, Chen Y, Zhang P, Ma R, Su S, Wang C, Wang PG, Ma J, Xie S. Older but Stronger: Development of Platinum-Based Antitumor Agents and Research Advances in Tumor Immunity. INORGANICS 2023. [DOI: 10.3390/inorganics11040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Platinum (Pt) drugs have developed rapidly in clinical applications because of their broad and highly effective antitumor effects. In recent years, with the rapid development of immunotherapy, Pt-based antitumor agents have gained new challenges and opportunities. Since the discovery of their pharmacological effects in immunotherapy and tumor microenvironment regulation, research into Pt drugs has progressed to multi-ligand and multi-functional Pt precursors and their own shortcomings have been further highlighted. With the development of antitumor immunotherapy and the rise of combination therapy, the development of Pt-based drugs has started to move in the direction of multi-targeting, nanocarrier modification, immunotherapy and photodynamic therapy. In this paper, we first overview the recent applications of Pt-based drugs in antitumor inorganic chemistry, with a focus on summarizing the application of Pt-based drugs and their precursors in the anticancer immune response. The paper also provides a reasonable outlook on the future development of Pt-based drugs from the chemical and immunological perspectives, relying on the existing content and problems of Pt-based drug development. On the basis of the gathered information, joint multidisciplinary programs on implementing comprehensive immune analyses for the future development of novel anticancer metal compounds should be initiated.
Collapse
|
12
|
Miyake M, Shimizu T, Oda Y, Tachibana A, Ohmori C, Itami Y, Kiba K, Tomioka A, Yamamoto H, Ohnishi K, Nishimura N, Hori S, Morizawa Y, Gotoh D, Nakai Y, Torimoto K, Fujii T, Tanaka N, Fujimoto K. Switch-maintenance avelumab immunotherapy following first-line chemotherapy for patients with advanced, unresectable or metastatic urothelial carcinoma: the first Japanese real-world evidence from a multicenter study. Jpn J Clin Oncol 2023; 53:253-262. [PMID: 36484294 DOI: 10.1093/jjco/hyac186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To develop the first Japanese real-world evidence of switch-maintenance avelumab in advanced, unresectable or metastatic urothelial carcinoma (aUC). METHODS A multicenter-derived database registered 505 patients diagnosed with aUC between 2008 and 2021. Of these, 204 patients (40%) were selected and stratified according to the type of therapy used: maintenance avelumab group (27 [5.3%]), second-line (2 L) pembrolizumab group (103 [20%]) and 2 L cytotoxic chemotherapy group (74 [15%]). The progression-free survival and overall survival from the initiation of following therapy were compared. Tumor response was evaluated based on the Response Evaluation Criteria in Solid Tumors guideline v1.1 during the treatment period. A detailed analysis was performed in the maintenance avelumab group to investigate possible factors associated with response to avelumab therapy. RESULTS The maintenance avelumab group had a longer overall survival, not progression-free survival, compared with the other two treatment groups. The median treatment-free interval between the last dose of first-line (1 L) chemotherapy and the initiation of avelumab therapy was 6 weeks (range, 3-22). Disease control rate of maintenance avelumab therapy in patients with a treatment-free interval of ≤6 weeks was higher than that in patients with a treatment-free interval of >6 weeks (77 vs 40%, P = 0.029). The patients showing objective response to 1 L chemotherapy were less likely to experience tumor relapse (4 of 19) after the initiation of avelumab therapy compared with those showing stable disease (7 of 8). CONCLUSIONS Objective response to 1 L chemotherapy and early induction of maintenance avelumab therapy may be associated with increased benefit from maintenance avelumab therapy.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Nara, Japan
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, Nara, Japan
| | - Yuki Oda
- Department of Urology, Yamatotakada Municipal Hospital, Nara, Japan
| | | | - Chihiro Ohmori
- Department of Urology, Nara Prefecture General Medical Center, Nara, Japan
| | - Yoshitaka Itami
- Department of Urology, Nara Prefecture General Medical Center, Nara, Japan
| | - Keisuke Kiba
- Department of Urology, Kindai University Nara Hospital, Nara, Japan
| | - Atsushi Tomioka
- Department of Urology, Saiseikai Chuwa Hospital, Nara, Japan
| | - Hiroaki Yamamoto
- Department of Urology, Minami Nara, General Medical Center, Nara, Japan
| | - Kenta Ohnishi
- Department of Urology, Hoshigaoka Medical Center, Osaka, Japan
| | | | - Shunta Hori
- Department of Prostate Brachytherapy, Nara Medical University, Nara, Japan
| | | | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Nara, Japan
| | | | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| | - Nobumichi Tanaka
- Department of Prostate Brachytherapy, Nara Medical University, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Prostate Brachytherapy, Nara Medical University, Nara, Japan
| |
Collapse
|
13
|
Steenbrugge J, Bellemans J, Vander Elst N, Demeyere K, De Vliegher J, Perera T, De Wever O, Van Den Broeck W, De Spiegelaere W, Sanders NN, Meyer E. One cisplatin dose provides durable stimulation of anti-tumor immunity and alleviates anti-PD-1 resistance in an intraductal model for triple-negative breast cancer. Oncoimmunology 2022; 11:2103277. [PMID: 35898705 PMCID: PMC9311321 DOI: 10.1080/2162402x.2022.2103277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aggressive triple-negative breast cancer (TNBC) is classically treated with chemotherapy. Besides direct tumor cell killing, some chemotherapeutics such as cisplatin provide additional disease reduction through stimulation of anti-tumor immunity. The cisplatin-induced immunomodulation in TNBC was here investigated in-depth using immunocompetent intraductal mouse models. Upon primary tumor transition to invasive carcinoma, cisplatin was injected systemically and significantly reduced tumor progression. Flow cytometric immunophenotyping was corroborated by immunohistochemical analyses and revealed both differential immune cell compositions and positivity for their programmed death (PD)-1 and PD-ligand (L)1 markers across body compartments, including the primary tumor, axillary lymph nodes and spleen. As key findings, a significant decrease in immunosuppressive and a concomitant increase in anti-tumor lymphocytic cell numbers were observed in the axillary lymph nodes and spleen, highlighting their importance in cisplatin-stimulated anti-tumor immunity. These immunomodulatory effects were already established following the first cisplatin dose, indicating that early cisplatin-mediated events may determine (immuno)therapeutic outcome. Furthermore, a single cisplatin dose sufficed to alleviate anti-PD-1 resistance in a 4T1-based model, providing add-on disease reduction without toxic side effects as seen upon multiple cisplatin dosing. Overall, these results highlight cisplatin as immunotherapeutic ally in TNBC, providing durable immunostimulation, even after a single dose.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niels Vander Elst
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Josephine De Vliegher
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N. Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
14
|
Barbin F, Ghidini M, Panichi A, Tomasello G, Bareggi C, Galassi B, Denaro N, Ruatta F, Cauchi C, Rossino MG, Garrone O. Oxaliplatin-Related Hypersensitivity Reactions: A Single Institution Series and Literature Review. Biomedicines 2022; 10:biomedicines10123275. [PMID: 36552030 PMCID: PMC9775529 DOI: 10.3390/biomedicines10123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxaliplatin-based chemotherapy is extensively used for the treatment of gastrointestinal tumors and other malignancies. Oxaliplatin-related hypersensitivity reactions (HSRs) are common during antitumor treatment. Several studies have been conducted to identify predictive risk factors for oxaliplatin-related HSRs, but findings remain controversial. No definitive approach has been identified to reduce the risk of developing HSRs. The aim of this article is to provide an overview of oxaliplatin-related HSRs, and to report our institution's experience. With our work, we reviewed available data from the literature and described our case series. A total of 153 patients were treated with oxaliplatin and 17 developed an HSR. On the whole, 70.6% of reactions were Grade 3, mostly with respiratory and cutaneous symptoms. Steroids and antihistamines were administered to reduce hypersensitivity symptoms and prevent further reactions. A stronger premedication and prolonged time of infusion resulted in milder reactions or absence of subsequent reactions. We did not find any clear predictive factor for the development of HSRs. Although it is not possible to cancel the risk of oxaliplatin-based HSRs, strategies to reduce the risk of occurrence could be stronger premedication and prolonged time of infusion.
