1
|
Lee H, Youn I, Noh SG, Kim HW, Song E, Nam SJ, Chung HY, Seo EK. Identification of Bioactive Compounds from the Roots of Rehmannia glutinosa and Their In Silico and In Vitro AMPK Activation Potential. Molecules 2024; 29:6009. [PMID: 39770103 PMCID: PMC11679303 DOI: 10.3390/molecules29246009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Rehmannia glutinosa Libosch., which belongs to the Orobanchaceae family, is a perennial herb found in China, Japan, and Korea. In traditional medicine, it is used to cool the body, improve water metabolism in the kidney, and provide protection from metabolic diseases such as type 2 diabetes mellitus (T2DM) and obesity. In this study, three new compounds were isolated from the roots of R. glutinosa, along with eighteen known compounds. Structure elucidation was performed with spectroscopic analyses including nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. As the AMP-activated protein kinase (AMPK) signaling pathway is reportedly related to metabolic diseases, AMPK activation studies were conducted using in silico simulations and in vitro assays. Among the isolated compounds, 1 showed a potential as an AMPK activator in both in silico simulations and in vitro experiments. Our findings expand the chemical profiles of the plant R. glutinosa and suggest that one newly found compound (1) activates AMPK.
Collapse
Affiliation(s)
- Hwaryeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| | - Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.); (H.Y.C.)
| | - Hyun Woo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.); (H.Y.C.)
| | - Eunhye Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.); (H.Y.C.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| |
Collapse
|
2
|
Hu J, Song Y, Zhang Y, Yang P, Chen S, Wu Z, Zhang J. Catalpol Enhances Osteogenic Differentiation of Human Periodontal Stem Cells and Modulates Periodontal Tissue Remodeling in an Orthodontic Tooth Movement Rat Model. Drug Des Devel Ther 2024; 18:4943-4960. [PMID: 39525045 PMCID: PMC11546164 DOI: 10.2147/dddt.s482969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study examines the effects and mechanisms of catalpol (CAT) on the proliferation and osteogenic differentiation of cultured human periodontal ligament stem cells (hPDLSCs) in vitro and assesses the impact of CAT on periodontal remodeling in vivo using an orthodontic tooth movement (OTM) model in rats. Methods hPDLSCs were cultured in a laboratory setting, and their proliferation and osteogenic differentiation were assessed using the Cell-counting Kit-8 (CCK-8), Alizarin Red Staining (ARS), quantitative calcium assay, alkaline phosphatase (ALP) staining and activity assay, and immunofluorescence assay. Additionally, the expression of collagen type 1 (COL-1), ALP, and runt-related transcription factor-2 (RUNX-2) was evaluated through qRT-PCR and Western blot analysis. To verify the function of the estrogen receptor-α (ER-α)-mediated phosphatidylinositol-3-kinase-protein kinase B (PI3K/AKT) pathway in this mechanism, LY294002 (a PI3K signaling pathway inhibitor) and the ER-α specific inhibitor methyl-piperidine-pyrazole (MPP) were used. The osteogenic markers ER-α, AKT, and p-AKT (phosphoprotein kinase B) were identified through Western blot analysis. Eighteen male Sprague-Dawley rats were assigned to two groups randomly: a CAT group receiving CAT and a control group receiving an equivalent volume of saline. Micro-computed tomography (micro-CT) analysis was employed to evaluate tooth movement and changes in alveolar bone structure. Morphological changes in the periodontal tissues between the roots were investigated using hematoxylin and eosin (HE) staining and tartaric-resistant acid phosphatase (TRAP) staining. The expression of COL-1, RUNX-2, and nuclear factor-κB (NF-κB) ligand (RANKL) was assessed through immunohistochemical staining (IHC) to evaluate periodontal tissue remodeling. Tests were analyzed using GraphPad Prism 8 software. Differences among more than two groups were analyzed by one-way or two-way analysis of variance (ANOVA) followed by the Tukey's test. Values of p < 0.05 were regarded as statistically significant. Results In vitro experiments demonstrated that 10 μM CAT significantly promoted the proliferation, ALP activity, and calcium nodule formation of hPDLSCs, with a notable increase in the expression of COL-1, ALP, RUNX-2, ER-α, and p-AKT. The PI3K/AKT pathway was inhibited by LY294002, and further analysis using MPP suggested that ER-α mediated this effect. In vivo, experiments indicated that CAT enhanced the expression of COL-1 and RUNX-2 on the tension side of rat tooth roots, reduced the number of osteoclasts on the compression side, inhibited RANKL expression, and suppressed OTM. Conclusion CAT can promote hPDLSCs proliferation and osteogenic differentiation in vitro through the ER-α/PI3K/AKT pathway and enhance periodontal tissue remodeling in vivo using OTM models. These findings suggest the potential for the clinical application of catalpol in preventing relapse following OTM.
Collapse
Affiliation(s)
- Jing Hu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Yang Song
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Yuxing Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Peng Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Siyu Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Zhaoyan Wu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Wu C, Li Y, Liu S, Wang L, Wang X. Catalpol inhibits HHcy-induced EndMT in endothelial cells by modulating ROS/NF-κB signaling. BMC Cardiovasc Disord 2024; 24:431. [PMID: 39148029 PMCID: PMC11328392 DOI: 10.1186/s12872-024-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis (AS). Endothelial mesenchymal transition (EndMT) refers to the process in which endothelial cells lose endothelial cell morphology and characteristic gene expression, and acquire phenotypic characteristics and gene expression related to mesenchymal cells. Numerous studies have confirmed that EndMT is involved in the formation of atherosclerosis. Catalpol is one of the active components of Rehmannia, which has antioxidant, anti-inflammatory, anti-tumor, neuroprotective and other biological activities. Studies have shown that catalpol can reduce atherosclerotic plaque induced by high sugar or fat. However, the effect of catalpol on HHCY-induced EndMT is unclear. METHODS AND RESULTS In vitro HHcy-treated primary human umbilical vein endothelial cells (HUVECs) were used to construct a cell model, and the antioxidants N-acetylcysteine (NAC) and catalase alcohol were administered. In vivo C57BL/6N mice were given a diet fed with 4.4% high methionine chow to construct a HHcy mice model and were treated with catalpol. The results showed that hhcy could induce morphological transformation of endothelial cells into mesenchymal cells, increase intracellular ROS content, up-regulate α-SMA, N-cadherin, p-p65 protein expression, down-regulate VE-cadherin, CD31 protein expression, induce pathological changes of aortic root endothelium, and increase aortic endothelial ROS content. Catalpol reversed these hhcy induced outcomes. CONCLUSIONS Catalpol inhibits HHcy-induced EndMT, and the underlying mechanism may be related to the ROS/NF-κB signaling pathway. Catalpol may be a potential drug for the treatment of HHcy-related AS.
Collapse
Affiliation(s)
- Chengyan Wu
- Department of Cardiology, Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical, University, Xinxiang, China
| | - Yuanhao Li
- Department of Cardiology, Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical, University, Xinxiang, China
| | - Shuangshuang Liu
- Department of Cardiology, Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical, University, Xinxiang, China
| | - Libo Wang
- Department of Cardiology, Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical, University, Xinxiang, China.
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| | - Xuehui Wang
- Department of Cardiology, Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical, University, Xinxiang, China.
| |
Collapse
|
4
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
She Y, Shao CY, Liu YF, Huang Y, Yang J, Wan HT. Catalpol reduced LPS induced BV2 immunoreactivity through NF-κB/NLRP3 pathways: an in Vitro and in silico study. Front Pharmacol 2024; 15:1415445. [PMID: 38994205 PMCID: PMC11237369 DOI: 10.3389/fphar.2024.1415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1β. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yong She
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chong-yu Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan-feng Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hai-tong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Lang X, Xu L, Li L, Feng X. The Mechanism of Catalpol to Improve Oxidative Damage of Dermal Fibroblasts Based on Nrf2/HO-1 Signaling Pathway. Drug Des Devel Ther 2024; 18:2287-2297. [PMID: 38915869 PMCID: PMC11194171 DOI: 10.2147/dddt.s467569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
Objective Catalpol, as a natural medicine small-molecule drug, has been proven to have anti-inflammatory and antioxidant pharmacological effects. Methods The effect of catalpol on oxidative damage of mouse epidermal fibroblast L929 model and its mechanism were investigated by using hydrogen peroxide model, CCK8 method, flow cytometry, and Western blot. Results The effect of catalpol on Nrf2/HO-1 signaling pathway was further studied to improve oxidative stress in cell models. The results showed that catalpol had no cytotoxicity to L929 cells, and inhibited the apoptosis of L929 cells after oxidative damage in a concentration-dependent manner, thus playing a role in cell protection. The oxidative damage of cells was inhibited by up-regulating the expression of the signature protein of Nrf2/HO-1 signaling pathway and inhibiting the interstitial formation of cells. Conclusion This study is a preliminary study on the protective function of catalpol against oxidation and apoptosis in dermal fibroblasts, which can provide a theoretical basis and drug guidance for promoting skin wound healing in the later stage.
Collapse
Affiliation(s)
- Xiaona Lang
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Liyan Xu
- Orthopedic Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Lu Li
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Xin Feng
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
7
|
Zhang Y, Zhou Y, Wen Z, Wang H, Zhang S, Ni Q. Network analysis combined with experimental assessment to explore the therapeutic mechanisms of New Shenqi Pills formula targeting mitochondria on senile diabetes mellitus. Front Pharmacol 2024; 15:1339758. [PMID: 38948458 PMCID: PMC11211868 DOI: 10.3389/fphar.2024.1339758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Background The escalation of global population aging has accentuated the prominence of senile diabetes mellitus (SDM) as a consequential public health concern. Oxidative stress and chronic inflammatory cascades prevalent in individuals with senile diabetes significantly amplify disease progression and complication rates. Traditional Chinese Medicine (TCM) emerges as a pivotal player in enhancing blood sugar homeostasis and retarding complication onset in the clinical management of senile diabetes. Nonetheless, an evident research gap persists regarding the integration of TCM's renal tonification pharmacological mechanisms with experimental validation within the realm of senile diabetes therapeutics. Aims The objective of this study was to investigate the mechanisms of action of New Shenqi Pills (SQP) in the treatment of SDM and make an experimental assessment. Methods Network analysis is used to evaluate target pathways related to SQP and SDM. Mitochondrial-related genes were obtained from the MitoCarta3.0 database and intersected with the common target genes of the disease and drugs, then constructing a protein-protein interaction (PPI) network making use of the GeneMANIA database. Representative compounds in the SQP were quantitatively measured using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to ensure quality control and quantitative analysis of the compounds. A type 2 diabetes mice (C57BL/6) model was used to investigate the pharmacodynamics of SQP. The glucose lowering efficacy of SQP was assessed through various metrics including body weight and fasting blood glucose (FBG). To elucidate the modulatory effects of SQP on pancreatic beta cell function, we measured oral glucose tolerance test (OGTT), insulin histochemical staining and tunel apoptosis detection, then assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway in diabetic mice via Western blotting. Additionally, we observe the structural changes of the nucleus, cytoplasmic granules and mitochondria of pancreatic islet β cells. Results In this investigation, we identified a total of 1876 genes associated with senile diabetes, 278 targets of SQP, and 166 overlapping target genes, primarily enriched in pathways pertinent to oxidative stress response, peptide response, and oxygen level modulation. Moreover, an intersection analysis involving 1,136 human mitochondrial genes and comorbidity targets yielded 15 mitochondria-related therapeutic targets. Quality control assessments and quantitative analyses of SQP revealed the predominant presence of five compounds with elevated concentrations: Catalpol, Cinnamon Aldehyde, Rehmanthin D, Trigonelline, and Paeonol Phenol. Vivo experiments demonstrated notable findings. Relative to the control group, mice in the model group exhibited significant increases in body weight and fasting blood glucose levels, alongside decreased insulin secretion and heightened islet cell apoptosis. Moreover, β-cells nuclear condensation and mitochondrial cristae disappearance were observed, accompanied by reduced expression levels of p-GSK-3β protein in islet cells (p < 0.05 or p < 0.01). Conversely, treatment groups administered SQP and Rg displayed augmented expressions of the aforementioned protein markers (p < 0.05 or p < 0.01), alongside preserved mitochondrial cristae structure in islet β cells. Conclusion Our findings suggest that SQP can ameliorate diabetes by reducing islet cell apoptosis and resist oxidative stress. These insulin-mediated PI3K/AKT/GSK-3β pathway plays an important regulatory role in this process.
