1
|
Cheng L, Wei Y, Peng L, Wei K, Liu Z, Wei X. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits. Crit Rev Food Sci Nutr 2024; 64:11321-11340. [PMID: 37584203 DOI: 10.1080/10408398.2023.2236701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As far as health benefit is concerned, dark tea is one of the best beverages in the world. Theabrownins are the major ingredient contributing to the health benefits of dark tea and known as "the soft gold in dark tea." A growing body of evidence indicated that theabrownins are macromolecular pigments with reddish-brown color and mellow taste, and mainly derived from the oxidative polymerization of tea polyphenols. Theabrownins are the main active ingredients in dark tea which brings multiple health-promoting effects in modulating lipid metabolism, reducing body weight gain, attenuating diabetes, mitigating NAFLD, scavenging ROS, and preventing tumors. More importantly, it's their substantial generation in microbial fermentation that endows dark tea with much stronger hypolipidemic effect compared with other types of tea. This review firstly summarizes the most recent findings on the preparation, structural characteristics, and health-promoting effects of theabrownins, emphasizing the underlying molecular mechanism, especially the different mechanisms behind the effect of theabrownins-mediated gut microbiota on the host's multiple health-promoting benefits. Furthermore, this review points out the main limitations of current research and potential future research directions, hoping to provide updated scientific evidence for their better theoretical research and industrial utilization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
2
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
3
|
Shi SS, Hu T. Effects of Eurotium Cristatum on soybean ( Glycine max L.) polyphenols and the inhibitory ability of soybean polyphenols on acetylcholinesterase under different conditions. Food Chem X 2024; 23:101526. [PMID: 38933989 PMCID: PMC11200280 DOI: 10.1016/j.fochx.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Most phenolic compounds in beans exist in complex, insoluble binding forms that bind to cell wall components via ether, ester, or glucoside bonds. In the process of solid-state fermentation, Eurotium Cristatum can produce many hydrolase enzymes, such as α-amylase, pectinase, cellulase and β-glucosidase, which can effectively hydrolyze ether, ester or glucoside bond, release bound polyphenols, and increase polyphenol content in soybeans. When the fermentation conditions of soybean were fermentation time 12 days, inoculation amount 15% and initial pH 2, the content of free polyphenols in fermented soybean was 2.79 mg GAE/g d.w, which was 4.98 times that of unfermented soybean. The contents of bound polyphenols and total phenols in fermented soybean were 0.62 mg GAE/g d.w and 3.41 mg GAE/g d.w, respectively, which were 2.38 times and 4.16 times of those in unfermented soybean. At the same time, the inhibitory effect of free polyphenols in fermented soybean on acetylcholinesterase reached 91.51%. Thus, our results demonstrated that solid state fermentation and Eurotium Cristatum can be used as an effective way to increase soybean polyphenol content and combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shuo-shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang R, Li Q, Gu Y, Liao W. Harnessing the Power of Fermented Tea to Improve Gut Microbiota and Combat Obesity Epidemic. BIOLOGY 2024; 13:779. [PMID: 39452088 PMCID: PMC11504357 DOI: 10.3390/biology13100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The global rise in obesity rates has prompted a thorough evaluation of dietary strategies that may alleviate this metabolic issue. Fermented tea, a beverage rich in polyphenols and catechins, has emerged as a viable therapeutic option for obesity management. This review discusses the role of fermented tea in modulating the gut microbiome, a critical factor in energy regulation and obesity. We explore how the bioactive components in fermented tea influence gut health and their implications for metabolic health. Fermented tea may inhibit weight gain and fat accumulation in obese animal models, likely by promoting beneficial bacteria and suppressing harmful species. Changes in the production of short-chain fatty acids and improvements in gut barrier integrity are linked to enhanced insulin sensitivity and reduced inflammatory markers, essential for effective obesity management. However, barriers remain in applying these findings in clinical settings, such as the need for standardized fermentation techniques and accurate dosage assessments. This review underscores the therapeutic potential of fermented tea in obesity treatment and advocates for further research to enhance its integration with public health initiatives.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiling Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Gu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