Collapse
|
15
|
Cuttano R, Afanga MK, Bianchi F. MicroRNAs and Drug Resistance in Non-Small Cell Lung Cancer: Where Are We Now and Where Are We Going. Cancers (Basel) 2022; 14:5731. [PMID: 36497213 PMCID: PMC9740066 DOI: 10.3390/cancers14235731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world. The development of drug resistance represents a major challenge for the clinical management of patients. In the last years, microRNAs have emerged as critical modulators of anticancer therapy response. Here, we make a critical appraisal of the literature available on the role of miRNAs in the regulation of drug resistance in non-small cell lung cancer (NSCLC). We performed a comprehensive annotation of miRNAs expression profiles in chemoresistant versus sensitive NSCLC, of the drug resistance mechanisms tuned up by miRNAs, and of the relative experimental evidence in support of these. Furthermore, we described the pros and cons of experimental approaches used to investigate miRNAs in the context of therapeutic resistance, to highlight potential limitations which should be overcome to translate experimental evidence into practice ultimately improving NSCLC therapy.
Collapse
Affiliation(s)
| | | | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
16
|
Roussot N, Ghiringhelli F, Rébé C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022; 11:cells11223672. [PMID: 36429101 PMCID: PMC9688834 DOI: 10.3390/cells11223672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of anticancer treatments relies on a long-term response which can be mediated by the immune system. Thus, the concept of immunogenic cell death (ICD) describes the capacity of dying cancer cells, under chemotherapy or physical stress, to express or release danger-associated molecular patterns (DAMPs). These DAMPs are essential to activate dendritic cells (DCs) and to stimulate an antigen presentation to CD8 cytotoxic cells. Then, activated CD8 T cells exert their antitumor effects through cytotoxic molecules, an effect which is transitory due to the establishment of a feedback loop leading to T-cell exhaustion. This phenomenon can be reversed using immune checkpoint blockers (ICBs), such as anti-PD-1, PD-L1 or CTLA-4 Abs. However, the blockade of these checkpoints is efficient only if the CD8 T cells are recruited within the tumor. The CD8 T-cell chemoattraction is mediated by chemokines. Hence, an important question is whether the ICD can not only influence the DC activation and resulting CD8 T-cell activation but can also favor the chemokine production at the tumor site, thus triggering their recruitment. This is the aim of this review, in which we will decipher the role of some chemokines (and their specific receptors), shown to be released during ICD, on the CD8 T-cell recruitment and antitumor response. We will also analyze the clinical applications of these chemokines as predictive or prognostic markers or as new targets which should be used to improve patients' response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- Genetic and Immunology Medical Institute, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| |
Collapse
|
17
|
Calls A, Torres‐Espin A, Tormo M, Martínez‐Escardó L, Bonet N, Casals F, Navarro X, Yuste VJ, Udina E, Bruna J. A transient inflammatory response contributes to oxaliplatin neurotoxicity in mice. Ann Clin Transl Neurol 2022; 9:1985-1998. [PMID: 36369764 PMCID: PMC9735376 DOI: 10.1002/acn3.51691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Peripheral neuropathy is a relevant dose-limiting adverse event that can affect up to 90% of oncologic patients with colorectal cancer receiving oxaliplatin treatment. The severity of neurotoxicity often leads to dose reduction or even premature cessation of chemotherapy. Unfortunately, the limited knowledge about the molecular mechanisms related to oxaliplatin neurotoxicity leads to a lack of effective treatments to prevent the development of this clinical condition. In this context, the present work aimed to determine the exact molecular mechanisms involved in the development of oxaliplatin neurotoxicity in a murine model to try to find new therapeutical targets. METHODS By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of sensory neurons and satellite glial cells (SGC) of the Dorsal Root Ganglia (DRG) from a well-characterized mouse model of oxaliplatin neurotoxicity. RESULTS Analysis of scRNA-seq data pointed to modulation of inflammatory processes in response to oxaliplatin treatment. In this line, we observed increased levels of NF-kB p65 protein, pro-inflammatory cytokines, and immune cell infiltration in DRGs and peripheral nerves of oxaliplatin-treated mice, which was accompanied by mechanical allodynia and decrease in sensory nerve amplitudes. INTERPRETATION Our data show that, in addition to the well-described DNA damage, oxaliplatin neurotoxicity is related to an exacerbated pro-inflammatory response in DRG and peripheral nerves, and open new insights in the development of anti-inflammatory strategies as a treatment for preventing peripheral neuropathy induced by oxaliplatin.
Collapse
Affiliation(s)
- Aina Calls
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Abel Torres‐Espin
- Department of Neurological Surgery, Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marc Tormo
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Scientific IT Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Laura Martínez‐Escardó
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Núria Bonet
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Víctor J. Yuste
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain,Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| |
Collapse
|
18
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
19
|
Kim H, Kim R, Jo H, Kim HR, Hong J, Ha SY, Park JO, Kim ST. Expression of PD-L1 as a predictive marker of sensitivity to immune checkpoint inhibitors in patients with advanced biliary tract cancer. Therap Adv Gastroenterol 2022; 15:17562848221117638. [PMID: 35992188 PMCID: PMC9386848 DOI: 10.1177/17562848221117638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Expression of programmed death-ligand 1 (PD-L1) has been reported to correlate with response to immune checkpoint inhibitors (ICIs) in various tumor types. However, there are few data on the role of PD-L1 expression as a predictive and prognostic biomarker of sensitivity to ICIs in patients with advanced biliary tract cancer (BTC). OBJECTIVES We evaluated the role of PD-L1 expression as a predictive and prognostic biomarker of response to ICIs in patients with advanced BTC. DESIGN We retrospectively analyzed data from 83 advanced BTC patients who received ICIs as second- or third-line treatment between February 2018 and April 2021. METHODS All patient data analysis included evaluation of PD-L1 expression by the combined positive score (CPS). RESULTS Among 83 patients, 56 (67.5%) had PD-L1 positivity (CPS ⩾ 1). The objective response rate (ORR) to ICIs was significantly higher in advanced BTC patients with PD-L1 expression compared to those without PD-L1 expression (17.8% versus 0%, p = 0.026). However, there were no significant differences in median progression-free survival (PFS; 2.9 versus 2.6 months, p = 0.330) and median overall survival (OS; 8.1 versus 6.3 months, p = 0.289) as a response to ICIs between patients with and without PD-L1 expression. Also, there were no significant differences in ORR, PFS, and OS as a response to ICIs in conjunction with a response to a prior gemcitabine plus cisplatin regimen (p = 0.654, p = 0.278, and p = 0.302, respectively). CONCLUSIONS The present study suggests that the expression of PD-L1 alone was not sufficient as a novel marker to select advanced BTC patients who might benefit from ICIs. Additional comprehensive studies of biomarkers that can assist in predicting BTC patient responses to pembrolizumab and/or nivolumab therapy are required.
Collapse
Affiliation(s)
- Hongsik Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ryul Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunji Jo
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hye Ryeon Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joohyun Hong
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
20
|
Liu M, Tayob N, Penter L, Sellars M, Tarren A, Chea V, Carulli I, Huang T, Li S, Cheng SC, Le P, Frackiewicz L, Fasse J, Qi C, Liu JF, Stover EH, Curtis J, Livak KJ, Neuberg D, Zhang G, Matulonis UA, Wu CJ, Keskin DB, Konstantinopoulos PA. Improved T-cell Immunity Following Neoadjuvant Chemotherapy in Ovarian Cancer. Clin Cancer Res 2022; 28:3356-3366. [PMID: 35443043 PMCID: PMC9357177 DOI: 10.1158/1078-0432.ccr-21-2834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Although local tissue-based immune responses are critical for elucidating direct tumor-immune cell interactions, peripheral immune responses are increasingly recognized as occupying an important role in anticancer immunity. We evaluated serial blood samples from patients with advanced epithelial ovarian cancer (EOC) undergoing standard-of-care neoadjuvant carboplatin and paclitaxel chemotherapy (including dexamethasone for prophylaxis of paclitaxel-associated hypersensitivity reactions) to characterize the evolution of the peripheral immune cell function and composition across the course of therapy. EXPERIMENTAL DESIGN Serial blood samples from 10 patients with advanced high-grade serous ovarian cancer treated with neoadjuvant chemotherapy (NACT) were collected before the initiation of chemotherapy, after the third and sixth cycles, and approximately 2 months after completion of chemotherapy. T-cell function was evaluated using ex vivo IFNγ ELISpot assays, and the dynamics of T-cell repertoire and immune cell composition were assessed using bulk and single-cell RNA sequencing (RNAseq). RESULTS T cells exhibited an improved response to viral antigens after NACT, which paralleled the decrease in CA125 levels. Single-cell analysis revealed increased numbers of memory T-cell receptor (TCR) clonotypes and increased central memory CD8+ and regulatory T cells throughout chemotherapy. Finally, administration of NACT was associated with increased monocyte frequency and expression of HLA class II and antigen presentation genes; single-cell RNAseq analyses showed that although driven largely by classical monocytes, increased class II gene expression was a feature observed across monocyte subpopulations after chemotherapy. CONCLUSIONS NACT may alleviate tumor-associated immunosuppression by reducing tumor burden and may enhance antigen processing and presentation. These findings have implications for the successful combinatorial applications of immune checkpoint blockade and therapeutic vaccine approaches in EOC.