Collapse
Affiliation(s)
- YueYing Zhang
- Guang’anmen Hospital, China Academy of Chinses Medicine Sciences, Beijing, China
| | - Yang Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - ZhiGe Wen
- Guang’anmen Hospital, China Academy of Chinses Medicine Sciences, Beijing, China
| | - HaoShuo Wang
- Guang’anmen Hospital, China Academy of Chinses Medicine Sciences, Beijing, China
| | - Shan Zhang
- Guang’anmen Hospital, China Academy of Chinses Medicine Sciences, Beijing, China
| | - Qing Ni
- Guang’anmen Hospital, China Academy of Chinses Medicine Sciences, Beijing, China
| |
Collapse
|
8
|
Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:210-222. [PMID: 38631983 DOI: 10.1016/j.joim.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/18/2024] [Indexed: 04/18/2024]
Abstract
In recent years, preclinical research on diabetic kidney disease (DKD) has surged to the forefront of scientific and clinical attention. DKD has become a pervasive complication of type 2 diabetes. Given the complexity of its etiology and pathological mechanisms, current interventions, including drugs, dietary modifications, exercise, hypoglycemic treatments and lipid-lowering methods, often fall short in achieving desired therapeutic outcomes. Iridoids, primarily derived from the potent components of traditional herbs, have been the subject of long-standing research. Preclinical data suggest that iridoids possess notable renal protective properties; however, there has been no summary of the research on their efficacy in the management and treatment of DKD. This article consolidates findings from in vivo and in vitro research on iridoids in the context of DKD and highlights their shared anti-inflammatory activities in treating this condition. Additionally, it explores how certain iridoid components modify their chemical structures through the regulation of intestinal flora, potentially bolstering their therapeutic effects. This review provides a focused examination of the mechanisms through which iridoids may prevent or treat DKD, offering valuable insights for future research endeavors. Please cite this article as: Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. J Integr Med. 2024; 22(3): 210-222.
Collapse
Affiliation(s)
- Tong-Yi Zhou
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Na Tian
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Liu Li
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Rong Yu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China; Hunan Provincial Key Laboratory of Translational Research in Traditional Chinese Medicine Prescriptions and Zheng, Changsha 410208, Hunan Province, China.
| |
Collapse
|
9
|
Li Y, Chen Q, Sun HJ, Zhang JH, Liu X. The Active Ingredient Catalpol in Rehmannia glutinosa Reduces Blood Glucose in Diabetic Rats via the AMPK Pathway. Diabetes Metab Syndr Obes 2024; 17:1761-1767. [PMID: 38645660 PMCID: PMC11032140 DOI: 10.2147/dmso.s446318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) poses a huge threat to population health globally, and more drugs need to be explored for treatment. In this study, we investigated the mechanism of active ingredient catalpol in Rehmannia glutinosa on reduces blood glucose in diabetic. Methods The T2DM model was constructed by intraperitoneal injection of streptozotocin into Sprague-Dawley (SD) rats, which were randomly grouped into diabetes model group, pioglitazone group, Rehmannia glutinosa group, catalpol high-dose group, catalpol low-dose group and normal control group.The intervention was continued for 28 d, and changes in body weight, fasting blood glucose, insulin and lipid levels were observed. Results Of all the drugs, pioglitazone had the most pronounced hypoglycemic effect, which began to decline after 2 weeks of treatment in the low-dose catalpol group and had no hypoglycemic effect in the high-dose catalpol group. Among them, Rehmannia glutinosa was able to increase serum triglyceride level, and pioglitazone effectively reduced total cholesterol level in rats. The low dose of catalpol decreased the concentration of low-density lipoprotein cholesterol (LDL), while the high dose of catalpol increased the concentration of LDL. Conclusion As an active ingredient in Rehmannia glutinosa, catalpol has the potential to lower blood glucose and improve blood lipids in diabetes treatment, and its action may be achieved by regulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, which provides a new idea for the development of new diabetes therapeutic approaches.
Collapse
Affiliation(s)
- Yang Li
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Qiang Chen
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Hong-Juan Sun
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Jian-Hong Zhang
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Xuan Liu
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| |
Collapse
|
10
|
Zhang B, Zhou N, Zhang Z, Wang R, Chen L, Zheng X, Feng W. Study on the Neuroprotective Effects of Eight Iridoid Components Using Cell Metabolomics. Molecules 2024; 29:1497. [PMID: 38611777 PMCID: PMC11013420 DOI: 10.3390/molecules29071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.
Collapse
Affiliation(s)
- Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ruifeng Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Long Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| |
Collapse
|
11
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
12
|
Gao F, He Q, Wu S, Zhang K, Xu Z, Kang J, Quan F. Catalpol ameliorates LPS-induced inflammatory response by activating AMPK/mTOR signaling pathway in rat intestinal epithelial cells. Eur J Pharmacol 2023; 960:176125. [PMID: 37890606 DOI: 10.1016/j.ejphar.2023.176125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Intestinal inflammation is a common clinical intestinal disease. Catalpol, a natural iridoid compound, has been shown to have anti-inflammatory, anti-oxidant and anti-apoptotic functions, but the mechanism of its protection against intestinal inflammation is still unclear. This study investigated the protective effect and potential mechanism of catalpol on the lipopolysaccharide (LPS)-induced inflammatory response of intestinal epithelial cell-6 (IEC-6). The results showed that catalpol could inhibit LPS-induced inflammatory response by dose-dependently reducing the release of inflammatory factors, such as tumor necrosis (TNF)-α, interleukin (IL)-1β and IL-6, and inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Catalpol ameliorated cellular oxidative stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) expression. Meanwhile, catalpol also inhibited cell apoptosis, decreased the expression of B-cell lymphoma 2 (Bcl-2) - associated X (Bax), caspase 3 and caspase 9, and increased the expression of Bcl-2. This study found that catalpol activates AMP-activated protein kinase (AMPK) signaling pathway and inhibit mammalian target of rapamycin (mTOR) phosphorylationthe. In a further study, after inhibiting AMPK with dorsomorphin, the anti-inflammatory effects of catalpol were significantly reduced. Therefore, catalpol ameliorates LPS-induced inflammatory response by activating AMPK/mTOR signaling pathway in IEC-6 cells.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qifu He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Xu L, Xu G, Sun N, Yao J, Wang C, Zhang W, Tian K, Liu M, Sun H. Catalpol ameliorates dexamethasone-induced osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells via the activation of PKD1 promoter. J Pharmacol Sci 2023; 153:221-231. [PMID: 37973220 DOI: 10.1016/j.jphs.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE To investigate the effects of CA on glucocorticoid-induced osteoporosis (GIOP) and lucubrate the underlying mechanism of CA via the activation of polycystic kidney disease-1(PKD1) in bone marrow mesenchymal stem cells (BMSCs). METHODS In vivo, a GIOP model in mice treated with dexamethasone (Dex) was established. Biomechanical, micro-CT, immunofluorescence staining of OCN, ALP and PKD1 and others were severally determined. qRT-PCR and Western blot methods were adopted to elucidate the particular mechanisms of CA on GIOP. In addition, BMSCs cultured in vitro were also induced by Dex to verify the effects of CA. Finally, siRNA and luciferase activity assays were performed to confirm the mechanisms. RESULTS We found that CA could restore the destroyed bone microarchitecture and increase the bone mass in GIOP mice. CA could also upregulate PKD1 protein expression, reduce oxidative stress, and promote mRNA expression of bone formation-associated markers in GIOP mice. Furthermore, it was also observed that CA reduced oxidative stress and promoted osteogenic differentiation in Dex-induced BMSCs. Mechanically, CA could promote protein expression via increasing the activity of PKD1 promoter. CONCLUSION This study provides important evidences for CA in the further clinical treatment of GIOP, reveals the activation of PKD1 promoter as the underlying mechanism.
Collapse
Affiliation(s)
- Lei Xu
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Office of Ethics Committee, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Na Sun
- Department of Pharmacy, The Third People's Hospital of Dalian, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wanhao Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kang Tian
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Huijun Sun
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Liu J, Liu S, Yu M, Li J, Xie Z, Gao B, Liu Y. Anti-inflammatory effect and mechanism of catalpol in various inflammatory diseases. Drug Dev Res 2023; 84:1376-1394. [PMID: 37534768 DOI: 10.1002/ddr.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Catalpol is a kind of iridoid glucoside, widely found in a variety of plants, mostly extracted from the rhizome of the traditional medicinal herb rehmanniae. It has various biological activities such as anti-inflammatory, antioxidant, and antitumor. The anti-inflammatory effects of catalpol have been demonstrated in a variety of diseases, such as neurological diseases, atherosclerosis, renal diseases, respiratory diseases, digestive diseases, bone and joint diseases, eye diseases, and periodontitis. The purpose of this review is to summarize the existing literature on the anti-inflammatory effects of catalpol in a variety of inflammatory diseases over the last decade and to focus on the anti-inflammatory mechanisms of catalpol.