5
|
Liu M, Li X, Li Y, Zou Y. Insights into the airborne microorganisms in a Sichuan south-road dark tea pile fermentation plant during production. Front Microbiol 2024; 15:1439133. [PMID: 39286348 PMCID: PMC11402737 DOI: 10.3389/fmicb.2024.1439133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Sichuan south-road dark tea (SSDT) is generally produced through a series of processes, including fixing, rolling, pile fermentation, and drying, with microbial action during pile fermentation playing a crucial role in determining tea quality. The air within the SSDT pile fermentation plant (SSDTPP) is considered an important source of these microbes, but research in this area has been limited. Methods In this study, air samples from SSDTPP were collected on the 1st (SSDT1), 12th (SSDT2), and 24th (SSDT3) days of pile fermentation and comprehensively analyzed by high-throughput sequencing. Results and discussion The results revealed the presence of 2 and 24 phyla, 9 and 49 classes, 18 and 88 orders, 28 and 153 families, 38 and 253 genera, and 47 and 90 species of fungi and bacteria, respectively, across all samples. SSDT1 and SSDT2 individually had the highest fungal and bacterial diversity, while Aspergillus was the dominant genus throughout the pile fermentation with an abundance of 34.6%, 91.17%, and 67.86% in SSDT1, SSDT2, and SSDT3, respectively. Microbial populations in SSDT1 were predominantly involved in xenobiotic biodegradation and metabolism, amino acid metabolism, the biosynthesis of other secondary metabolites, etc. However, SSDT2 exhibited a higher prevalence of human disease-related functions. SSDT3 primarily focused on the metabolism of other amino acids and carbohydrate metabolism. Additionally, 104 genera and 22 species coexisted in both SSDTPP air and piled SSDT, suggesting that frequent microbial exchange may occur between them. These findings pave the way for microbial traceability during SSDT production and provide a foundation for further functional microbial research.
Collapse
Affiliation(s)
- Miaoyi Liu
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xian Li
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yimiao Li
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Zhao L, Zhao C, Miao Y, Lei S, Li Y, Gong J, Peng C. Theabrownin from Pu-erh Tea Improves DSS-Induced Colitis via Restoring Gut Homeostasis and Inhibiting TLR2&4 Signaling Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155852. [PMID: 39029137 DOI: 10.1016/j.phymed.2024.155852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Theabrownin (TB) is a dark brown pigment from Pu-erh tea or other dark teas. It is formed by further oxidization of theaflavins and thearubigins, in combination with proteins, polysaccharides, and caffeine etc. TB is a characteristic ingredient and bioactive substance of Pu-erh tea. However, the effects of TB on ulcerative colitis (UC) remains unclear. PURPOSE This study aims to elucidate the mechanism of TB on UC in terms of recovery of intestinal homeostasis and regulation of toll-like receptor (TLR) 2&4 signaling pathway. METHODS The colitis models were established by administering 5% dextran sulfate sodium (DSS) to C57BL/6 mice for 5 days to evaluate the therapeutic and preventive effects of TB on UC. Mesalazine was used as a positive control. H&E staining, complete blood count, enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, and 16S rRNA sequencing were employed to assess histological changes, blood cells analysis, content of cytokines, expression and distribution of mucin (MUC)2 and TLR2&4, differentiation of CD4+T cells in lamina propria, and changes in intestinal microbiota, respectively. Western blot was utilized to study the relative expression of tight junction proteins and the key proteins in TLR2&4-mediated MyD88-dependent MAPK, NF-κB, and AKT signaling pathways. RESULTS TB outstanding alleviated colitis, inhibited the release of pro-inflammatory cytokines, reduced white blood cells while increasing red blood cells, hemoglobin, and platelets. TB increased the expression of occludin, claudin-1 and MUC2, effectively restored intestinal barrier function. TB also suppressed differentiation of Th1 and Th17 cells in the colon's lamina propria, increased the fraction of Treg cells, and promoted the balance of Treg/Th17 to tilt towards Tregs. Moreover, TB increased the Firmicutes to Bacteroides (F/B) ratio, as well as the abundance of Akkermansia, Muribaculaceae, and Eubacterium_coprostanoligenes_group at the genus level. In addition, TB inhibited the activation of TLR2&4-mediated MAPK, NF-κB, and AKT signaling pathways in intestinal epithelial cells of DSS-induced mice. CONCLUSION TB acts in restoring intestinal homeostasis and anti-inflammatory in DSS-induced UC, and exhibiting a preventive effect after long-term use. In a word, TB is a promising beverage, health product and food additive for UC.