Collapse
Affiliation(s)
- Min Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nabihah Tayob
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Hematology, Oncology, and Tumor Immunology, Campus Virchow Klinikum, Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - MacLean Sellars
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna Tarren
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vipheaviny Chea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Isabel Carulli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Su-Chun Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phuong Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Laura Frackiewicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Julia Fasse
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Courtney Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth H. Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Curtis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guanglan Zhang
- Department of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark.,Corresponding Authors: Panagiotis A. Konstantinopoulos, Dana-Farber Cancer Institute, 450 Brookline Avenue, YC-1424, Boston, MA 02215. E-mail: ; and Derin B. Keskin,
| | - Panagiotis A. Konstantinopoulos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Authors: Panagiotis A. Konstantinopoulos, Dana-Farber Cancer Institute, 450 Brookline Avenue, YC-1424, Boston, MA 02215. E-mail: ; and Derin B. Keskin,
| |
Collapse
|
21
|
Principe DR, Kamath SD, Korc M, Munshi HG. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther 2022; 236:108111. [PMID: 35016920 PMCID: PMC9271143 DOI: 10.1016/j.pharmthera.2022.108111] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic agents modulate various immune cell processes, most notably the cross-presentation of tumor antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs and cytotoxic chemotherapy are beginning to show promise in many cancers that have long been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, mechanisms through which select chemotherapies modify tumor immunogenicity, as well as important considerations when designing such approaches to maximize efficacy and improve therapeutic response rates.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
22
|
Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D. Can Cisplatin Therapy Be Improved? Pathways That Can Be Targeted. Int J Mol Sci 2022; 23:ijms23137241. [PMID: 35806243 PMCID: PMC9266583 DOI: 10.3390/ijms23137241] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II)) is the oldest known chemotherapeutic agent. Since the identification of its anti-tumour activity, it earned a remarkable place as a treatment of choice for several cancer types. It remains effective against testicular, bladder, lung, head and neck, ovarian, and other cancers. Cisplatin treatment triggers different cellular responses. However, it exerts its cytotoxic effects by generating inter-strand and intra-strand crosslinks in DNA. Tumour cells often develop tolerance mechanisms by effectively repairing cisplatin-induced DNA lesions or tolerate the damage by adopting translesion DNA synthesis. Cisplatin-associated nephrotoxicity is also a huge challenge for effective therapy. Several preclinical and clinical studies attempted to understand the major limitations associated with cisplatin therapy, and so far, there is no definitive solution. As such, a more comprehensive molecular and genetic profiling of patients is needed to identify those individuals that can benefit from platinum therapy. Additionally, the treatment regimen can be improved by combining cisplatin with certain molecular targeted therapies to achieve a balance between tumour toxicity and tolerance mechanisms. In this review, we discuss the importance of various biological processes that contribute to the resistance of cisplatin and its derivatives. We aim to highlight the processes that can be modulated to suppress cisplatin resistance and provide an insight into the role of uptake transporters in enhancing drug efficacy.
Collapse
Affiliation(s)
- Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
- Correspondence: (R.A.); (D.R.)
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
| | - Srinivasan Madhusudan
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK;
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
- Correspondence: (R.A.); (D.R.)
| |
Collapse
|
23
|
Fish Collagen Peptides Protect against Cisplatin-Induced Cytotoxicity and Oxidative Injury by Inhibiting MAPK Signaling Pathways in Mouse Thymic Epithelial Cells. Mar Drugs 2022; 20:md20040232. [PMID: 35447905 PMCID: PMC9032569 DOI: 10.3390/md20040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thymic epithelial cells (TECs) account for the most abundant and dominant stromal component of the thymus, where T cells mature. Oxidative- or cytotoxic-stress associated injury in TECs, a significant and common problem in many clinical settings, may cause a compromised thymopoietic capacity of TECs, resulting in clinically significant immune deficiency disorders or impairment in the adaptive immune response in the body. The present study demonstrated that fish collagen peptides (FCP) increase cell viability, reduce intracellular levels of reactive oxygen species (ROS), and impede apoptosis by repressing the expression of Bax and Bad and the release of cytochrome c, and by upregulating the expression of Bcl-2 and Bcl-xL in cisplatin-treated TECs. These inhibitory effects of FCP on TEC damage occur via the suppression of ROS generation and MAPK (p38 MAPK, JNK, and ERK) activity. Taken together, our data suggest that FCP can be used as a promising protective agent against cytotoxic insults- or ROS-mediated TEC injury. Furthermore, our findings provide new insights into a therapeutic approach for the future application of FCP in the prevention and treatment of various types of oxidative- or cytotoxic stress-related cell injury in TECs as well as age-related or acute thymus involution.
Collapse
|
24
|
Redman JM, Tsai YT, Weinberg BA, Donahue RN, Gandhy S, Gatti-Mays ME, Abdul Sater H, Bilusic M, Cordes L, Steinberg SM, Marte JL, Jochems C, Kim SS, Marshall JL, McMahon S, Redmond E, Schlom J, Gulley JL, Strauss J. A Randomized Phase II Trial of mFOLFOX6 + Bevacizumab Alone or with AdCEA Vaccine + Avelumab Immunotherapy for Untreated Metastatic Colorectal Cancer. Oncologist 2022; 27:198-209. [PMID: 35274710 PMCID: PMC8914498 DOI: 10.1093/oncolo/oyab046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND FOLFOX plus bevacizumab is a standard of care (SOC) for first-line treatment of microsatellite-stable metastatic colorectal cancer (MSS mCRC). This study randomized patients to SOC or SOC plus avelumab (anti-PD-L1) plus CEA-targeted vaccine. METHODS Patients with untreated MSS mCRC enrolled to a lead-in arm assessing safety of SOC + immuno-oncology agents (IO). Next, patients were randomized to SOC or SOC + IO. The primary endpoint was progression-free survival (PFS). Multiple immune parameters were analyzed. RESULTS Six patients enrolled to safety lead-in, 10 randomized to SOC, and 10 to SOC + IO. There was no difference in median PFS comparing SOC versus SOC + IO (8.8 months (95% CI: 3.3-17.0 months) versus 10.1 months (95% CI: 3.6-16.1 months), respectively; hazard ratio 1.061 [P = .91; 95% CI: 0.380-2.966]). The objective response rate was 50% in both arms. Of patients analyzed, most (8/11) who received SOC + IO developed multifunctional CD4+/CD8+ T-cell responses to cascade antigens MUC1 and/or brachyury, compared to 1/8 who received SOC alone (P = .020). We detected post-treatment changes in immune parameters that were distinct to the SOC and SOC + IO treatment arms. Accrual closed after an unplanned analysis predicted a low likelihood of meeting the primary endpoint. CONCLUSIONS SOC + IO generated multifunctional MUC1- and brachyury-specific CD4+/CD8+ T cells despite concurrent chemotherapy. Although a tumor-directed immune response is necessary for T-cell-mediated antitumor activity, it was not sufficient to improve PFS. Adding agents that increase the number and function of effector cells may be required for clinical benefit.