Collapse
Affiliation(s)
- Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Boyang Gao
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Zhang W, Wan Y, Sun S, Xie Y, Zhao D, Li B, Li J, Tian Y, Feng S. A Pharmacokinetic Study of Sixteen Major Bioactive Components of Jinshui-Huanxian Granules in Pulmonary Fibrosis Model and Control Rats Using Orbitrap Fusion Mass Spectrometry. Molecules 2023; 28:6492. [PMID: 37764268 PMCID: PMC10534582 DOI: 10.3390/molecules28186492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Jinshui-Huanxian granules (JHGs), a Chinese herbal compound prescription, have shown a therapeutic effect in reducing lung tissue damage, improving the degree of pulmonary fibrosis, replenishing lungs and kidneys, relieving cough and asthma, reducing phlegm, and activating blood circulation. However, these active compounds' pharmacokinetics and metabolic processes were unclear. This study aimed to compare the pharmacokinetics, reveal the metabolic dynamic changes, and obtain the basic pharmacokinetic parameters of 16 main bioactive compounds after intragastric administration of JHGs in control and pulmonary fibrosis (PF) model rats by using Orbitrap Fusion MS. After administration of JHGs, the rat plasma was collected at different times. Pretreating the plasma sample with methanol and internal standard (IS) solution carbamazepine (CBZ), and it was then applied to a C18 column by setting gradient elution with a mobile phase consisting of methanol 0.1% formic acid aqueous solution. Detection was performed on an electrospray ionization source (ESI), and the scanning mode was SIM. Pharmacokinetic parameters were analyzed according to the different analytes' concentrations in plasma. The matrix effect was within the range of 79.01-110.90%, the extraction recovery rate was 80.37-102.72%, the intra-day and inter-day precision relative standard deviation (RSD) was less than 7.76%, and the stability was good, which met the requirements of biological sample testing. The method was validated (r ≥ 0.9955) and applied to compare the pharmacokinetic profiles of the control group and PF model group after intragastric administration of the JHGs. The 16 analytes exhibited different pharmacokinetic behaviors in vivo. In the pathological state of the PF model, most of the components were more favorable for metabolism and absorption, and it was more meaningful to study the pharmacokinetics. Above all, this study provided an essential reference for exploring the mechanism of action of JHGs and guided clinical medication as well.
Collapse
Affiliation(s)
- Weiwei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China; (W.Z.); (S.S.); (D.Z.); (B.L.)
- Faculty of Chemistry, University of Strasbourg, 67008 Strasbourg, France
| | - Yan Wan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China;
| | - Shuding Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China; (W.Z.); (S.S.); (D.Z.); (B.L.)
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou 450046, China; (Y.X.); (J.L.)
| | - Yang Xie
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou 450046, China; (Y.X.); (J.L.)
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou 450003, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China; (W.Z.); (S.S.); (D.Z.); (B.L.)
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou 450046, China; (Y.X.); (J.L.)
| | - Bing Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China; (W.Z.); (S.S.); (D.Z.); (B.L.)
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China;
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou 450046, China; (Y.X.); (J.L.)
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou 450003, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China; (W.Z.); (S.S.); (D.Z.); (B.L.)
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou 450046, China; (Y.X.); (J.L.)
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450003, China; (W.Z.); (S.S.); (D.Z.); (B.L.)
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou 450046, China; (Y.X.); (J.L.)
| |
Collapse
|
16
|
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165:115007. [PMID: 37327587 DOI: 10.1016/j.biopha.2023.115007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have been proposed as a novel therapeutic tool for preventing human diseases. However, the number of well-verified plant ELNs remains limited. In this study, the microRNAs in ELNs derived from fresh Rehmanniae Radix, a well-known traditional Chinese herb for treating inflammatory and metabolic diseases, were determined by using microRNA sequencing to investigate the active components in the ELNs and the protection against lipopolysaccharide (LPS)-induced acute lung inflammation in vivo and in vitro. The results showed that rgl-miR-7972 (miR-7972) was the main ingredient in ELNs. It exerted stronger protective activities against LPS-induced acute lung inflammation than catalpol and acteoside, which are two well-known chemical markers in this herb. Moreover, miR-7972 decreased the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), reactive oxygen species (ROS) and nitric oxide (NO) in LPS-exposed RAW264.7 cells, thereby facilitating M2 macrophage polarization. Mechanically, miR-7972 downregulated the expression of G protein-coupled receptor 161 (GPR161), activating the Hedgehog pathway, and inhibited the biofilm form of Escherichia coli via targeting virulence gene sxt2. Therefore, miR-7972 derived from fresh R. Radix alleviated LPS-induced lung inflammation by targeting the GPR161-mediated Hedgehog pathway, recovering gut microbiota dysbiosis. It also provided a new direction for gaining novel bioactivity nucleic acid drugs and broadening the knowledge on cross-kingdom physiological regulation through miRNAs.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Jia-Feng Wang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Chang-Yi Shi
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Westlake University, Hangzhou 310024, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
17
|
Li S, Tian Z, Xian X, Yan C, Li Q, Li N, Xu X, Hou X, Zhang X, Yang Y, Xue S, Ma S, Cui S, Sun L, Yao X. Catalpol rescues cognitive deficits by attenuating amyloid β plaques and neuroinflammation. Biomed Pharmacother 2023; 165:115026. [PMID: 37336148 DOI: 10.1016/j.biopha.2023.115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
This study sought to investigate the anti-amyloid β (Aβ) and anti-neuroinflammatory effects of catalpol in an Alzheimer's disease (AD) mouse model. METHODS The effects of catalpol on Aβ formation were investigated by thioflavin T assay. The effect of catalpol on generating inflammatory cytokines from microglial cells and the cytotoxicity of microglial cells on HT22 hippocampal cells were assessed by real-time quantitative PCR, ELISA, redox reactions, and cell viability. APPswe/PS1ΔE9 mice were treated with catalpol, and their cognitive ability was investigated using the water maze and novel object recognition tests. Immunohistochemistry and immunofluorescence were used to probe for protein markers of microglia and astrocyte, Aβ deposits, and NF-κB pathway activity. Aβ peptides, neuroinflammation, and nitric oxide production were examined using ELISA and redox reactions. RESULTS Catalpol potently inhibited Aβ fibril and oligomer formation. In microglial cells stimulated by Aβ, catalpol alleviated the expression of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and inducible nitric oxide synthase (iNOS) but promoted the expression of the anti-inflammatory cytokine IL-10. Catalpol alleviated the cytotoxic effects of Aβ-exposed microglia on HT22 cells. Treatment with catalpol in APPswe/PS1ΔE9 mice downregulated neuroinflammation production, decreased Aβ deposits in the brains and alleviated cognitive impairment. Catalpol treatment decreased the number of IBA-positive microglia and GFAP-positive astrocytes and their activities of the NF-κB pathway in the hippocampus of APPswe/PS1ΔE9 mice. CONCLUSION The administration of catalpol protected neurons by preventing neuroinflammation and Aβ deposits in an AD mouse model. Therefore, catalpol may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ziqi Tian
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Cuihuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nan Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaokang Xu
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaojie Hou
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyun Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yinan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Sisi Xue
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengkai Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuanlong Cui
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lijun Sun
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
18
|
Li B, Zhou X, Zhen L, Zhang W, Lu J, Zhou J, Tang H, Wang H. Catapol reduced the cognitive and mood dysfunctions in post-stroke depression mice via promoting PI3K-mediated adult neurogenesis. Aging (Albany NY) 2023; 15:8433-8443. [PMID: 37647020 PMCID: PMC10496983 DOI: 10.18632/aging.204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023]
Abstract
Adult hippocampal neurogenesis provides a regenerative resource for neural tissue and enhances neural plasticity, which is beneficial for brain functional rehabilitation post stroke. Recently, an increasing number of metabolic drugs have been reported to attenuate behavioral symptoms in neurodegeneration or psychiatric disorders via promoting adult hippocampal neurogenesis. Bioeffects of catapol show its potential as an antidiabetic though it has been previously widely indicated to perform the neuroprotective functions. However, the systematic evidence to support the behavioral effects of catapol to PSD model and what is the role of adult neurogenesis in such effects remains unexplored. In current study, we created the PSD model by combining MCAO procedure and CORT feeding. The treatment of catapol strikingly reduced the depressive/anxiety behavior in PSD model. Moreover, treatment of catapol also improved the cognitive functions. Immunofluorescence indicates that catapol could promote adult hippocampal neurogenesis in PSD model, and TMZ treatment further confirmed the role of the hippocampal neurogenesis in catapol's therapeutic effects to PSD. Cultural neurons also indicates that PI3K is the key signal in regulating catapol mediated neurogenesis. By administrating the PI3K specific inhibitor, we found that PI3K is the key to mediate the behavioral effects of catapol to PSD. In conclusion, catapol could perform as the effective drug to treat PSD via the PI3K mediated adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Xin Zhou
- Medical Laboratory, Shanxi Province Pediatric Hospital, Taiyuan, China
| | - Lu Zhen
- Department of Endocrinology, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Weiwei Zhang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, China
| | - Jian Lu
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Jie Zhou
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Huoquan Tang
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| | - Huangsuo Wang
- Department of Neurosurgery, General Hospital of Taiyuan Iron and Steel Co, Taiyuan, China
| |
Collapse
|
19
|
Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Sowa I, Szczepanek D, Wójciak M. Comparative Study of Cytotoxicity and Antioxidant, Anti-Aging and Antibacterial Properties of Unfermented and Fermented Extract of Cornus mas L. Int J Mol Sci 2023; 24:13232. [PMID: 37686038 PMCID: PMC10487488 DOI: 10.3390/ijms241713232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Due to the high demand for products that can help treat various skin conditions, the interest in plant extracts, which are a valuable source of phytochemicals, is constantly growing. In this work, the properties of extracts and ferments from Cornus mas L. and their potential use in cosmetic products were compared. For this purpose, their composition, antioxidant properties and cytotoxicity against skin cells, keratinocytes and fibroblasts were assessed in vitro. In addition, the ability to inhibit the activity of collagenase and elastase was compared, which enabled the assessment of their potential to inhibit skin aging. Microbiological analyses carried out on different bacterial strains were made in order to compare their antibacterial properties. The conducted analyses showed that both dogwood extract and ferment have antioxidant and anti-aging properties. In addition, they can have a positive effect on the viability of keratinocytes and fibroblasts and inhibit the proliferation of various pathogenic bacteria, which indicates their great potential as ingredients in skin care preparations. The stronger activity of the ferment compared to the extract indicates the legitimacy of carrying out the fermentation process of plant raw materials using kombucha in order to obtain valuable products for the cosmetics industry.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (A.M.); (Z.N.-Ł.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
20
|
Ainembabazi D, Zhang Y, Turchi JJ. The mechanistic role of cardiac glycosides in DNA damage response and repair signaling. Cell Mol Life Sci 2023; 80:250. [PMID: 37584722 PMCID: PMC10432338 DOI: 10.1007/s00018-023-04910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Cardiac glycosides (CGs) are a class of bioactive organic compounds well-known for their application in treating heart disease despite a narrow therapeutic window. Considerable evidence has demonstrated the potential to repurpose CGs for cancer treatment. Chemical modification of these CGs has been utilized in attempts to increase their anti-cancer properties; however, this has met limited success as their mechanism of action is still speculative. Recent studies have identified the DNA damage response (DDR) pathway as a target of CGs. DDR serves to coordinate numerous cellular pathways to initiate cell cycle arrest, promote DNA repair, regulate replication fork firing and protection, or induce apoptosis to avoid the survival of cells with DNA damage or cells carrying mutations. Understanding the modus operandi of cardiac glycosides will provide critical information to better address improvements in potency, reduced toxicity, and the potential to overcome drug resistance. This review summarizes recent scientific findings of the molecular mechanisms of cardiac glycosides affecting the DDR signaling pathway in cancer therapeutics from 2010 to 2022. We focus on the structural and functional differences of CGs toward identifying the critical features for DDR targeting of these agents.