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yujing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
7
|
Chen X, Wang M, Wang Z, Liu X, Cao W, Zhang N, Qi Y, Cheng S, Huang W, Liu Z. Theabrownins in dark tea form complexes with tea polysaccharide conjugates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5799-5806. [PMID: 38445688 DOI: 10.1002/jsfa.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Theabrownins (TBs) are one of most important quality components in dark tea, but have not been produced industrially. In this study, the aqueous extract was obtained from Pu-erh ripe tea, one kind of dark tea. Caffeine, theaflavin, catechin and saponin were removed by trichloromethane, ethyl acetate and n-butanol in turn to obtain a TB isolate. The TB isolate was subjected to column chromatography using a macroporous resin HPD-750 and eluted with a gradient of 0-700 g kg-1 ethanol aqueous solution. Four fractions were obtained, and named as TBs-FC1, TBs-FC2, TBs-FC3 and TBs-FC4. RESULTS These four fractions contained polysaccharides and no small molecules such as catechins, caffeine and theaflavins as well as average molecular weights of 123.000 kDa, 23.380 kDa, 89.870 kDa and 106.600 kDa. It was revealed that they were complexes of TBs and tea polysaccharide conjugates (TPCs). Ultraviolet-visible (UV-visible) and infrared (IR) spectra showed the properties of TBs and TPCs. Their zeta potentials ranged from -13.40 mV to -38.80 mV in aqueous solutions at pH 3.0-9.0. CONCLUSION This study reveals that TBs do not exist in free state but in combined state in dark tea, which provide the theoretical basis for the industrialization of TBs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Mengdie Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Zhiyuan Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiuling Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wendan Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yonggang Qi
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Shuiyuang Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wei Huang
- Food and Cosmetics Testing Research Center (Innovation Development Service platform), Hubei Institute for Drug Control, Wuhan, China
| | - Zhong Liu
- Technical research center, Hubei August Flower Food Co. Ltd, Xianning, China
| |
Collapse
|
8
|
Sun H, Fan R, Fang R, Shen S, Wang Y, Fu J, Hou R, Sun R, Bao S, Chen Q, Yue P, Gao X. Dynamics changes in metabolites and pancreatic lipase inhibitory ability of instant dark tea during liquid-state fermentation by Aspergillus niger. Food Chem 2024; 448:139136. [PMID: 38581964 DOI: 10.1016/j.foodchem.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Instant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.
Collapse
Affiliation(s)
- Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rui Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rui Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Runchen Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shinuo Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Pengxiang Yue
- Damin Foodstuff (Zhangzhou) Co., Ltd., Zhangzhou, Fujian 363000, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
9
|
Chen X, Wang Y, Chen Y, Dai J, Cheng S, Chen X. Formation, physicochemical properties, and biological activities of theabrownins. Food Chem 2024; 448:139140. [PMID: 38574720 DOI: 10.1016/j.foodchem.2024.139140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongyong Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
10
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Yu H, Xing Z, Jia K, Li S, Xu Y, Zhao P, Zhu X. Inquiry lipaseoring the mechanism of pancreatic lipase inhibition by isovitexin based on multispectral method and enzyme inhibition assay. LUMINESCENCE 2024; 39:e4765. [PMID: 38769927 DOI: 10.1002/bio.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the β-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.