Collapse
Affiliation(s)
- Jason M Redman
- Corresponding author: Jason M. Redman, MD, Cancer Immunotherapy Program, Genitourinary Malignancies Branch and Laboratory of Tumor Immunology and Biology, Medical Oncology Service, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 13N240, Bethesda, MD 20892-1750, USA. Tel: +1 240-858-3305;
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin A Weinberg
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shruti Gandhy
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Houssein Abdul Sater
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marte
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunnie S Kim
- University of Colorado Cancer Center, Aurora, CO, USA
| | - John L Marshall
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheri McMahon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erica Redmond
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Benjaskulluecha S, Boonmee A, Pattarakankul T, Wongprom B, Klomsing J, Palaga T. Screening of compounds to identify novel epigenetic regulatory factors that affect innate immune memory in macrophages. Sci Rep 2022; 12:1912. [PMID: 35115604 PMCID: PMC8814160 DOI: 10.1038/s41598-022-05929-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Trained immunity and tolerance are part of the innate immune memory that allow innate immune cells to differentially respond to a second encounter with stimuli by enhancing or suppressing responses. In trained immunity, treatment of macrophages with β-glucan (BG) facilitates the production of proinflammatory cytokines upon lipopolysaccharide (LPS) stimulation. For the tolerance response, LPS stimulation leads to suppressed inflammatory responses during subsequent LPS exposure. Epigenetic reprogramming plays crucial roles in both phenomena, which are tightly associated with metabolic flux. In this study, we performed a screening of an epigenetics compound library that affects trained immunity or LPS tolerance in macrophages using TNFα as a readout. Among the 181 compounds tested, one compound showed suppressive effects, while 2 compounds showed promoting effects on BG-trained TNFα production. In contrast, various inhibitors targeting Aurora kinase, histone methyltransferase, histone demethylase, histone deacetylase and DNA methyltransferase showed inhibitory activity against LPS tolerance. Several proteins previously unknown to be involved in innate immune memory, such as MGMT, Aurora kinase, LSD1 and PRMT5, were revealed. Protein network analysis revealed that the trained immunity targets are linked via Trp53, while LPS tolerance targets form three clusters of histone-modifying enzymes, cell division and base-excision repair. In trained immunity, the histone lysine methyltransferase SETD7 was identified, and its expression was increased during BG treatment. Level of the histone lysine demethylase, LSD1, increased during LPS priming and siRNA-mediated reduction resulted in increased expression of Il1b in LPS tolerance. Taken together, this screening approach confirmed the importance of epigenetic modifications in innate immune memory and provided potential novel targets for intervention.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jeerameth Klomsing
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
26
|
Economopoulou P, Kotsantis I, Psyrri A. Radiotherapy and immunotherapy combination in head and neck cancer: Does current failure qualify as an ending or is it a key to future success? Oral Oncol 2022; 125:105717. [PMID: 35034851 DOI: 10.1016/j.oraloncology.2022.105717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Panagiota Economopoulou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Ioannis Kotsantis
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece.
| |
Collapse
|
27
|
Kwan TY, Chowdhury EH. Clinical Outcomes of Chemotherapeutic Molecules as Single and Multiple Agents in Advanced Non-Small-Cell Lung Carcinoma (NSCLC) Patients. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1252. [PMID: 34833470 PMCID: PMC8618045 DOI: 10.3390/medicina57111252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/11/2023]
Abstract
Background and Objectives: Lung cancer is the second most common cancer in the world. Non-small-cell lung carcinoma (NSCLC) makes up 85% of all lung cancer cases and the majority of patients are diagnosed when the cancer is advanced. Over the years, many anticancer drugs have been designed and introduced into the market to treat patients with advanced NSCLC. This review aims to discuss the comparative therapeutic benefits of conventional chemotherapeutics and other drugs available for treating advanced NSCLC. Materials and Methods: A literature search for first-line treatment of advanced NSCLC was carried out on PubMed and Google Scholar. Objective response rate (ORR) and overall survival were chosen as target endpoints. Results: Monotherapy showed lower treatment endpoints compared to combination therapy. Different combinations of platinum-based doublets demonstrated similar efficacies in treating NSCLC. However, pemetrexed-platinum doublets showed significantly better treatment endpoint in patients with non-squamous NSCLC. Most studies showing the best complete response rate (CRR) utilized epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), while most studies producing the best overall survival included programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors in their treatment regimens. Conclusions: The findings of this review indicate that targeted therapy using specific inhibitors is now the most promising first-line anticancer treatment available in the market. However, chemotherapy is still effective in treating advanced NSCLC and is viable as a first-line treatment.
Collapse
Affiliation(s)
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
28
|
Miyake M, Shimizu T, Nishimura N, Kiba K, Maesaka F, Oda Y, Tachibana A, Tomizawa M, Ohmori C, Matsumura Y, Ichikawa K, Mizobuchi S, Yoshikawa T, Hori S, Morizawa Y, Gotoh D, Nakai Y, Anai S, Torimoto K, Aoki K, Tanaka N, Fujimoto K. Response to Pembrolizumab After Dose-Reduced Cisplatin Plus Gemcitabine Chemotherapy Is Inferior to That After Carboplatin Plus Gemcitabine Chemotherapy in Cisplatin-Unfit Patients With Advanced Urothelial Carcinoma. Clin Genitourin Cancer 2021; 20:196.e1-196.e9. [PMID: 34916166 DOI: 10.1016/j.clgc.2021.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Response to pembrolizumab after first-line chemotherapy is vital to prolonged survival in advanced, unresectable, and/or metastatic urothelial carcinoma (aUC). However, there are sparse clinical data on host-tumor immune modification by first-line platinum-based chemotherapy. This study investigated the association between response to first-line gemcitabine plus cisplatin (GC) or carboplatin (GCarbo) chemotherapy and response to subsequent pembrolizumab treatment. PATIENTS AND METHODS A multicenter-derived database registered 454 patients diagnosed with aUC between 2008 and 2020. Of these, 108 patients who received first-line GC or GCarbo followed by second-line or later pembrolizumab were eligible for investigation and were classified into 3 groups: 48 receiving full-dose GC, 21 receiving dose-reduced GC, and 39 receiving GCarbo. Overall survival (OS) was calculated using the Kaplan-Meier method and compared using the log-rank test. Possible factors associated with the response to pembrolizumab were evaluated using binary logistic regression methods. RESULTS The rate of patients undergoing surgical removal of the primary organ was higher and creatinine clearance was lower in the dose-reduced GC and GCarbo groups than in the full-dose GC groups. Pembrolizumab responders had significantly better survival benefits than nonresponders. The rate of pembrolizumab responders was much higher in first-line chemotherapy responders than in first-line chemotherapy nonresponders. In contrast to the full-dose GC and GCarbo groups, the pembrolizumab responder rate was lower, and no association was observed between response to first-line chemotherapy and response to pembrolizumab in the dose-reduced GC group. CONCLUSION Cisplatin and carboplatin may play an important role in the antitumor immune response, which could impact the outcome of subsequent pembrolizumab treatment. Given that the rate of response to pembrolizumab after dose-reduced GC chemotherapy was relatively low, this regimen is not recommended for cis-unfit patients with aUC. Further studies are required to understand the mechanisms responsible for the cross-reactivity of platinum and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan.