Collapse
Affiliation(s)
- Diana Ainembabazi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - John J. Turchi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| |
Collapse
|
21
|
Fu Z, Su X, Zhou Q, Feng H, Ding R, Ye H. Protective effects and possible mechanisms of catalpol against diabetic nephropathy in animal models: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1192694. [PMID: 37621314 PMCID: PMC10446169 DOI: 10.3389/fphar.2023.1192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Aim of the Study: Rehmannia glutinosa is a core Chinese herbal medicine for the treatment of diabetes and diabetic nephropathy (DN). It has been used for the treatment of diabetes for over 1,000 years. Catalpol is the main active compound in Rehmannia roots. Current evidence suggests that catalpol exhibits significant anti-diabetic bioactivity, and thus it has attracted increasing research attention for its potential use in treating DN. However, no studies have systematically evaluated these effects, and its mechanism of action remains unclear. This study aimed to evaluate the effects of catalpol on DN, as well as to summarize its possible mechanisms of action, in DN animal models. Materials and Methods: We included all DN-related animal studies with catalpol intervention. These studies were retrieved by searching eight databases from their dates of inception to July 2022. In addition, we evaluated the methodological quality of the included studies using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool. Furthermore, we calculated the weighted standard mean difference (SMD) with 95% confidence interval (CI) using the Review Manager 5.3 software and evaluated publication bias using the Stata (12.0) software. A total of 100 studies were retrieved, of which 12 that included 231 animals were finally included in this review. Results: As compared to the control treatment, treatment with catalpol significantly improved renal function in DN animal models by restoring serum creatinine (Scr) (p = 0.0009) and blood urea nitrogen (BUN) (p < 0.00001) levels, reducing proteinuria (p < 0.00001) and fasting blood glucose (FBG) (p < 0.0001), improving kidney indices (p < 0.0001), and alleviating renal pathological changes in the animal models. In addition, it may elicit its effects by reducing inflammation and oxidative stress, improving podocyte apoptosis, regulating lipid metabolism, delaying renal fibrosis, and enhancing autophagy. Conclusion: The preliminary findings of this preclinical systematic review suggest that catalpol elicits significant protective effects against hyperglycemia-induced kidney injury. However, more high-quality studies need to be carried out in the future to overcome the methodological shortcomings identified in this review.
Collapse
Affiliation(s)
- Zhongmei Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hejiang Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Liang X, Zhao Y, Xu T, Wang W, Sun W, Wang R. Catalpol Alleviates Depression by Inhibiting NLRP3 Inflammasome via TLR4/MAPK/NF-Kb Pathway. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:722-731. [PMID: 37551177 PMCID: PMC10404318 DOI: 10.18502/ijph.v52i4.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 08/09/2023]
Abstract
Background We aimed to explore catalpol and NF-k. The role of antidepressant and anti-inflammatory effects of b inhibitor in depression induced by chronic unpredictable mild stress (CUMS). Methods Under the guidance of Qiqihar Medical University, from January 2020 to January 2021, the weight, sucrose consumption and rest time of mice during swimming were monitored, the neurobehavioral changes of rats under CUMS were used to determine the experimental model; ELISA detection of iNOS, ROS, caspase-1, IL-1 β And IL-18 expression level; Western blotting detection of TLR4, MAPK and NF-κB expression level; LPS-induced cell model. INOS, NLRP3, caspase-1, IL-1 in RT-qPCR and ELISA detection models β And IL-18 expression level; the TLR4, MAPK and NF-κB level were detected by Western blotting. Results CUMS can make rats lose weight, reduce sucrose consumption rate and prolong rest time. Catapol can enhance this effect; In the depression model, ROS, NLRP3, NF-κ B and iNOS were up-regulated Catalpol group MAPK, NF-κ Reduced expression of B and TLR4; ROS, caspase-1, IL-1β, IL-18 and iNOS protein increased. Cell model group TLR4, MAPK and NF-κ. The high protein content of B decreased in catalpol group. Conclusion Catalpol acts as anti-depressant and anti-inflammatory molecule indepression induced by CUMS. Combination of catalpol with NF-κB inhibitor might play a role in the treatment of depression through regulating the neuroinflammation.
Collapse
Affiliation(s)
- Xuemei Liang
- The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yuhuan Zhao
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Tianjiao Xu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| | - Wei Wang
- Mudanjiang Medical College, Mudanjiang 155000, China
| | - Weidong Sun
- The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Rui Wang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| |
Collapse
|
23
|
Ndongwe T, Witika BA, Mncwangi NP, Poka MS, Skosana PP, Demana PH, Summers B, Siwe-Noundou X. Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970-2022. Cancers (Basel) 2023; 15:770. [PMID: 36765728 PMCID: PMC9913650 DOI: 10.3390/cancers15030770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The rise of cancer cases has coincided with the urgent need for the development of potent chemical entities and/or modification of existing commodities to improve their efficacy. Increasing evidence suggests that cancer remains one of the leading causes of death globally, with colon cancer cases alone likely to rise exponentially by 2030. The exponential rise in cancer prevalence is largely attributable to the growing change toward a sedentary lifestyle and modern diets, which include genetically modified foods. At present, the prominent treatments for cancer are chemotherapy, surgery, and radiation. Despite slowing cancer progression, these treatments are known to have devastating side effects that may deteriorate the health of the patient, thus, have a low risk-benefit ratio. In addition, many cancer drugs have low bioavailability, thereby limiting their therapeutic effects in cancer patients. Moreover, the drastic rise in the resistance of neoplastic cells to chemotherapeutic agents is rendering the use of some drugs ineffective, thereby signaling the need for more anticancer chemical entities. As a result, the use of natural derivatives as anticancer agents is gaining considerable attention. Iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs, which synergistically have the potential to increase their effects. Published studies have identified the role of iridoids, which, if fully explored, may result in cheaper and less toxic alternative/adjuvant cancer drugs. The subject of this article is natural and synthetic iridoid derivatives and their potential therapeutic roles as anticancer agents.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Phumzile P. Skosana
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Patrick H. Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Beverley Summers
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| |
Collapse
|
24
|
Xia Y, Lu YW, Hao RJ, Yu GR. Catalpol relieved angiotensin II-induced blood-brain barrier destruction via inhibiting the TLR4 pathway in brain endothelial cells. PHARMACEUTICAL BIOLOGY 2022; 60:2210-2218. [PMID: 36369944 PMCID: PMC9665075 DOI: 10.1080/13880209.2022.2142801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Catalpol is a major bioactive constituent of Rehmannia glutinosa Libosch (Scrophulariaceae), a traditional Chinese medicine, which is widely used in multiple diseases, including hypertension. OBJECTIVES To explore whether catalpol protects against angiotensin II (Ang II)-triggered blood-brain barrier (BBB) leakage. MATERIALS AND METHODS The bEnd.3 cells and BBB models were pre-treated with or without catalpol (50, 200 and 500 μM) or TAK-242 (1 μM) for 2 h and then with Ang II (0.1 μM) or LPS (1 μg/mL) for 24 h. Cell viability was determined by the MTT assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), caveolin-1 (Cav-1) and p-eNOS/eNOS were tested by western blot. The BBB permeability was evaluated by the flux of bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) across monolayers. nuclear factor kappa-B (NF-κB) p65 nuclear translocation was explored by immunofluorescence staining. RESULTS Ang II (0.1 μM) decreased the cell viability to 86.52 ± 1.79%, elevated the levels of TLR4, MyD88, iNOS, TNF-α and Cav-1 respectively to 3.7-, 1.5-, 2.3-, 2.2- and 2.7-fold, reduced the level of p-eNOS/eNOS to 1.6-fold in bEnd.3 cells, and eventually increased BBB permeability. Catalpol dose-dependently reversed these changes at 50-500 μM. Meanwhile, catalpol (500 μM) inhibited the upregulated levels of TLR4 pathway-related proteins and NF-κB p65 nuclear translocation, decreased the enhanced transcytosis, and relieved the BBB disruption caused by both LPS (the TLR4 activator) and Ang II. The effects are same as TAK-242 (the TLR4 inhibitor). CONCLUSIONS Catalpol relieved the Ang II-induced BBB damage, which indicated catalpol has high potential for the treatment of hypertension-induced cerebral small vessel disease (cSVD).
Collapse
Affiliation(s)
- Yu Xia
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Juan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gu Ran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Catalpol Regulates Oligodendrocyte Regeneration and Remyelination by Activating the GEF-Cdc42/Rac1 Signaling Pathway in EAE Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7074157. [DOI: 10.1155/2022/7074157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
The main obstacle to remyelination in demyelinating diseases, such as multiple sclerosis, is the inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature oligodendrocytes (OLs) in the demyelinating region. Consequently, promoting OL differentiation and myelin remodeling is a key goal in the search for treatments. Rho GTPases play diverse and important roles throughout the development of neuronal axons and the formation of the myelin sheath. The current study aimed to investigate the direct protective effects of catalpol on demyelination damage induced by myelin oligodendrocyte glycoprotein (MOG) immunization and to explore whether the GEF-Cdc42/Rac1 signaling pathway contributes to the regeneration effect induced by catalpol. In the MOG-induced experimental autoimmune encephalomyelitis (EAE) mouse model of demyelination, we observed that catalpol significantly promoted OL development by enhancing the expression of glutathione S-transferase pi (GST-pi) in the affected brain. By Luxol fast blue staining and myelin basic protein (MBP) expression assessment, catalpol was found to increase MBP expression and promote myelin repair. Furthermore, catalpol promoted OL differentiation associated with the upregulation of Cdc42/Rac1 expression and activation in vivo. In addition, PAK1/MRCKα, proteins downstream of Cdc42/Rac1, was positively regulated by catalpol. We also found that catalpol alleviated clinical neurological dysfunction, inhibited inflammatory infiltration, increased the proportion of Treg cells, and suppressed demyelination. Overall, our study is the first to reveal that catalpol can promote OL generation and myelination and contributes to the crucial regulatory process of GEF-Cdc42/Rac1 signaling expression and activation. Therefore, catalpol is a promising drug candidate for the potential treatment of demyelinating diseases.