Collapse
Affiliation(s)
- Hui Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongfu Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaijie Jia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sai Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
13
|
Xiao Y, Yang D, Zhang H, Guo H, Liao Y, Lian C, Yao Y, Gao H, Huang Y. Theabrownin as a Potential Prebiotic Compound Regulates Lipid Metabolism via the Gut Microbiota, Microbiota-Derived Metabolites, and Hepatic FoxO/PPAR Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8506-8520. [PMID: 38567990 DOI: 10.1021/acs.jafc.3c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.
Collapse
Affiliation(s)
- Yue Xiao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Yang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Haoran Zhang
- The First Clinical College, Changzhi Medical College, Changzhi 046013, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Changhong Lian
- Changzhi Medical College Affiliated Heping Hospital, Changzhi 046099, China
| | - Yuqin Yao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Chen X, Chen T, Liu J, Wei Y, Zhou W. Physicochemical stability and antibacterial mechanism of theabrownins prepared from tea polyphenols catalyzed by polyphenol oxidase and peroxidase. Food Sci Biotechnol 2024; 33:47-61. [PMID: 38186623 PMCID: PMC10766583 DOI: 10.1007/s10068-023-01341-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tea polyphenols were used as substrates and oxidized successively by polyphenol oxidase and peroxidase to prepare theabrownins (TBs-dE). The conversion rate of catechins to TBs-dE was 90.91%. The ultraviolet and infrared spectroscopic properties and zeta potential of TBs-dE were characterized. TBs-dE is more stable at pH 5.0-7.0, about 25 °C or in dark environment. Ultraviolet light and sunlight can deepen its color due to the further oxidative polymerization. Mg2+, Cu2+, and Al3+ had a significant effect on the stability of TBs-dE. The inhibitory rates of TBs-dE (1 mg/mL) against Staphylococcus aureus and Escherichia coli DH5α were 51.45% and 45.05%, respectively. After TBs-dE treatment, the cell morphology of both bacteria changed, some cell walls were blurred, and the cytoplasmic content leaked. The research results can provide theoretical support for the industrialization of theabrownins.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Tingting Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Jiayan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Yan’an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Weilong Zhou
- National Center for Tea Quality Inspection and Testing, Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, 310016 China
| |
Collapse
|
15
|
Wang J, Zhang T, Wan C, Lai Z, Li J, Chen L, Li M. The effect of theabrownins on the amino acid composition and antioxidant properties of hen eggs. Poult Sci 2023; 102:102717. [PMID: 37734359 PMCID: PMC10518584 DOI: 10.1016/j.psj.2023.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 09/23/2023] Open
Abstract
Pu-erh tea theabrownins (TBs) exert beneficial effect on egg quality and antioxidant properties of eggs, but the underlying mechanisms behind this response are unclear. In this study, we investigate the effect of TBs on egg antioxidative activity, amino acid and fatty acid profiles, and the underlying relationship between the TBs and oxidant-sensitive Nrf2 signaling pathway in laying hens. Eighty layers were fed a basal diet (control) and 400 mg/kg of TBs supplemented diet for 12 wk. TBs led to an increase in albumen height and Haugh unit (P < 0.05). The albumen lysine, valine, and tryptophan were higher in layers fed TBs, whereas yolk tryptophan, methionine, vitamin A, and α-tocopherol content were enhanced by TBs (P < 0.05). Eggs albumen and yolk showed higher total antioxidant capacity (T-AOC), reducing power (RP), and the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH), and lower MDA content than those of eggs from the control group (P < 0.05). Also, magnum Nrf2, hemeoxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and Bcl2 expression were up-regulated by TBs, whereas magnum proapoptotic gene (Bax, caspase 3, Cyt C) were down-regulated by TBs (P < 0.05). Our findings suggest that TBs improved egg albumen quality and antioxidant activity, and the Nrf2-ARE pathway were found to be involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhangfeng Lai
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Li
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Luojun Chen
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