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Keisuke Kiba
- Department of Urology, Kindai University Nara Hospital, Ikoma, Nara, Japan
| | | | - Yuki Oda
- Department of Urology, Nara Prefecture Seiwa Medical Center, Nara, Japan
| | - Akira Tachibana
- Department of Urology, Osaka Kaisei Hospital, Yodogawa, Osaka, Japan
| | - Mitsuru Tomizawa
- Department of Urology, Yamatotakada Municipal Hospital, Yamatotakada, Nara, Japan
| | - Chihiro Ohmori
- Department of Urology, Nara Prefecture General Medical Center, Nara, Japan
| | - Yoshiaki Matsumura
- Department of Urology, Nara Prefecture General Medical Center, Nara, Japan
| | - Kazuki Ichikawa
- Department of Urology, Koseikai Takai Hospital, Tenri, Japan
| | | | | | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Katsuya Aoki
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan; Department of Prostate Brachytherapy, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
29
|
Ciarimboli G. Anticancer Platinum Drugs Update. Biomolecules 2021; 11:biom11111637. [PMID: 34827636 PMCID: PMC8615753 DOI: 10.3390/biom11111637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Giuliano Ciarimboli
- Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, 48149 Münster, Germany
| |
Collapse
|
30
|
Isiiko J, Atwiine B, Oloro J. Prevalence and Risk Factors of Nephrotoxicity Among Adult Cancer Patients at Mbarara Regional Referral Hospital. Cancer Manag Res 2021; 13:7677-7684. [PMID: 34675664 PMCID: PMC8504863 DOI: 10.2147/cmar.s326052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Nephrotoxicity is common among cancer patients, yet some anti-cancer drugs, for example, platinum derivatives, are nephrotoxic and have narrow therapeutic indices. If nephrotoxicity is not managed, it can progress to kidney injury, which results in unregulated blood pressure, hormonal imbalance, electrolyte imbalance, body fluid imbalance and death. However, the burden of nephrotoxicity among adult cancer patients in Uganda is not documented in the literature. Objective This study assessed the prevalence and risk factors of nephrotoxicity among cancer patients receiving chemotherapy at Mbarara Regional Referral Hospital Cancer Unit (MRRHCU). Methods The study was a cross-sectional study carried out at the MRRHCU, Uganda. All the 206 adult cancer patients who received at least three cycles of chemotherapy and fulfilled the inclusion criteria were included. A data collection form was used to collect data, which was recorded into Microsoft Excel version 2013. Data were analyzed using Stata version 12.1. Results Of the 206 participants, 74 (35.9%) developed nephrotoxicity with majority in stage 1 (n = 83, 40.3%) and stage 2 (n = 55, 26.7%). In the multivariate logistic regression of risk factors for nephrotoxicity, age >50 years old (aOR: 1.80, 95% CI: 1.06, 1.91; p > 0.001), hypertension (aOR: 1.71, 95% CI: 1.74, 1.94; p = 0.011) and use of platinum agents (aOR: 2.04, 95% CI: 1.82, 3.34; p = 0.002) were significant independent risk factors of nephrotoxicity. Conclusion About one-third (1/3) of the adult cancer patients at MRRHCU develop nephrotoxicity, which indicates a high burden of nephrotoxicity. The prevention of progression of nephrotoxicity from grades 0, 1 or 2 to grade 3 or 4 is therefore necessary, especially among the patients with risk factors, such as hypertension and age >50 years old and use of platinum agents.
Collapse
Affiliation(s)
- John Isiiko
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda.,Pharmacy Biotechnology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Uganda Cancer Institute, Kampala, Uganda
| | - Barnabas Atwiine
- Department of Pediatrics and Child Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joseph Oloro
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
31
|
Abdalbari FH, Telleria CM. The gold complex auranofin: new perspectives for cancer therapy. Discov Oncol 2021; 12:42. [PMID: 35201489 PMCID: PMC8777575 DOI: 10.1007/s12672-021-00439-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced stages of cancer are highly associated with short overall survival in patients due to the lack of long-term treatment options following the standard form of care. New options for cancer therapy are needed to improve the survival of cancer patients without disease recurrence. Auranofin is a clinically approved agent against rheumatoid arthritis that is currently enrolled in clinical trials for potential repurposing against cancer. Auranofin mainly targets the anti-oxidative system catalyzed by thioredoxin reductase (TrxR), which protects the cell from oxidative stress and death in the cytoplasm and the mitochondria. TrxR is over-expressed in many cancers as an adaptive mechanism for cancer cell proliferation, rendering it an attractive target for cancer therapy, and auranofin as a potential therapeutic agent for cancer. Inhibiting TrxR dysregulates the intracellular redox state causing increased intracellular reactive oxygen species levels, and stimulates cellular demise. An alternate mechanism of action of auranofin is to mimic proteasomal inhibition by blocking the ubiquitin-proteasome system (UPS), which is critically important in cancer cells to prevent cell death when compared to non-cancer cells, because of its role on cell cycle regulation, protein degradation, gene expression, and DNA repair. This article provides new perspectives on the potential mechanisms used by auranofin alone, in combination with diverse other compounds, or in combination with platinating agents and/or immune checkpoint inhibitors to combat cancer cells, while assessing the feasibility for its repurposing in the clinical setting.
Collapse
Affiliation(s)
- Farah H Abdalbari
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
32
|
Maiorano BA, Maiorano MFP, Lorusso D, Maiello E. Ovarian Cancer in the Era of Immune Checkpoint Inhibitors: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4438. [PMID: 34503248 PMCID: PMC8430975 DOI: 10.3390/cancers13174438] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) represents the eighth most common cancer and the fifth leading cause of cancer-related deaths among the female population. In an advanced setting, chemotherapy represents the first-choice treatment, despite a high recurrence rate. In the last ten years, immunotherapy based on immune checkpoint inhibitors (ICIs) has profoundly modified the therapeutic scenario of many solid tumors. We sought to summarize the main findings regarding the clinical use of ICIs in OC. METHODS We searched PubMed, Embase, and Cochrane Databases, and conference abstracts from international congresses (such as ASCO, ESMO, SGO) for clinical trials, focusing on ICIs both as monotherapy and as combinations in the advanced OC. RESULTS 20 studies were identified, of which 16 were phase I or II and 4 phase III trials. These trials used ICIs targeting PD1 (nivolumab, pembrolizumab), PD-L1 (avelumab, aterolizumab, durvalumab), and CTLA4 (ipilimumab, tremelimumab). There was no reported improvement in survival, and some trials were terminated early due to toxicity or lack of response. Combining ICIs with chemotherapy, anti-VEGF therapy, or PARP inhibitors improved response rates and survival in spite of a worse safety profile. CONCLUSIONS The identification of biomarkers with a predictive role for ICIs' efficacy is mandatory. Moreover, genomic and immune profiling of OC might lead to better treatment options and facilitate the design of tailored trials.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Scientific Directorate, Fondazione Policlinico “A.Gemelli” IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
33
|
Jimenez-Fonseca P, Carmona-Bayonas A, Martinez-Torron A, Alsina M, Custodio A, Serra O, Cacho Lavin D, Limón ML, Sauri T, López F, Visa L, Granja M, Martínez Lago N, Arrazubi V, Vidal Tocino R, Hernandez R, Aguado G, Cano JM, Martín Carnicero A, Mangas M, Pimentel P, Fernández Montes A, Macias Declara I, Longo F, Ramchandani A, Martín Richard M, Hurtado A, Azkarate A, Hernández Pérez C, Serrano R, Gallego J. External validity of clinical trials with diverse trastuzumab-based chemotherapy regimens in advanced gastroesophageal adenocarcinoma: data from the AGAMENON-SEOM registry. Ther Adv Med Oncol 2021; 13:17588359211019672. [PMID: 34211587 PMCID: PMC8216357 DOI: 10.1177/17588359211019672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Trastuzumab combined with cisplatin and fluoropyrimidines, either capecitabine or 5-fluorouracile (XP/FP), is the standard first-line treatment for advanced, HER2-positive, gastric cancer patients based on the ToGA trial. Despite the lack of phase III trials, many clinicians administer trastuzumab with alternative regimens. One meta-analysis suggests that substituting cisplatin for oxaliplatin might lead to greater efficacy and less toxicity. METHODS 594 patients with HER2-positive gastroesophageal adenocarcinoma were recruited from the AGAMENON-SEOM registry. The objective was to evaluate the external validity of clinical trials with chemotherapy and trastuzumab. RESULTS The regimens used in at least 5% of the patients were XP (27%), oxaliplatin and capecitabine (CAPOX) (26%), oxaliplatin and 5-fluorouracil (FOLFOX) (14%), FP (14%), triplet with anthracycline/docetaxel (7%), and carboplatin-FU (5%). Median exposure to trastuzumab was longer with FOLFOX (11.4 months, 95% CI, 9.1-21.0) versus ToGA regimens (7.5, 6.4-8.5), p < 0.001. Patients with HER2-IHC 3+ cancers had higher response rates than those with IHC 2+/FISH+, odds-ratio 1.97 (95% CI, 1.25-3.09). The results achieved with CAPOX-trastuzumab were comparable to those attained with ToGA regimens. FOLFOX-trastuzumab was superior to ToGA schemes in terms of overall survival (OS), with a greater magnitude of effect in IHC 2+/FISH+ tumors (HR 0.47, 0.24-0.92) compared with IHC 3+ (HR 0.69, 0.49-0.96), and in diffuse (HR 0.37, 0.20-0.69) versus intestinal-type tumors (HR 0.76, 0.54-1.06). CONCLUSION We have updated the external validity of clinical trials with trastuzumab in first-line treatment of gastric cancer. Our data confirm the comparable outcomes of ToGA regimens and CAPOX-trastuzumab in clinical practice and point toward a possible benefit of FOLFOX-trastuzumab, contingent on the subtypes typically less sensitive to trastuzumab, to be confirmed in clinical trials.