Collapse
|
26
|
Ahrens S, Appl B, Trochimiuk M, Dücker C, Feixas Serra G, Oliver Grau A, Reinshagen K, Pagerols Raluy L. Kigelia africana inhibits proliferation and induces cell death in stage 4 Neuroblastoma cell lines. Biomed Pharmacother 2022; 154:113584. [PMID: 36029541 DOI: 10.1016/j.biopha.2022.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common solid pediatric tumors and especially high-risk NBs still account for about 12-15% of cancer related deaths in children. Kigelia africana (KA) is a plant used in traditional African medicine which has already shown its anti-cancer potential in several in vitro and in vivo studies. The aim of this study is to evaluate the effect of KA fruit extract on stage 4 high-risk NB cells. Therefore, NB cell lines with and without MYCN amplification and non-neoplastic cells were treated with KA fruit extract at different concentrations. The effect of KA on cell viability and apoptosis rate were assessed by bioluminescence-/fluorescence-based assays. Several proteins involved in survival, tumor growth, inflammation and metastasis were detected via western blot and immunofluorescence. Secreted cytokines were detected via ELISA. Phytochemical composition of the extract was analyzed by liquid chromatography with tandem mass spectrometry (LC/MS/MS). Our group demonstrates a dose- and time-dependent selective cytotoxic effect of KA fruit extract on NB, especially in MYCN non-amplified tumor cells, by inhibiting cell proliferation and inducing cell death. Western blot and immunofluorescence results demonstrate a regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), disialoganglioside GD2 and epidermal growth factor receptor (EGFR) in KA-treated tumor cells. Our results evidence striking anti-cancer properties of KA fruit and pave the way for further surveys on the therapeutic properties and mechanisms of action in NB.
Collapse
Affiliation(s)
- Sofia Ahrens
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Charlotte Dücker
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
27
|
Wang H, Wu J, Fan H, Ji Y, Han C, Li C, Jiang S. The Impact of Catalpol on Proliferation, Apoptosis, Migration, and Oxidative Stress of Lung Cancer Cells Based on Nrf2/ARE Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5621341. [PMID: 35898682 PMCID: PMC9313965 DOI: 10.1155/2022/5621341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
The effects of catalpol on lung cancer cell proliferation, apoptosis, migration, and oxidative stress via the Nrf2/ARE signaling pathway are investigated in this work. Catalpol-12 g/mL group, catalpol-24 g/mL group, catalpol-48 g/mL group, catalpol - 48 g/mL + vector group, catalpol - 48 g/mL + Nrf2 group, si-NC group, and si-Nrf2 group were used to split lung cancer cells A549 into control groups. Proliferation was detected using the CCK-8 assay; apoptosis was detected using flow cytometry; migration was detected using the transwell chamber; ROS was distinguished using the DCFHDA method; MDA, SOD, and GSH were detected using the microvolume method; and Cleaved Caspase-3, Cleaved Caspase-9, Nrf2, HO-1, MMP-9, and MMP-2 were detected using the Western blot method. Catalpol 12 g/mL and 24 g/mL-48 g/mL treatment decreased the proliferation activity, migration number, and Nrf2, HO-1, MMP-9, and MMP-2 protein levels of lung cancer cells when compared to the control group. SOD and GSH levels of lung cancer cells were decreased, and MDA and ROS levels were increased. Cleaved caspase-3, cleaved caspase-9 protein expression levels, and apoptosis were boosted (P < 0.05). The proliferation activity, migration number, and protein levels of Nrf2, HO-1, MMP-9, and MMP-2 in the catalpol - 48 g/mL + Nrf2 group were raised compared to the catalpol - 48 g/mL + vector group, whereas there was an apparent drop in the Cleaved Caspase-3, Cleaved Caspase-9, and apoptosis rate. Similarly, SOD and GSH contents increased, whereas MDA and ROS decreased (P < 0.05). The proliferation activity, migration number, and Nrf2, HO-1, MMP-9, and MMP-2 protein levels of lung cancer cells in the si-Nrf2 group were all decreased when compared to the si-NC and control groups. Cleaved Caspase-3 and Cleaved Caspase-9 protein expression, on the other hand, increased as MDA and ROS levels were raised while SOD and GSH levels dropped (P < 0.05). It reveals that catalpol inhibits the Nrf2/ARE signaling pathway, which causes antiproliferation, migration, apoptosis, and oxidative stress in cancer cells of lungs. The rate of apoptosis was also lowered.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Jingtao Wu
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Haiyin Fan
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Yuan Ji
- Department of Clinical Nursing, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Chunbin Han
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Chao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Sicong Jiang
- Division of Thoracic and Endocrine Surgery, unige.it, 1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Zaharie MGO, Radu N, Pirvu L, Bostan M, Voicescu M, Begea M, Constantin M, Voaides C, Babeanu N, Roman V. Studies Regarding the Pharmaceutical Potential of Derivative Products from Plantain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1827. [PMID: 35890460 PMCID: PMC9321672 DOI: 10.3390/plants11141827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, three types of extracts isolated from leaves of Plantain (Plantago lanceolata) were tested for their chemical content and biological activities. The three bioproducts are combinations of polysaccharides and polyphenols (flavonoids and iridoidic compounds), and they were tested for antioxidant, antifungal, antitumor, and prebiotic activity (particularly for polysaccharides fraction). Briefly, the iridoid-enriched fraction has revealed a pro-oxidant activity, while the flavonoid-enriched fraction had a high antioxidant potency; the polysaccharide fraction also indicated a pro-oxidant activity, explained by the co-presence of iridoid glycosides. All three bioproducts demonstrated moderate antifungal effects against Aspergillus sp., Penicillium sp., and dermatophytes, too. Studies in vitro proved inhibitory activity of the three fractions on the leukemic tumor cell line THP-1, the main mechanism being apoptosis stimulation, while the polysaccharide fraction indicated a clear prebiotic activity, in the concentration range between 1 and 1000 µg/mL, evaluated as higher than that of the reference products used, inulin and dextrose, respectively.
Collapse
Affiliation(s)
- Marilena-Gabriela Olteanu Zaharie
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
- Biotechnology Department, National Institute of Chemistry and Petrochemistry R & D of Bucharest, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Lucia Pirvu
- Biotechnology Department, National Institute of Chemical Pharmaceutical R & D, 112 Vitan Road, 031299 Bucharest, Romania;
| | - Marinela Bostan
- Institute of Virology Stefan S. Nicolau, Center of Immunology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; (M.B.); (V.R.)
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Mariana Voicescu
- Institute of Physical Chemistry Ilie Murgulescu, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mihaela Begea
- Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060026 Bucharest, Romania
| | - Mariana Constantin
- Biotechnology Department, National Institute of Chemistry and Petrochemistry R & D of Bucharest, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
- Faculty of Pharmacy, University Titu Maiorescu, 178 Calea Vacaresti, 040051 Bucharest, Romania
| | - Catalina Voaides
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Narcisa Babeanu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania; (M.-G.O.Z.); (C.V.); (N.B.)
| | - Viviana Roman
- Institute of Virology Stefan S. Nicolau, Center of Immunology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; (M.B.); (V.R.)
| |
Collapse
|
29
|
Sousa C, Mendes AF. Monoterpenes as Sirtuin-1 Activators: Therapeutic Potential in Aging and Related Diseases. Biomolecules 2022; 12:921. [PMID: 35883477 PMCID: PMC9313249 DOI: 10.3390/biom12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtuin 1 (SIRT) is a class III, NAD+-dependent histone deacetylase that also modulates the activity of numerous non-histone proteins through deacylation. SIRT1 plays critical roles in regulating and integrating cellular energy metabolism, response to stress, and circadian rhythm by modulating epigenetic and transcriptional regulation, mitochondrial homeostasis, proteostasis, telomere maintenance, inflammation, and the response to hypoxia. SIRT1 expression and activity decrease with aging, and enhancing its activity extends life span in various organisms, including mammals, and improves many age-related diseases, including cancer, metabolic, cardiovascular, neurodegenerative, respiratory, musculoskeletal, and renal diseases, but the opposite, that is, aggravation of various diseases, such as some cancers and neurodegenerative diseases, has also been reported. Accordingly, many natural and synthetic SIRT1 activators and inhibitors have been developed. Known SIRT1 activators of natural origin are mainly polyphenols. Nonetheless, various classes of non-polyphenolic monoterpenoids have been identified as inducers of SIRT1 expression and/or activity. This narrative review discusses current information on the evidence that supports the role of those compounds as SIRT1 activators and their potential both as tools for research and as pharmaceuticals for therapeutic application in age-related diseases.
Collapse
Affiliation(s)
- Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
30
|
Liu L, Wu Q, Chen Y, Gu G, Gao R, Peng B, Wang Y, Li A, Guo J, Xu X, Shao X, Li L, Shen Y, Sun J. Updated Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of Natural Product Geniposide. Molecules 2022; 27:3319. [PMID: 35630796 PMCID: PMC9144884 DOI: 10.3390/molecules27103319] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
At present, the potential of natural products in new drug development has attracted more and more scientists' attention, and natural products have become an important source for the treatment of various diseases or important lead compounds. Geniposide, as a novel iridoid glycoside compound, is an active natural product isolated from the herb Gardenia jasminoides Ellis (GJ) for the first time; it is also the main active component of GJ. Recent studies have found that geniposide has multiple pharmacological effects and biological activities, including hepatoprotective activity, an anti-osteoporosis effect, an antitumor effect, an anti-diabetic effect, ananti-myocardial dysfunction effect, a neuroprotective effect, and other protective effects. In this study, the latest research progress of the natural product geniposide is systematically described, and the pharmacological effects, pharmacokinetics, and toxicity of geniposide are also summarized and discussed comprehensively. We also emphasize the major pathways modulated by geniposide, offering new insights into the pharmacological effects of geniposide as a promising drug candidate for multiple disorders.
Collapse
Affiliation(s)
- Liping Liu
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Qin Wu
- Medical School, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (Q.W.); (G.G.)