16
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|
18
|
Liu J, Wang X, Zhu Y, Deng H, Huang X, Jayavanth P, Xiao Y, Wu J, Jiao R. Theabrownin from Dark Tea Ameliorates Insulin Resistance via Attenuating Oxidative Stress and Modulating IRS-1/PI3K/Akt Pathway in HepG2 Cells. Nutrients 2023; 15:3862. [PMID: 37764646 PMCID: PMC10536292 DOI: 10.3390/nu15183862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Dark tea has great potential in regulating glycolipid metabolism, and theabrownin (TB) is considered to be the characteristic and bioactive constituent of dark tea. This study evaluated the ability of TB1 (fermented for 7 days) and TB2 (fermented for 14 days) isolated from dark tea to reverse insulin resistance (IR) in HepG2 cells. The results indicated that TB significantly ameliorated oxidative stress by improving mitochondrial function. In addition, TB improved glycogen synthesis and glucose consumption, and inhibited gluconeogenesis and fatty acid synthesis, by regulating GSK3β (Glycogen synthase kinase 3β), G6Pase (Glucose-6-phosphatase), GCK (Glucokinase), PEPCK1 (Phosphoenolpyruvate carboxy kinase 1), SREBP-1C (sterol regulatory element-binding protein 1C), FASN (fatty acid synthase), and ACC (Acetyl-CoA carboxylase). Additionally, the results of Western blot and real-time PCR experiments demonstrated that TB modulated glucolipid metabolism through the IRS-1 (Insulin receptor substrate 1)/PI3K (phosphatidylinositol-3 kinase)/Akt (protein kinase B) signaling pathway. Treatment with the PI3K inhibitor demonstrated a favorable correlation between PI3K activation and TB action on glycolipid metabolism. Notably, we observed that TB2 had a greater effect on improving insulin resistance compared with TB1, which, due to its prolonged fermentation time, increased the degree of oxidative polymerization of TB.
Collapse
Affiliation(s)
- Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, China; (X.W.); (J.W.)
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Xin Huang
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| | - Pallavi Jayavanth
- International School, Jinan University, 601 Huangpu Road, Guangzhou 510632, China;
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, China;
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, China; (X.W.); (J.W.)
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou 510632, China; (J.L.); (Y.Z.); (H.D.); (X.H.)
| |
Collapse
|
19
|
Song F, Zhang K, Yang J, Wilson AS, Chen C, Xu X. The Hypolipidemic Characteristics of a Methanol Extract of Fermented Green Tea and Spore of Eurotium cristatum SXHBTBU1934 in Golden Hamsters. Nutrients 2023; 15:1329. [PMID: 36986059 PMCID: PMC10055714 DOI: 10.3390/nu15061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Fuzhuan brick tea (FBT), a distinctive Chinese dark tea with the predominant fungus of Eurotium cristatum, offered significant health benefits to Chinese people. In the current study, the in vivo bioactivities of E. cristatum (SXHBTBU1934) fermented green tea and spores of E. cristatum fermented on wheat were investigated, respectively. The methanol extract of fermented green tea and spore of E. cristatum both showed potent lipid-lowering activity in the blood of a high-fat diet induced hyperlipidemia model in golden hamsters and significantly reduced the accumulation of fat granules in the liver. These results indicated that the key active components were produced by E. cristatum. Chemical investigations suggested similar components in the two extracts and led to the identification of a new alkaloid, namely variecolorin P (1), along with four known structurally related compounds, (-)-neoechinulin A (2), neoechinulin D (3), variecolorin G (4), and echinulin (5). The structure of the new alkaloid was elucidated by HRESIMS, 1H, 13C, and 2D NMR analysis. The lipid-lowering activity of these compounds was evaluated using an oleic acid-induced HepG2 cell line model. Compound 1 significantly reduced the lipid accumulation in the HepG2 cell line with an IC50 value of 0.127 μM.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Jinpeng Yang
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| | - Annette S. Wilson
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Caixia Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| |
Collapse
|
20
|
Yang S, Fan L, Tan P, Lei W, Liang J, Gao Z. Effects of Eurotium cristatum on chemical constituents and α-glucosidase activity of mulberry leaf tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
21
|