Collapse
Affiliation(s)
- Paula Jimenez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Alberto Carmona-Bayonas
- Medical Oncology Department, Hospital Universitario Morales Meseguer, Calle Marqués de los Vélez, s/n, Murcia, 30007, Spain
| | - Alba Martinez-Torron
- Pharmacy Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Maria Alsina
- Medical Oncology Department, Complejo Hospitalario de Navarra, Pamplona Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Custodio
- Medical Oncology Department, Hospital Universitario La Paz, CIBERONC CB16/12/00398, Madrid, Spain
| | - Olbia Serra
- Medical Oncology Department, Catalan Institute of Oncology, L’Hospitalet, Spain
| | - Diego Cacho Lavin
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - María Luisa Limón
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Tamara Sauri
- Medical Oncology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Flora López
- Medical Oncology Department, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Laura Visa
- Medical Oncology Department, Hospital Universitario El Mar, Barcelona, Spain
| | - Mónica Granja
- Medical Oncology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Nieves Martínez Lago
- Medical Oncology Department, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Rosario Vidal Tocino
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Raquel Hernandez
- Medical Oncology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Gema Aguado
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Juana María Cano
- Medical Oncology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | | - Monserrat Mangas
- Medical Oncology Department, Hospital Galdakao-Usansolo, Usansolo, Spain
| | - Paola Pimentel
- Medical Oncology Department, Hospital General Universitario Santa Lucía, Cartagena, Spain
| | | | | | - Federico Longo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Avinash Ramchandani
- Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta Martín Richard
- Medical Oncology Department, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Alicia Hurtado
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Aitor Azkarate
- Medical Oncology Department, Hospital Universitario Son Espases, Mallorca, Spain
| | - Carolina Hernández Pérez
- Medical Oncology Department, Hospital Universitario Nuestra Señora de the Candelaria, Tenerife, Spain
| | - Raquel Serrano
- Medical Oncology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Gallego
- Medical Oncology Department, Hospital General Universitario of Elche, Elche, Spain
| | | |
Collapse
|
34
|
Li H, Qin S, Liu Y, Chen Z, Ren Z, Xiong J, Meng Z, Zhang X, Wang L, Zhang X, Zou J. Camrelizumab Combined with FOLFOX4 Regimen as First-Line Therapy for Advanced Hepatocellular Carcinomas: A Sub-Cohort of a Multicenter Phase Ib/II Study. Drug Des Devel Ther 2021; 15:1873-1882. [PMID: 33976538 PMCID: PMC8106453 DOI: 10.2147/dddt.s304857] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors and chemotherapy can synergistically increase efficacy in a variety of malignancies. We conducted this phase Ib/II study to assess the safety and efficacy of anti-PD-1 antibody camrelizumab in combination with FOLFOX4 for treatment-naive advanced hepatocellular carcinoma (aHCC). METHODS This open-label, multicenter phase Ib/II study (NCT03092895) enrolled patients with aHCC and without prior systemic treatment for treatment with camrelizumab (3 mg/kg) and FOLFOX4 every two weeks. First, six patients were enrolled, followed by an additional 28 patients after dose-limiting toxicity cases were determined to be <33% of patients. The primary endpoint was tolerability and safety of treatment. RESULTS A total of 34 aHCC patients were enrolled and received study treatment. No dose-limiting toxicity were observed in the first six patients enrolled. Twenty-nine (85.3%) of the total 34 patients had grade ≥3 treatment-related adverse events (TRAEs), with the most common ones being decreased neutrophil count (55.9%) and decreased white blood cell count (38.2%). No TRAEs-related deaths occurred. The objective response and disease control rate were 29.4% (95% CI, 15.1-47.5) and 79.4% (95% CI, 62.1-91.3), respectively. The median duration of response, progression-free survival, and overall survival was 6.9 months (range, 3.3-11.5), 7.4 months (95% CI, 3.9-9.2), and 11.7 months (95% CI, 8.2-22.0), respectively. CONCLUSION Camrelizumab combined with FOLFOX4 for first-line treatment of patients with aHCC showed good safety and tolerability, with promising preliminary antitumor activity.
Collapse
Affiliation(s)
- Hui Li
- Department of Medical Oncology Center, Bayi Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shukui Qin
- Department of Medical Oncology Center, Bayi Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ying Liu
- Department of Oncology, Cancer Hospital of Henan Province, Zhengzhou, People’s Republic of China
| | - Zhendong Chen
- Department of Clinical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhenggang Ren
- Department of Clinical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jianping Xiong
- Department of Clinical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Zhiqiang Meng
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Xiao Zhang
- Jiangsu Hengrui Medicine Co., Ltd, Shanghai, People’s Republic of China
| | - Linna Wang
- Jiangsu Hengrui Medicine Co., Ltd, Shanghai, People’s Republic of China
| | - Xiaojing Zhang
- Jiangsu Hengrui Medicine Co., Ltd, Shanghai, People’s Republic of China
| | - Jianjun Zou
- Jiangsu Hengrui Medicine Co., Ltd, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Alsaleh H, Alshammari TM. Direct healthcare professional communications: A quantitative assessment study. Pharmacol Res Perspect 2021; 9:e00763. [PMID: 33929085 PMCID: PMC8085968 DOI: 10.1002/prp2.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 11/07/2022] Open
Abstract
A retrospective observational study evaluated the direct healthcare professional communication (DHPC) letters disseminated by the Saudi Food and Drug Authority (SFDA) and their compliance with the pharmacovigilance guidelines. The study was utilized all DHPC letters available on the SFDA website, which is intended to communicate drug safety information to healthcare professionals (HCPs). Then, the letters were evaluated based on DHPC letter requirements approved in the European Medicines Agency (EMA) pharmacovigilance guidelines. Statistical analyses were conducted utilizing statistical analysis software (SAS® version 9.4). In June 2020, 169 letters were retrieved from the SFDA website. Most of the letters had the marketing authorization holder's logo (97%) and mentioned the date of letter issuance (98.8%). The most frequently discussed safety issues were hyperkalemia risk associated with combining renin-angiotensin-aldosterone system (RAAS) medications (10.6%) and cardiac risks (9%). Antineoplastic and immunosuppressant classes were associated with a majority of DHPC letters (15% for each category). A significant percentage of DHPC letters (10%) did not mention an agreement statement with SFDA, and 42 letters did not include marketing authorization holders (MAHs) contact information. The qualified persons responsible for pharmacovigilance and medical directors had signed most of the DHPC letters (51% and 46%, respectively). Many letters mentioned the details of reporting information to both SFDA and an MAH (82%). Moreover, 66% of the DHPC letters presented safety information within the 2-page limit. In conclusion, the DHPC letters disseminated by MAHs in Saudi Arabia have an acceptable level of compliance with the guidelines.
Collapse
Affiliation(s)
- Hajar Alsaleh
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamir M Alshammari
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia.,College of Pharmacy, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Dhandapani H, Seetharaman A, Jayakumar H, Ganeshrajah S, Singh SS, Thangarajan R, Ramanathan P. Autologous cervical tumor lysate pulsed dendritic cell stimulation followed by cisplatin treatment abrogates FOXP3+ cells in vitro. J Gynecol Oncol 2021; 32:e59. [PMID: 33908712 PMCID: PMC8192235 DOI: 10.3802/jgo.2021.32.e59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Dendritic cells (DCs) are administered as immunotherapeutic adjuvants after the completion of standard treatment in most settings. However, our Phase I trial indicated that one patient out of four, who received autologous tumor lysate-pulsed dendritic cell (TLDC) also received cisplatin chemotherapy and experienced complete regression of her lung lesion, continuing to be disease free till date. Hence, the objective of our current study is to evaluate the sustenance or augmentation of immune responses when autologous human papillomavirus positive cervical tumor lysate pulsed DC- are combined with cisplatin, using co-culture assays in vitro. Methods Before treatment, peripheral blood and punch biopsy samples were collected from 23 cervical cancer patients after obtaining an informed consent. DC functionality was confirmed through phenotypic and functional assays using autologous peripheral blood mononuclear cells as responders. For cisplatin experiments, the drug was added at 150, 200 (clinical dose equivalent), and 400 µM concentrations to DCs alone or DC-T cell co-cultures. Phenotypic assessment and functional characterization of DCs was done using flow cytometry. Cytokine enzyme-linked immunosorbent assay and interferon (IFN)-γ enzyme-linked immune absorbent spot assays were also performed. Results The functionality of TLDCs was not compromised upon cisplatin treatment in vitro even at the highest (400 μM) concentration. Even though cisplatin treatment reduced the secretion of IFN-γ and interleukin (IL)-12p40 in co-cultures stimulated with TLDCs, this effect was not significant (p>0.05). A doubling of IFN-γ secretion following cisplatin treatment was observed in at least one of three independent experiments. Additional experiments showed a reduction in both FOXP3+ regulatory T cells and IL-10 levels. Conclusion Our results provide evidence that cisplatin treatment may be given after autologous TLDC administration to maintain or improve a productive anti-tumor response in vaccinated patients.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Selvaluxmy Ganeshrajah
- Department of Radiation Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Shirley Sunder Singh
- Department of Oncopathology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India.