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China;
| | - Guoxiang Gu
- Medical School, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (Q.W.); (G.G.)
| | - Runan Gao
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Bo Peng
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Yue Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Anbang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Jipeng Guo
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Xinru Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Xiaochen Shao
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Lingxing Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Ya Shen
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Jihu Sun
- Institute of Biotechnology, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China
| |
Collapse
|
31
|
Herrera-Morales WV, Ramírez-Lugo L, Cauich-Kumul R, Murillo-Rodríguez E, Núñez-Jaramillo L. Personalization of pharmacological treatments for ADHD: Why it is advisable and possible options to achieve it. Curr Top Med Chem 2022; 22:1236-1249. [DOI: 10.2174/1568026622666220509155413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Attention-deficit hyperactivity disorder is a neurodevelopmental disorder diagnosed primarily in children, although it is also present in adults. Patients present inattention, impulsivity, and hyperactivity symptoms that create difficulties in their daily lives. Pharmacological treatment with stimulants or non-stimulants is used most commonly to reduce ADHD symptoms. Although generally effective and safe, pharmacological treatments have different effects among patients, including lack of response and adverse reactions. The reasons for these differences are not fully understood, but they may derive from the highly diverse etiology of ADHD. Strategies to guide optimal pharmacological treatment selection on the basis of individual patients’ physiological markers are being developed. In this review, we describe the main pharmacological ADHD treatments used and their main drawbacks. We present alternatives under study that would allow the customization of pharmacological treatments to overcome these drawbacks and achieve more reliable improvement of ADHD symptoms.
Collapse
Affiliation(s)
- Wendy Verónica Herrera-Morales
- Departamento de Ciencias Médicas. División de Ciencias de la Salud. Universidad de Quintana Roo. Chetumal, Quintana Roo. México
| | - Leticia Ramírez-Lugo
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México. Ciudad de México. México
| | - Roger Cauich-Kumul
- Departamento de Ciencias Farmaceúticas. División de Ciencias de la Salud. Universidad de Quintana Roo. Chetumal, Quintana Roo. México
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas. Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, México
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México
| | - Luis Núñez-Jaramillo
- Departamento de Ciencias Médicas. División de Ciencias de la Salud. Universidad de Quintana Roo. Chetumal, Quintana Roo. México
| |
Collapse
|
32
|
Green Coffee Bean Extract Normalize Obesity-Induced Alterations of Metabolic Parameters in Rats by Upregulating Adiponectin and GLUT4 Levels and Reducing RBP-4 and HOMA-IR. Life (Basel) 2022; 12:life12050693. [PMID: 35629362 PMCID: PMC9144088 DOI: 10.3390/life12050693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity is a serious public health issue worldwide. Finding safe and efficacious products to reverse obesity has proven to be a difficult challenge. This study showed the effects of Coffea arabica or green coffee bean extract (GCBE) on obesity disorders and the improvement of obesity-induced insulin resistance, dyslipidemia, and inflammation. The active constituents of GCBE were identified via high-performance liquid chromatography. Twenty-four male albino Wistar rats were divided into two groups. The first group (Group I) was fed a control diet, whereas the second group was fed a high-fat diet (HFD) for eight weeks till obesity induction. The second group was equally subdivided into Group II, which received HFD, and Group III, which received HFD + GCBE for another eight weeks. The body and organ weights of the animals were measured, and blood and adipose tissue samples were collected for analysis. The results indicated that the administration of GCBE significantly decreased the body and organ weights. Furthermore, it had an ameliorative effect on serum biochemical parameters. It dramatically reduced total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, glucose, and insulin levels. In addition, an improvement in homeostasis model assessment-insulin resistance and an enhancement of high-density lipoprotein cholesterol levels were observed compared with the HFD group. In addition, the group treated with GCBE exhibited a marked increase in serum levels of adiponectin (an anti-inflammatory adipokine). In addition, a considerable reduction in adipocyte hypertrophy was found following GCBE treatment. Remarkably, the administration of GCBE resulted in a remarkable decrease in the expression of RBP4 (a pro-inflammatory cytokine), whereas an increase in GLLUT4 expression was observed in the adipose tissue. This improved insulin resistance in GCBE-administered HFD rats compared with other HFD rats. Our study showed that GCBE exhibits anti-obesity activity and may be used as a natural supplement to prevent and treat obesity and its associated disorders.
Collapse
|
33
|
Zhang W, Lin H, Cheng W, Huang Z, Zhang W. Protective Effect and Mechanism of Plant-Based Monoterpenoids in Non-alcoholic Fatty Liver Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4839-4859. [PMID: 35436113 DOI: 10.1021/acs.jafc.2c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
34
|
Friščić M, Petlevski R, Kosalec I, Madunić J, Matulić M, Bucar F, Hazler Pilepić K, Maleš Ž. Globularia alypum L. and Related Species: LC-MS Profiles and Antidiabetic, Antioxidant, Anti-Inflammatory, Antibacterial and Anticancer Potential. Pharmaceuticals (Basel) 2022; 15:506. [PMID: 35631332 PMCID: PMC9146695 DOI: 10.3390/ph15050506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Species from the genus Globularia L. have been used as healing agents for various ailments, with utilization of Globularia alypum L. being most frequently reported. The aim of this study was to evaluate the antidiabetic, antioxidant, anti-inflammatory, antibacterial and anticancer potential of G. alypum and three related species, G. punctata Lapeyr., G. cordifolia L. and G. meridionalis (Podp.) O.Schwarz, in relation to their phytochemical compositions. Globularin and verbascoside were identified using LC-PDA-ESI-MSn as the major metabolites of G. alypum with known biological activities. G. alypum demonstrated the greatest α-glucosidase inhibitory activity and DPPH radical scavenging activity (IC50 = 17.25 μg/mL), while its anti-inflammatory activity was not significantly different from those of related species. All investigated species showed considerable antibacterial activity against methicillin-resistant Staphylococcus aureus in the broth microdilution method (MIC = 1.42-3.79 mg/mL). G. punctata also showed antibacterial activities against Escherichia coli (MIC = 1.42 mg/mL), Bacillus subtilis (MIC = 1.89 mg/mL), B. cereus (MIC = 2.84 mg/mL) and Enterococcus faecalis (MBC = 5.68 mg/mL). G. punctata, G. cordifolia and G. meridionalis showed greater anticancer potential than G. alypum. Obtained results indicate investigated Globularia species could serve as sources of diverse bioactive molecules, with G. punctata having the greatest antibacterial potential.
Collapse
Affiliation(s)
- Maja Friščić
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| | - Roberta Petlevski
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, HR-10000 Zagreb, Croatia;
| | - Ivan Kosalec
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia;
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia;
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, A-8010 Graz, Austria;
| | - Kroata Hazler Pilepić
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| | - Željan Maleš
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia;
| |
Collapse
|
35
|
Yan M, Li L, Wang Q, Shao X, Luo Q, Liu S, Li Y, Wang D, Zhang Y, Diao H, Rong X, Guo J. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation. Pharmacotherapy 2022; 148:112709. [DOI: 10.1016/j.biopha.2022.112709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
36
|
Li Y, Yang Y, Kang X, Li X, Wu Y, Xiao J, Ye Y, Yang J, Yang Y, Liu H. Study on The Anti-Inflammatory Effects of Callicarpa nudiflora Based on The Spectrum-Effect Relationship. Front Pharmacol 2022; 12:806808. [PMID: 35153761 PMCID: PMC8829221 DOI: 10.3389/fphar.2021.806808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Callicarpa nudiflora (C. nudiflora) is widely used to treat inflammation-related diseases in China. C. nudiflora mainly contains phenylethanol glycosides, flavonoids, triterpenes, diterpenes, iridoid glycosides, volatile oils, and other small molecules. Therefore, it is necessary to screen out anti-inflammatory active substances from C. nudiflora. In this paper, high-performance liquid chromatography was used to establish the fingerprint of C. nudiflora extracts. The anti-inflammation of C. nudiflora extracts were evaluated by the experiment of toes swelling in inflammatory rats. Then, the spectrum–effect relationship between the fingerprints and anti-inflammatory activities was researched by Pearson analysis and orthogonal partial least squares analysis to identify a group of anti-inflammatory compounds of C. nudiflora extracts. The differences of extracts are illustrated by principal component analysis and cluster analysis in pharmacological effects. Finally, 12 compounds, including catalpol (P1), caffeic acid (P2), protocatechuic acid (P9), 3,4-dihydroxybenzaldehyde (P10), forsythiaside E (P12), protocatechualdehyde isomers (P14), forsythiaside B (P15), rutin (P16), alyssonoside (P21), verbascoside (P22), 2′-acetyl forsythoside B (P24), and isorhamnetin (P32) by HPLC-DAD and UPLC-Q-TOF MS/MS, were determined as potential compounds for anti-inflammatory activity in C. nudiflora. In particular, six compounds were identified as active substances with the greatest anti-inflammatory potential. Moreover, all compounds were tested for anti-inflammatory experiments or anti-inflammatory literature retrieval. In this study, a method for rapid screening of potential anti-inflammatory active ingredients of C. nudiflora was established, which can provide a reference for the future study of active compounds of C. nudiflora.