Zhen Q, Liang Q, Wang H, Zheng Y, Lu Z, Bian C, Zhao X, Guo X. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice. Front Endocrinol (Lausanne) 2023; 14:1118925. [PMID: 36742397 PMCID: PMC9889550 DOI: 10.3389/fendo.2023.1118925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Nonalcoholic steatohepatitis (NASH), also known as metabolic steatohepatitis, is a clinical syndrome with pathological changes like alcoholic hepatitis but without a history of excessive alcohol consumption. NASH is closely related to metabolic disorders such as obesity, insulin resistance, type 2 diabetes mellitus, and hyperlipidemia. Its main characteristics are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, it can develop into liver cirrhosis. At present, there is no special treatment for NASH. Theabrownin (TB) is the main pigment substance in fermented tea. Theabrownin has beneficial effects on lipid metabolism and intestinal flora. However, the effect of theabrownin on NASH has not been studied. Methods This study was aimed at exploring the effects of theabrownin from Fuzhuan brick tea on NASH. 8-week-old mice were randomly assigned to three groups and fed with chow diet (CD), methionine and choline sufficient (MCS) diet (MCS Ctrl), which is a Methionine/choline deficient (MCD) control diet, and MCD diet. After 5 weeks of feeding, the MCD group mice were randomly divided into two groups and were gavaged with double distilled water (MCD Ctrl) or theabrownin (MCD TB) (200mg/kg body weight, dissolved in double distilled water) every day for another 4 weeks respectively, while continuing MCD diet feeding. Results We found that theabrownin treatment could not improve liver mass loss and steatosis. However, theabrownin ameliorated liver injury and decreased liver inflammatory response. Theabrownin also alleviated liver oxidative stress and fibrosis. Furthermore, our results showed that theabrownin increased hepatic level of fibroblast growth factor 21 (FGF21) and reduced the phosphorylation of mitogen-activated protein kinase p38 in MCD diet-fed mice.
Collapse
Affiliation(s)
- Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongchun Wang
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiulan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Yu J, Wang H, Chen W, Song H, Wang Y, Liu Z, Xu B. 20-Hydroxyecdysone and Receptor Interplay in the Regulation of Hemolymph Glucose Level in Honeybee ( Apis mellifera) Larvae. Metabolites 2023; 13:metabo13010080. [PMID: 36677005 PMCID: PMC9865031 DOI: 10.3390/metabo13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The hormone 20-hydroxyecdysone (20E) and the ecdysone receptors (ECR and USP) play critical roles in the growth and metabolism of insects, including honeybees. In this study, we investigated the effect of 20E on the growth and development of honeybee larvae by rearing them in vitro and found reduced food consumption and small-sized pupae with increasing levels of 20E. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis of widely targeted metabolomics was used to examine the changes in the metabolites after an exogenous 20E application to honeybee larvae and the underlying mechanisms. A total of 374 different metabolites were detected between the control group and the 20E treatment group, covering 12 subclasses. The most significant changes occurred in 7-day-old larvae, where some monosaccharides, such as D-Glucose and UDP-galactose, were significantly upregulated. In addition, some metabolic pathways, such as glycolysis/gluconeogenesis and galactose metabolism, were affected by the 20E treatment, suggesting that the 20E treatment disrupts the metabolic homeostasis of honeybee larvae hemolymph and that the response of honeybee larvae to the 20E treatment is dynamic and contains many complex pathways. Many genes involved in carbohydrate metabolism, including genes of the glycolysis and glycogen synthesis pathways, were downregulated during molting and pupation after the 20E treatment. In contrast, the expression levels of the genes related to gluconeogenesis and glycogenolysis were significantly increased, which directly or indirectly upregulated glucose levels in the hemolymph, whereas RNA interference with the 20E receptor EcR-USP had an opposite effect to that of the 20E treatment. Taken together, 20E plays a critical role in the changes in carbohydrate metabolism during metamorphosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Xu
- Correspondence: ; Tel.: +86-13805488930
| |
Collapse
|
23
|