| |
Collapse
|
37
|
Seydel F, Delecluse S, Zeier M, Holland-Letz T, Haag GM, Berger AK, Grün BC, Bougatf N, Hohenfellner M, Duensing S, Jäger D, Zschäbitz S. Efficacy and Safety of Checkpoint Inhibitor Treatment in Patients with Advanced Renal or Urothelial Cell Carcinoma and Concomitant Chronic Kidney Disease: A Retrospective Cohort Study. Cancers (Basel) 2021; 13:cancers13071623. [PMID: 33915693 PMCID: PMC8036307 DOI: 10.3390/cancers13071623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immune checkpoint inhibition plays a pivotal role in the treatment of metastatic renal cell carcinoma and metastatic urothelial carcinoma. The association of chronic kidney disease with these tumors is well established. However, to what extent kidney failure modifies the efficacy or the toxicity profiles of checkpoint inhibitors has been poorly investigated. In this paper, we reviewed the files of 85 patients with renal cell carcinoma and 41 with urothelial cancer who had received checkpoint inhibitor treatment, and found that 37.6% and 41.5% had evidence of chronic kidney disease, respectively. We found that neither general treatment-related nor immune-related adverse events differed between patients with normal or impaired renal function. Using a multivariate analysis, we found that chronic kidney disease had no effect on progression-free survival. However, irrespective of the tumor entity, chronic kidney disease was found to positively influence overall survival. We conclude that treatment with checkpoint inhibitors in patients with chronic kidney disease is safe and efficient. Abstract Background: Checkpoint inhibitors are a standard of care in the treatment of advanced renal cell carcinoma (RCC) and urothelial carcinoma (UC). Patients with these tumors often suffer from concomitant chronic kidney disease (CKD). Limited data are available on the efficacy and toxicity of checkpoint inhibitors in patients with CKD. Methods: We retrospectively analyzed 126 patients who received checkpoint inhibitors for RCC (n = 85) or UC (n = 41) and analyzed the frequency of treatment- and immune-related adverse events (AEs). We performed a multivariate analysis to determine progression-free survival (PFS) and overall survival (OS). Results: A total of 38.9% of patients had CKD. Frequencies of general AEs (49.0% in CKD vs. 48.1%, p > 0.99999) and immune-related AEs (28.6 vs. 24.7%, p ≥ 0.9999) did not significantly differ between the groups. There was no difference in PFS for patients with RCC or UC and CKD or without CKD (RCC: 6.81 vs. 7.54 months, HR 1.000 (95%CI 0.548–01.822), p = 0.999; UC:2.33 vs. 3.67 months, HR 01.492 (95%CI 0.686–3.247), p = 0.431). CKD appeared to be a potential effect modifier for OS in both RCC and UC (RCC: NR vs. 23.9 months, HR 0.502 (95%CI 0.219–1.152), p = 0.104; UC:18.84 vs. 15.42 months, HR 0.656 (95%CI 0.296–1.454), p = 0.299). Conclusions: Checkpoint inhibitor treatment in our cohort of patients with CKD was as safe and efficient as in the cohort of patients without CKD.
Collapse
Affiliation(s)
- Florian Seydel
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.S.); (S.D.); (M.Z.)
| | - Susanne Delecluse
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.S.); (S.D.); (M.Z.)
- German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
- German Cancer Research Centre (DKFZ) Unit F100, 69120 Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.S.); (S.D.); (M.Z.)
| | - Tim Holland-Letz
- German Cancer Research Centre (DKFZ) Unit C060, 69120 Heidelberg, Germany;
| | - Georg Martin Haag
- Department of Medical Oncology, National Center of Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.M.H.); (A.K.B.); (B.C.G.); (D.J.)
| | - Anne Katrin Berger
- Department of Medical Oncology, National Center of Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.M.H.); (A.K.B.); (B.C.G.); (D.J.)
| | - Barbara Christine Grün
- Department of Medical Oncology, National Center of Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.M.H.); (A.K.B.); (B.C.G.); (D.J.)
| | - Nina Bougatf
- Cancer Registry, National Center of Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.H.); (S.D.)
| | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.H.); (S.D.)
| | - Dirk Jäger
- Department of Medical Oncology, National Center of Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.M.H.); (A.K.B.); (B.C.G.); (D.J.)
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.M.H.); (A.K.B.); (B.C.G.); (D.J.)
- Correspondence: ; Tel.: +49-6221-5635-950
| |
Collapse
|
38
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
39
|
Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients. Cells 2021; 10:130. [PMID: 33440842 PMCID: PMC7827772 DOI: 10.3390/cells10010130] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an "eat me" signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor's antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant disease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; (I.S.-K.); (M.K.)
| | | | | |
Collapse
|
40
|
Vigueras G, Markova L, Novohradsky V, Marco A, Cutillas N, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. A photoactivated Ir(iii) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00856k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The new iridium complex selectively targets cancer stem cells and has potential to induce immunogenic cell death in cancer cells.
Collapse
Affiliation(s)
- Gloria Vigueras
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Alicia Marco
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Natalia Cutillas
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - José Ruiz
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
41
|
Hartnett EG, Knight J, Radolec M, Buckanovich RJ, Edwards RP, Vlad AM. Immunotherapy Advances for Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123733. [PMID: 33322601 PMCID: PMC7764119 DOI: 10.3390/cancers12123733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The overall five-year survival rate in epithelial ovarian cancer is 44% and has only marginally improved in the past two decades. Despite an initial response to standard treatment consisting of chemotherapy and surgical removal of tumor, the lesions invariably recur, and patients ultimately die of chemotherapy resistant disease. New treatment modalities are needed in order to improve the prognosis of women diagnosed with ovarian cancer. One such modality is immunotherapy, which aims to boost the capacity of the patient’s immune system to recognize and attack the tumor cells. We performed a retrospective study to identify some of the most promising immune therapies for epithelial ovarian cancer. Special emphasis was given to immuno-oncology clinical trials. Abstract New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.
Collapse
Affiliation(s)
- Erin G. Hartnett
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Julia Knight
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mackenzy Radolec
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Ronald J. Buckanovich
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Robert P. Edwards
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
- Correspondence:
| |
Collapse
|
42
|
Camelliti S, Le Noci V, Bianchi F, Moscheni C, Arnaboldi F, Gagliano N, Balsari A, Garassino MC, Tagliabue E, Sfondrini L, Sommariva M. Mechanisms of hyperprogressive disease after immune checkpoint inhibitor therapy: what we (don't) know. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:236. [PMID: 33168050 PMCID: PMC7650183 DOI: 10.1186/s13046-020-01721-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have made a breakthrough in the treatment of different types of tumors, leading to improvement in survival, even in patients with advanced cancers. Despite the good clinical results, a certain percentage of patients do not respond to this kind of immunotherapy. In addition, in a fraction of nonresponder patients, which can vary from 4 to 29% according to different studies, a paradoxical boost in tumor growth after ICI administration was observed: a completely unpredictable novel pattern of cancer progression defined as hyperprogressive disease. Since this clinical phenomenon has only been recently described, a universally accepted clinical definition is lacking, and major efforts have been made to uncover the biological bases underlying hyperprogressive disease. The lines of research pursued so far have focused their attention on the study of the immune tumor microenvironment or on the analysis of intrinsic genomic characteristics of cancer cells producing data that allowed us to formulate several hypotheses to explain this detrimental effect related to ICI therapy. The aim of this review is to summarize the most important works that, to date, provide important insights that are useful in understanding the mechanistic causes of hyperprogressive disease.