Collapse
Affiliation(s)
- Yamei Li
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China.,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yifang Yang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry, Shanghai, China.,Shanghai Yaochen Biotechnology Co. Ltd., Shanghai, China
| | - Xingdong Kang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Shanghai, China
| | - Xiaofeng Li
- Jiangxi Puzheng Pharmaceutical Co. Ltd., Ji'an, China
| | - Yongzhong Wu
- Jiangxi Puzheng Pharmaceutical Co. Ltd., Ji'an, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co. Ltd., Ji'an, China
| | - Yang Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Shanghai, China
| | - Jianqiong Yang
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yang Yang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Hai Liu
- The Clinical Medicine Research Center of the First Clinical Medical College, Gannan Medical University, Ganzhou, China.,College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
37
|
Nemmar A, Beegam S, Zaaba NE, Alblooshi S, Alseiari S, Ali BH. The Salutary Effects of Catalpol on Diesel Exhaust Particles-Induced Thrombogenic Changes and Cardiac Oxidative Stress, Inflammation and Apoptosis. Biomedicines 2022; 10:99. [PMID: 35052780 PMCID: PMC8773344 DOI: 10.3390/biomedicines10010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Inhaled particulate air pollution exerts pulmonary inflammation and cardiovascular toxicity through secondary systemic effects due to oxidative stress and inflammation. Catalpol, an iridiod glucoside, extracted from the roots of Rehmannia glutinosa Libosch, has been reported to possess anti-inflammatory and antioxidant properties. Yet, the potential ameliorative effects of catalpol on particulate air pollution-induced cardiovascular toxicity, has not been studied so far. Hence, we evaluated the possible mitigating mechanism of catalpol (5 mg/kg) which was administered to mice by intraperitoneal injection one hour before the intratracheal (i.t.) administration of a relevant type of pollutant particle, viz. diesel exhaust particles (DEPs, 30 µg/mouse). Twenty-four hours after the lung deposition of DEPs, several cardiovascular endpoints were evaluated. DEPs caused a significant shortening of the thrombotic occlusion time in pial microvessels in vivo, induced platelet aggregation in vitro, and reduced the prothrombin time and the activated partial thromboplastin time. All these actions were effectively mitigated by catalpol pretreatment. Likewise, catalpol inhibited the increase of the plasma concentration of C-reactive proteins, fibrinogen, plasminogen activator inhibitor-1 and P- and E-selectins, induced by DEPs. Moreover, in heart tissue, catalpol inhibited the increase of markers of oxidative (lipid peroxidation and superoxide dismutase) and nitrosative (nitric oxide) stress, and inflammation (tumor necrosis factor α, interleukin (IL)-6 and IL-1β) triggered by lung exposure to DEPs. Exposure to DEPs also caused heart DNA damage and increased the levels of cytochrome C and cleaved caspase, and these effects were significantly diminished by the catalpol pretreatment. Moreover, catalpol significantly reduced the DEPs-induced increase of the nuclear factor κB (NFκB) in the heart. In conclusion, catalpol significantly ameliorated DEPs-induced procoagulant events and heart oxidative and nitrosative stress, inflammation, DNA damage and apoptosis, at least partly, through the inhibition of NFκB activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Salem Alblooshi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Saleh Alseiari
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman;
| |
Collapse
|
38
|
Di Y, Zhang M, Chen Y, Sun R, Shen M, Tian F, Yang P, Qian F, Zhou L. Catalpol Inhibits Tregs-to-Th17 Cell Transdifferentiation by Up-Regulating Let-7g-5p to Reduce STAT3 Protein Levels. Yonsei Med J 2022; 63:56-65. [PMID: 34913284 PMCID: PMC8688372 DOI: 10.3349/ymj.2022.63.1.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, and Th17 cells are key factors in the pathogenesis of human inflammatory conditions, such as RA. Catalpol (CAT), a component in Rehmanniae Radix (RR), has been found to regulate human immunity. However, the effects of CAT on Th17 cell differentiation and improvement of RA are not clear. MATERIALS AND METHODS Collagen-induced arthritis (CIA) mice were constructed to detect the effects of CAT on arthritis and Th17 cells. The effect of CAT on Th17 differentiation was evaluated with let-7g-5p transfection experiments. Flow cytometry was used to detect the proportion of Th17 cells after CAT treatment. Levels of interleukin-17 and RORγt were assessed by qRT-PCR and enzyme-linked immunosorbent assay. The expression of signal transducer and activator of transcription 3 (STAT3) was determined by qRT-PCR and Western blot. RESULTS We found that the proportion of Th17 cells was negatively associated with let-7g-5p expression in CIA mice. In in vitro experiments, CAT suppressed traditional differentiation of Th17 cells. Simultaneously, CAT significantly decreased Tregs-to-Th17 cells transdifferentiation. Our results demonstrated that CAT inhibited Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p and that the suppressive effect of CAT on traditional differentiation of Th17 cells is not related with let-7-5p. CONCLUSION Our data indicate that CAT may be a potential modulator of Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p to reduce the expression of STAT3. These results provide new directions for research into RA treatment.
Collapse
Affiliation(s)
- Yuxi Di
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingfei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichang Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengxiang Tian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiya Qian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
39
|
Zhang H, Lu J, Liu H, Guan L, Xu S, Wang Z, Qiu Y, Liu H, Peng L, Men X. Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease. Pharmacol Res 2021; 174:105964. [PMID: 34732369 DOI: 10.1016/j.phrs.2021.105964] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Lipophagy is the autophagic degradation of lipid droplets. Dysregulated lipophagy has been implicated in the development of non-alcoholic fatty liver disease (NAFLD). Ajugol is an active alkaloid isolated from the root of Rehmannia glutinosa which is commonly used to treat various inflammatory and metabolic diseases. This study aimed to investigate the effect of ajugol on alleviating hepatic steatosis and sought to determine whether its potential mechanism via the key lysosome-mediated process of lipophagy. Our findings showed that ajugol significantly improved high-fat diet-induced hepatic steatosis in mice and inhibited palmitate-induced lipid accumulation in hepatocytes. Further analysis found that hepatic steatosis promoted the expression of LC3-II, an autophagosome marker, but led to autophagic flux blockade due to a lack of lysosomes. Ajugol also enhanced lysosomal biogenesis and promoted the fusion of autophagosome and lysosome to improve impaired autophagic flux and hepatosteatosis. Mechanistically, ajugol inactivated mammalian target of rapamycin and induced nuclear translocation of the transcription factor EB (TFEB), an essential regulator of lysosomal biogenesis. siRNA-mediated knockdown of TFEB significantly abrogated ajugol-induced lysosomal biogenesis as well as autophagosome-lysosome fusion and lipophagy. We conclude that lysosomal deficit is a critical mediator of hepatic steatosis, and ajugol may alleviate NAFLD via promoting the TFEB-mediated autophagy-lysosomal pathway and lipophagy.
Collapse
Affiliation(s)
- Heng Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China; School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan, Hebei 063210, China
| | - Junfeng Lu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Shiqing Xu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Zai Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Yang Qiu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Honglin Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, China.
| | - Xiuli Men
- School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan, Hebei 063210, China.
| |
Collapse
|
40
|
Targeting Mitochondria by Plant Secondary Metabolites: A Promising Strategy in Combating Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222212570. [PMID: 34830453 PMCID: PMC8619002 DOI: 10.3390/ijms222212570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.
Collapse
|
41
|
Catalpol alleviates Ang II-induced renal injury through NF/κB pathway and TGF-β1/Smads pathway. J Cardiovasc Pharmacol 2021; 79:e116-e121. [PMID: 34654783 DOI: 10.1097/fjc.0000000000001148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Catalpol is an iridoid glycoside obtained from Rehmannia glutinosa, which in previous studies showed various pharmacological properties, including anti-inflammatory, antioxidant, antidiabetic, antitumor and dopaminergic neurons protecting effects. Here, we examined the effect of catalpol on AngII-induced renal injury induced by angiotensin II (AngII), and further to explore its latent molecular mechanisms. We used an in vivo model of AngII-induced renal injury mice, catalpol (25, 50, and 100 mg/kg) was administered for 28 days. Mouse glomerular mesangial cells (SV40 MES 13), rat kidney interstitial fibroblasts cells (NRK-49F), and human proximal tubular epithelial cells (HK-2) were induced by AngII (10 µM) in the presence or absence of catalpol (1, 5, and 10 µM) and incubated for 48 h in vitro. In our study, PAS and masson staining of renal tissue showed that catalpol reduced AngII-induced renal injury in a concentration-dependent manner. The positive expressions of Collagen IV and TGF-β1 were observed to decrease sharply after catalpol treatment. In renal tissue, the levels of pro-inflammatory cytokines TNF-α and IL-6 were evidently decreased after catalpol intervention. Catalpol can relieve AngII-induced renal injury by inactivating NF/κB and TGF-β1/Smads signaling pathways. Therefore, catalpol may act as a potential drug to treat AngII-induced renal injury.
Collapse
|
42
|
Shu A, Du Q, Chen J, Gao Y, Zhu Y, Lv G, Lu J, Chen Y, Xu H. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Chem Biol Interact 2021; 348:109625. [PMID: 34416245 DOI: 10.1016/j.cbi.2021.109625] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Catalpol is an iridoid glycoside compound isolated from the root of Rehmannia glutinosa, which has been reported to be a promising candidate for the treatment of diabetic diseases. The present study aimed at investigating the effects and potential mechanism of catalpol on endothelial dysfunction and inflammation in diabetic nephropathy (DN). We constructed DN mice and advanced glycation end products (AGEs)-induced mouse glomerular endothelial cells (mGECs) injury model. The results demonstrated that catalpol effectively improved renal pathology and decreased levels of urine protein, serum creatinine, and blood urea nitrogen in DN mice. Catalpol significantly reduced endothelial dysfunction and inflammatory infiltration of macrophages in DN mice and AGEs-induced mGECs. To further study the protective mechanism of catalpol, we transfected DN mice with recombinant adeno-associated virus expressing receptor of AGEs (RAGE) and intervened AGEs-induced mGECs with inhibitors. Catalpol reversed endothelial dysfunction and inflammation aggravated by RAGE overexpression in DN mice. Meanwhile, catalpol significantly inhibited the RAGE/Ras homolog gene family member A (RhoA)/Rho-associated kinase (ROCK) pathway in DN mice with RAGE overexpression. Moreover, the combination of catalpol with inhibitors of RAGE, RhoA and ROCK exerted stronger anti-endothelial dysfunction and anti-macrophage infiltration effects on AGEs-induced mGECs compared with catalpol alone. In short, this study indicated that catalpol could ameliorate endothelial dysfunction and inflammation via suppression of RAGE/RhoA/ROCK pathway, hereby delaying the progression of DN.
Collapse
Affiliation(s)
- Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, 224005, China; Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, 210023, China.
| | - Qiu Du
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliate of Chinese Medicine, Nanjing, 210022, China.
| | - Jing Chen
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, 210023, China.
| | - Yuyan Gao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, 210023, China.
| | - Yihui Zhu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, 210023, China.
| | - Gaohong Lv
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinfu Lu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Huiqin Xu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Key Laboratory for Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, 210023, China.
| |
Collapse
|
43
|
Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, Wang Y, Li B. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res Bull 2021; 177:81-91. [PMID: 34500039 DOI: 10.1016/j.brainresbull.2021.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the antidepressant effect and mechanism of catalpol on corticosterone (CORT)-induced depressive-like behavior in mice for the first time. As a result, CORT injection induced depressive-like behaviors of mice in behavioral tests, aggravated the serum CORT, adrenocorticotropic hormone, and corticotropin-releasing hormone levels, and conspicuously elevated the phosphorylations of nuclear factor kappa-B (NF-κB) in the hippocampus and frontal cortex, and down-regulated the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2). Furthermore, CORT exposure dramatically augmented the levels of inflammatory factors (interleukin-1β, tumor necrosis factor-α, nitric oxide synthase, and nitric oxide) and lipid peroxidation product malondialdehyde, and attenuated the levels of antioxidants including reduced glutathione, glutathione S-transferase, total superoxide dismutase, and heme oxygenase-1 in the mouse hippocampus and frontal cortex. On the contrary, catalpol administration markedly suppressed the abnormalities of the above indicators. From the overall results, this study displayed that catalpol exerted a beneficial effect on CORT-induced depressive-like behavior in mice possibly via the inhibition of hypothalamus-pituitary-adrenal (HPA) axis hyperactivity, central inflammation and oxidative damage at least partially through dual regulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
44
|
Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression? Nutrients 2021; 13:nu13092974. [PMID: 34578851 PMCID: PMC8466600 DOI: 10.3390/nu13092974] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Iridoids are glycosides found in plants, having inherent roles in defending them against infection by viruses and microorganisms, and in the rapid repair of damaged areas. The emerging roles of iridoid glycosides on pharmacological properties have aroused the curiosity of many researchers, and studies undertaken indicate that iridoid glycosides exert inhibitory effects in numerous cancers. This review focuses on the roles and the potential mechanism of iridoid glycosides at each stage of cancer development such as proliferation, epithelial mesenchymal transition (EMT), migration, invasion and angiogenesis. Overall, the reviewed literature indicates that iridoid glycosides inhibit cancer growth by inducing cell cycle arrest or by regulating apoptosis-related signaling pathways. In addition, iridoid glycosides suppress the expression and activity of matrix metalloproteinases (MMPs), resulting in reduced cancer cell migration and invasiveness. The antiangiogenic mechanism of iridoid glycosides was found to be closely related to the transcriptional regulation of pro-angiogenic factors, i.e., vascular endothelial growth factors (VEGFs) and cluster of differentiation 31 (CD31). Taken together, these results indicate the therapeutic potential of iridoid glycosides to alleviate or prevent rapid cancer progression and metastasis.