Lu R, Sugimoto T, Tsuboi T, Sekikawa T, Tanaka M, Lyu X, Yokoyama S. Sichuan dark tea improves lipid metabolism and prevents aortic lipid deposition in diet-induced atherosclerosis model rats. Front Nutr 2022; 9:1014883. [PMID: 36505232 PMCID: PMC9729532 DOI: 10.3389/fnut.2022.1014883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background and aims Sichuan dark tea (ST), Zangcha, is a traditional fermented Chinese tea found in Sichuan and Tibet and claimed for beneficial effects against lifestyle-related metabolic disorders. We examined the effects of ST on lipid metabolism and atherosclerosis. Methods and results Sichuan dark tea was given to fat-rich diet-induced atherosclerosis model rats in comparison with dark-fermented Chinese Pu-erh tea (PT) and Japanese green tea (GT). After 8 weeks of feeding, ST and PT induced an increase in high-density lipoprotein (HDL)-cholesterol and a decrease in glucose, and ST decreased triglyceride in plasma. ST also induced low pH in the cecum. There was no significant change in their body weight among the fat-feeding groups but a decrease was found in the visceral fat and liver weight in the ST group. Accordingly, ST reduced lipid deposition in the aorta in comparison with PT and GT. ST increased mRNA of LXRα, PPARα, PPARγ, and ABCA1 in the rat liver. The extract of ST stimulated the AMPK pathway to increase the expression of ABCA1 in J774 cells and increased expression of lipoprotein lipase and hormone-sensitive lipase in 3T3L1 cells, consistent with its anti-atherogenic effects in rats. High-performance liquid chromatography analysis showed unique spectra of original specific compounds of caffeine and catechins in each tea extract, but none of them was likely responsible for these effects. Conclusion Sichuan dark tea increases plasma HDL and reduces plasma triglyceride to decrease atherosclerosis through AMPK activation. Further study is required to identify specific components for the effects of this tea preparation.
Collapse
Affiliation(s)
- Rui Lu
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Takumi Sugimoto
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Tomoe Tsuboi
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | | | - Mamoru Tanaka
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Xiaohua Lyu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shinji Yokoyama
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan,*Correspondence: Shinji Yokoyama,
| |
Collapse
|
24
|
Nurmilah S, Cahyana Y, Utama GL. Metagenomics Analysis of the Polymeric and Monomeric Phenolic Dynamic Changes Related to the Indigenous Bacteria of Black Tea Spontaneous Fermentation. BIOTECHNOLOGY REPORTS 2022; 36:e00774. [DOI: 10.1016/j.btre.2022.e00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
25
|
Green extraction, chemical composition, and in vitro antioxidant activity of theabrownins from Kangzhuan dark tea. Curr Res Food Sci 2022; 5:1944-1954. [PMID: 36300163 PMCID: PMC9589173 DOI: 10.1016/j.crfs.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Theabrownins (TBs) in dark tea have received increasing attention for their multiple health benefits. In this study, ultrasound assisted extraction with deep eutectic solvent (UAE-DES) was developed for the extraction of TBs from Kangzhuan dark tea (KZDT). The highest yield (12.59%) of TBs was obtained using UAE-choline (ChCl)/malic acid (MA) with a liquid to solid ratio of 20:1 (v/w), ultrasonic power of 577 W, ultrasonic time of 25 min, and water content of 30%. TBs were further eluded by silica gel to obtain six theabrownine fractions (TBFs), namely, TBFs1, TBFs2, TBFs3, TBFs4, TBFs5, and TBFs6. LC-MS/MS revealed that flavonoids, terpenes, phenolic acids, alkaloids, lipids, and amino acids are the leading components of TBFs. The TBFs4, with the DPPH, ABTS, and FRAP values of 45.08 ± 0.42 μM Ascorbic acid/g DW, 178.52 ± 0.29 μM Trolox/g DW, and 370.85 ± 6.00 μM Fe(II)/g DW, respectively, showed the highest antioxidant activity among all the TBFs. Overall, this study first provided the evidence that UAE-ChCl/MA combining with silica gel was effective to extract TBs from KZDT, and the 6,7-dihydroxycoumarin-6-glucoside and neohesperidin were found as the leading compounds in the TBFs, providing a guidance for the chemical research and further utilization of dark tea and its TBs. Yield of TBs of 12.59% from KZDT was achieved by UAE-ChCl/MA. Silica gel powder with methanol (100%–0%) as a mobile phase was used for TBs separation. The chemical component of TBFs was revealed. Flavonoids are among the leading compounds in the TBFs. TBFs4 displayed the highest in vitro antioxidant activity.