Collapse
Affiliation(s)
- Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Francesca Bianchi
- Molecular Targets Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Marina Chiara Garassino
- Thoracic Oncology Unit, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Elda Tagliabue
- Molecular Targets Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
43
|
Turkes F, Mencel J, Starling N. Targeting the immune milieu in gastrointestinal cancers. J Gastroenterol 2020; 55:909-926. [PMID: 32748171 PMCID: PMC7519898 DOI: 10.1007/s00535-020-01710-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal solid tumors worldwide. Unlike in malignancies such as lung, renal and skin cancers, the activity of immunotherapeutic agents in GI cancers has, on the whole, been much less remarkable and do not apply to the majority. Furthermore, while incremental progress has been made and approvals for use of immune checkpoint inhibitors (ICIs) in specific subsets of patients with GI cancers are coming through, in a population of 'all-comers', it is frequently unclear as to who may benefit most due to the relative lack of reliable predictive biomarkers. For most patients with newly diagnosed advanced or metastatic GI cancer, the mainstay of treatment still involves chemotherapy and/or a targeted agent however, beyond the second-line this paradigm confers minimal patient benefit. Thus, current research efforts are concentrating on broadening the applicability of ICIs in GI cancers by combining them with agents designed to beneficially remodel the tumor microenvironment (TME) for more effective anti-cancer immunity with intention of improving patient outcomes. This review will discuss the currently approved ICIs available for the treatment of GI cancers, the strategies underway focusing on combining ICIs with agents that target the TME and touch on recent progress toward identification of predictors of sensitivity to immune checkpoint blockade in GI cancers.
Collapse
Affiliation(s)
- Fiona Turkes
- Department of Medicine, Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Justin Mencel
- Department of Medicine, Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Naureen Starling
- Department of Medicine, Royal Marsden Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
44
|
Clinically Relevant Chemotherapeutics Have the Ability to Induce Immunogenic Cell Death in Non-Small Cell Lung Cancer. Cells 2020; 9:cells9061474. [PMID: 32560232 PMCID: PMC7349161 DOI: 10.3390/cells9061474] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of immunogenic cell death (ICD) has emerged as a cornerstone of therapy-induced anti-tumor immunity. To this end, the following chemotherapies were evaluated for their ability to induce ICD in non-small cell lung cancer (NSCLC) cell lines: docetaxel, carboplatin, cisplatin, oxaliplatin and mafosfamide. The ICD hallmarks ATP, ecto-calreticulin, HMGB1, phagocytosis and maturation status of dendritic cells (DCs) were assessed in vitro. Furthermore, an in vivo vaccination assay on C57BL/6J mice was performed to validate our in vitro results. Docetaxel and the combination of docetaxel with carboplatin or cisplatin demonstrated the highest levels of ATP, ecto-calreticulin and HMGB1 in three out of four NSCLC cell lines. In addition, these regimens resulted in phagocytosis of treated NSCLC cells and maturation of DCs. Along similar lines, all mice vaccinated with NSCLC cells treated with docetaxel and cisplatin remained tumor-free after challenge. However, this was not the case for docetaxel, despite its induction of the ICD-related molecules in vitro, as it failed to reject tumor growth at the challenge site in 60% of the mice. Moreover, our in vitro and in vivo data show the inability of oxaliplatin to induce ICD in NSCLC cells. Overall with this study we demonstrate that clinically relevant chemotherapeutic regimens in NSCLC patients have the ability to induce ICD.
Collapse
|
45
|
Ovarian BDNF promotes survival, migration, and attachment of tumor precursors originated from p53 mutant fallopian tube epithelial cells. Oncogenesis 2020; 9:55. [PMID: 32471985 PMCID: PMC7260207 DOI: 10.1038/s41389-020-0243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. New evidence supports a hypothesis that HGSOC can originate from fallopian tube epithelium (FTE). It is unclear how genetic alterations and pathophysiological processes drive the progression of FTE tumor precursors into widespread HGSOCs. In this study, we uncovered that brain-derived neurotrophic factor (BDNF) in the follicular fluid stimulates the tropomyosin receptor kinase B (TrkB)-expressing FTE cells to promote their survival, migration, and attachment. Using in vitro and in vivo models, we further identified that the acquisition of common TP53 gain-of-function (GOF) mutations in FTE cells led to enhanced BDNF/TrkB signaling compared to that of FTE cells with TP53 loss-of-function (LOF) mutations. Different mutant p53 proteins can either increase TrkB transcription or enhance TrkB endocytic recycling. Our findings have demonstrated possible interplays between genetic alterations in FTE tumor precursors (i.e., p53 GOF mutations) and pathophysiological processes (i.e., the release of follicular fluid upon ovulation) during the initiation of HGSOC from the fallopian tube. Our data revealed molecular events underlying the link between HGSOC tumorigenesis and ovulation, a physiological process that has been associated with risk factors of HGSOC.
Collapse
|
46
|
Sequential Interferon β-Cisplatin Treatment Enhances the Surface Exposure of Calreticulin in Cancer Cells via an Interferon Regulatory Factor 1-Dependent Manner. Biomolecules 2020; 10:biom10040643. [PMID: 32326356 PMCID: PMC7226424 DOI: 10.3390/biom10040643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Immunogenic cell death (ICD) refers to a unique form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Accumulating evidence indicates that the efficacy of conventional anticancer agents relies on not only their direct cytostatic/cytotoxic effects but also the activation of antitumor ICD. Common anticancer ICD inducers include certain chemotherapeutic agents (such as anthracyclines, oxaliplatin, and bortezomib), radiotherapy, photodynamic therapy (PDT), and oncolytic virotherapies. However, most chemotherapeutic reagents are inefficient or fail to trigger ICD. Therefore, better understanding on the molecular determinants of chemotherapy-induced ICD will help in the development of more efficient combinational anticancer strategies through converting non- or relatively weak ICD inducers into bona fide ICD inducers. In this study, we found that sequential, but not concurrent, treatment of cancer cells with interferon β (IFNβ), a type I IFN, and cisplatin (an inefficient ICD inducer) can enhance the expression of ICD biomarkers in cancer cells, including surface translocation of an endoplasmic reticulum (ER) chaperone, calreticulin (CRT), and phosphorylation of the eukaryotic translation initiation factor alpha (eIF2α). These results suggest that exogenous IFNβ may activate molecular determinants that convert cisplatin into an ICD inducer. Further bioinformatics and in vitro experimental analyses found that interferon regulatory factor 1 (IRF1) acted as an essential mediator of surface CRT exposure by sequential IFNβ-cisplatin combination. Our findings not only help to design more effective combinational anticancer therapy using IFNβ and cisplatin, but also provide a novel insight into the role of IRF1 in connecting the type I IFN responses and ICD.
Collapse
|
47
|
Novohradsky V, Pracharova J, Kasparkova J, Imberti C, Bridgewater HE, Sadler PJ, Brabec V. Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug. Inorg Chem Front 2020; 7:4150-4159. [PMID: 34540235 DOI: 10.1039/d0qi00991a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The platinum(IV) prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (1) is stable and non-toxic in the dark, but potently cytotoxic to cancer cells when irradiated by visible light, including cisplatin-resistant cells. On irradiation with visible light, it generates reactive Pt(II) species which can attack DNA, and produces reactive oxygen species (ROS) and reactive nitrogen species (RNS) which exert unusual effects on biochemical pathways. We now show that its novel mechanism of action includes induction of immunogenic cell death (ICD). Treatment of cancer cells with 1 followed by photoirradiation with visible light induces calreticulin (CRT) expression at the surface of dying cancer cells. This is accompanied by release of high mobility group protein-1B (HMGB1) and the secretion of ATP. Autophagy appears to play a key role in this chemotherapeutically-stimulated ICD. The observed uneven distribution of ecto-CRT promotes phagocytosis, confirmed by the observation of engulfment of photoirradiated CT26 colorectal cancer cells treated with 1 by J774.A1 macrophages. The photoactivatable prodrug 1 has a unique mechanism of action which distinguishes it from other platinum drugs due to its immunomodulating properties, which may enhance its anticancer efficacy.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jitka Pracharova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Cinzia Imberti
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hannah E Bridgewater
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter J Sadler
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|