Collapse
|
45
|
Gong PY, Guo YJ, Tian YS, Gu LF, Qi J, Yu BY. Reverse tracing anti-thrombotic active ingredients from dried Rehmannia Radix based on multidimensional spectrum-effect relationship analysis of steaming and drying for nine cycles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114177. [PMID: 33945856 DOI: 10.1016/j.jep.2021.114177] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) and modern pharmacodynamics, dried Rehmannia Radix (DRR) possesses prominent anti-thrombotic activity that decreases after processing by nine steaming and drying cycles to develop processed Rehmannia Radix (PRR). Due to the complexity of the DRR components, the chemical mechanism leading to efficacy changes of DRR caused by processing is still unclear. AIM OF STUDY This study aimed to trace the anti-thrombotic active compounds of DRR and different degrees of processed RR (PRR) and to evaluate the synergistic effects among different active components. MATERIALS AND METHODS The anti-thrombotic active chemical fraction of DRR extracts was evaluated. Targeted fractions of the processed products of RR were prepared at different processing stages. The changes in monosaccharides, oligosaccharides and secondary metabolites during processing were characterized by multidimensional high-performance liquid chromatography (HPLC). The anti-thrombotic effects of targeted fractions of different RR samples were evaluated by analyzing the length of tail thrombus (LT) and serum biochemical indicators in carrageenan-induced tail-thrombus mice. The spectrum-effect relationships were investigated by partial least squares regression (PLSR) analysis and gray correlation analysis (GRA). Finally, the active compounds were screened by spectrum-effect relationship analysis and validated in vivo, and their synergistic effects were determined by Webb's fraction multiplication method. RESULTS Six ingredients highly associated with anti-thrombotic activities were screened out by the spectrum-effect relationship analysis, of which oligosaccharides (stachyose, sucrose and raffinose) and iridoid glycosides (catalpol, leonuride and melitoside) possessed a synergistic effect on tumor necrosis factors (TNF-α), interleukin 1β (IL-1β) and plasminogen activator inhibitor 1 (PAI-1)/tissue-type plasminogen activator (t-PA) ratio in vivo with synergistic coefficient (SC) > 1. CONCLUSION The main material basis of the anti-thrombotic activities of DRR is oligosaccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.
Collapse
Affiliation(s)
- Pu-Yang Gong
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Yu-Jie Guo
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yu-Shan Tian
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Li-Fei Gu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bo-Yang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
46
|
Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study. Molecules 2021; 26:molecules26164826. [PMID: 34443414 PMCID: PMC8400542 DOI: 10.3390/molecules26164826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
Natural antioxidants, especially those of plant origins, have shown a plethora of biological activities with substantial economic value, as they can be extracted from agro-wastes and/or under exploited plant species. The perennial hydrophyte, Potamogeton perfoliatus, has been used traditionally to treat several health disorders; however, little is known about its biological and its medicinal effects. Here, we used an integrated in vitro and in vivo framework to examine the potential effect of P. perfoliatus on oxidative stress, nociception, inflammatory models, and brewer’s yeast-induced pyrexia in mice. Our results suggested a consistent in vitro inhibition of three enzymes, namely 5-lipoxygenase, cyclooxygenases 1 and 2 (COX-1 and COX-2), as well as a potent antioxidant effect. These results were confirmed in vivo where the studied extract attenuated carrageenan-induced paw edema, carrageenan-induced leukocyte migration into the peritoneal cavity by 25, 44 and 64% at 200, 400 and 600 mg/kg, p.o., respectively. Moreover, the extract decreased acetic acid-induced vascular permeability by 45% at 600 mg/kg, p.o., and chemical hyperalgesia in mice by 86% by 400 mg/kg, p.o., in acetic acid-induced writhing assay. The extract (400 mg/kg) showed a longer response latency at the 3 h time point (2.5 fold of the control) similar to the nalbuphine, the standard opioid analgesic. Additionally, pronounced antipyretic effects were observed at 600 mg/kg, comparable to paracetamol. Using LC-MS/MS, we identified 15 secondary metabolites that most likely contributed to the obtained biological activities. Altogether, our findings indicate that P. perfoliatus has anti-inflammatory, antioxidant, analgesic and antipyretic effects, thus supporting its traditional use and promoting its valorization as a potential candidate in treating oxidative stress-associated diseases.
Collapse
|
47
|
Catalpol Weakens Depressive-like Behavior in Mice with Streptozotocin-induced Hyperglycemia via PI3K/AKT/Nrf2/HO-1 Signaling Pathway. Neuroscience 2021; 473:102-118. [PMID: 34358633 DOI: 10.1016/j.neuroscience.2021.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Depression has huge social risks of high incidence, disability, and suicide. Its prevalence and harm in people with hyperglycemia are 2-3 times higher than in normal people. However, antidepressants with precise curative effects and clear mechanisms for patients with hyperglycemia are currently lacking. Prescriptions containing Rehmannia glutinosa, a traditional medicinal herb with a wide range of nutritional and medicinal values, are often used as antidepressants in Chinese clinical medicine. Catalpol is one of the main effective compounds of R. glutinosa, with multiple biological activities such as hypoglycemia. Here, the antidepressant effect of catalpol on the pathological state of streptozotocin (STZ)-induced hyperglycemia and the underlying molecular mechanisms were analyzed. Results showed that administering catalpol orally to hyperglycemic mice for 21 consecutive days significantly reversed the abnormalities in tail suspension, forced swimming, and open field tests. Catalpol also reversed the abnormal phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the abnormal levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, heme oxygenase-1 (HO-1), and antioxidants, including superoxide dismutase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and malondialdehyde in the hippocampus and frontal cortex of STZ-induced hyperglycemic mice. Thus, catalpol attenuates depressive-like behavior in pathological hyperglycemic state, and the antidepressant mechanism could at least be partly attributed to the upregulation of the PI3K/AKT/Nrf2/HO-1 signaling pathway in both brain regions, thus restoring the balance between oxidative and antioxidant damage. These data expanded the scientific understanding of catalpol and provided preclinical experimental evidence for its application.
Collapse
|
48
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
49
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety of a feed additive consisting of a tincture derived from Verbascum thapsus L. (great mullein tincture) for use in all animal species (MANGHEBATI SAS). EFSA J 2021; 19:e06711. [PMID: 34335922 PMCID: PMC8317052 DOI: 10.2903/j.efsa.2021.6711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tincture derived from Verbascum thapsus L. (great mullein tincture) is intended to be used as a sensory additive in feed for all animal species. The product is a water/ethanol solution, with a dry matter content of ˜ 2.8% and contains on average 0.216% polyphenols including 0.093% flavonoids. According to a previous assessment, the additive was not characterised in full and about 82% of the dry matter fraction remained uncharacterised (representing 2.26% of the tincture). There was also uncertainty on the potential presence of iridoid glycosides in the tincture. Therefore, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) could not conclude on the safety of the additive at the proposed use levels of up to 50 g/kg complete feed for all animal species or for the consumer. The applicant has provided new data which show that the unidentified fraction consists of crude fibre, other carbohydrates, and protein. The tincture also contains aucubin (0.004%). Considering the genotoxic potential of aucubin and other related iridoids, no conclusions can be drawn for long-living animals (pets and other non-food producing animals, horses and animals for reproduction). For short-living animals (animals for fattening), the FEEDAP Panel concludes that the tincture is safe at the maximum proposed use level of 50 mg/kg complete feed and that the use in water for drinking is safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. No safety concerns would arise for the consumer from the use of the tincture up to the highest safe level in animal nutrition. In the absence of data, no conclusions can be drawn on the potential of the tincture to be a dermal/eye irritant or a skin sensitiser.
Collapse
|
50
|
Ren X, Wang L, Chen Z, Hou D, Xue Y, Diao X, Shen Q. Foxtail Millet Improves Blood Glucose Metabolism in Diabetic Rats through PI3K/AKT and NF-κB Signaling Pathways Mediated by Gut Microbiota. Nutrients 2021; 13:nu13061837. [PMID: 34072141 PMCID: PMC8228963 DOI: 10.3390/nu13061837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Foxtail millet (FM) is receiving ongoing increased attention due to its beneficial health effects, including the hypoglycemic effect. However, the underlying mechanisms of the hypoglycemic effect have been underexplored. In the present study, the hypoglycemic effect of FM supplementation was confirmed again in high-fat diet and streptozotocin-induced diabetic rats with significantly decreased fasting glucose (FG), glycated serum protein, and areas under the glucose tolerance test (p < 0.05). We employed 16S rRNA and liver RNA sequencing technologies to identify the target gut microbes and signaling pathways involved in the hypoglycemic effect of FM supplementation. The results showed that FM supplementation significantly increased the relative abundance of Lactobacillus and Ruminococcus_2, which were significantly negatively correlated with FG and 2-h glucose. FM supplementation significantly reversed the trends of gene expression in diabetic rats. Specifically, FM supplementation inhibited gluconeogenesis, stimulated glycolysis, and restored fatty acid synthesis through activation of the PI3K/AKT signaling pathway. FM also reduced inflammation through inhibition of the NF-κB signaling pathway. Spearman’s correlation analysis indicated a complicated set of interdependencies among the gut microbiota, signaling pathways, and metabolic parameters. Collectively, the above results suggest that the hypoglycemic effect of FM was at least partially mediated by the increased relative abundance of Lactobacillus, activation of the PI3K/AKT signaling pathway, and inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (X.R.); (L.W.)
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Linxuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (X.R.); (L.W.)
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Xianmin Diao
- Center for Crop Germplasm Resources, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
- Correspondence: ; Tel.: +86-10-62737524
| |
Collapse
|