Collapse
|
26
|
An Improved Method of Theabrownins Extraction and Detection in Six Major Types of Tea (Camellia sinensis). J CHEM-NY 2022. [DOI: 10.1155/2022/8581515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tea pigments consisting of theabrownins (TBs), theaflavins (TFs), and thearubigins (TRs) affect the color and taste of tea. TBs include a variety of water-soluble compounds, but do not dissolve in n-butanol and ethyl acetate. Previously, the traditional method of TB extraction only mixed tea with n-butanol, and TBs were retained in the water phase. However, without ethyl acetate extraction, TFs and TRs remained in the water phase and affected the detection of TB content. Although an improved method had been devised by adding an ethyl acetate extraction step between tea production and n-butanol extraction, the proportional equation for calculating TB content (%) was not yet developed. In this study, we compared the absorbance at 380 nm (A380) of TB solutions from six major types of tea (green, yellow, oolong, white, black, and dark teas) extracted by improved and traditional methods from the same tea samples. Significantly lower A380 values were obtained from TB solutions via the improved method compared to the traditional method for six major types of tea, and the highest and lowest slops in TB concentrations from A380 analyses were from dark tea and green tea, respectively. Moreover, newly developed equations for TB content in those six tea types extracted by the improved methods were also established.
Collapse
|
27
|
Yuan Y, Bai Y, Zhang Y, Wan H, Hu Y, Wu Z, Li X, Song W, Chen X. Physicochemical and Colon Cancer Cell Inhibitory Properties of Theabrownins Prepared by Weak Alkali Oxidation of Tea Polyphenols. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:405-411. [PMID: 35794451 DOI: 10.1007/s11130-022-00988-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Existing studies on the biological activity of theabrownins are not based on their free state but on the complexes of theabrownins, polysaccharides, proteins, and flavonoids. In this study, theabrownins (TBs-C) were prepared by weak alkali oxidation of tea polyphenols. The ultraviolet-visible scanning spectrum of TBs-C showed two characteristic absorption peaks at 203 and 270 nm. The zeta potential of the TBs-C aqueous solution was negative, and the values varied from - 6.26 to -19.55 mV with a solution pH of 3-9. Storage conditions of pH 5.0-7.0 and around 25 °C were beneficial for the physical and chemical stability of the TBS-C solution. Cells were treated with series concentrations and examined by MTT, HE staining, PI immunofluorescence staining, flow cytometry, and real-time PCR to investigate the antiproliferative effect of TBs-C on human colon cancer HT-29 cells. The results showed that TBs-C, particularly at 500 µg/mL, inhibited cell growth. TBs-C induced HT-29 cell apoptosis, as confirmed by morphological changes, nucleus propidium iodide staining, and distributions of the cell cycle. The apoptotic mechanism may be due to the intracellular redox imbalance induced by TBs-C.
Collapse
Affiliation(s)
- Yao Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068, Wuhan, China
- South Hubei Industrial Technology Research Institute for Characteristic Agriculture, 437100, Xianning, China
| | - Yuying Bai
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8501, Yokohama, Japan
| | - Yujun Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068, Wuhan, China
- South Hubei Industrial Technology Research Institute for Characteristic Agriculture, 437100, Xianning, China
| | - Haifeng Wan
- South Hubei Industrial Technology Research Institute for Characteristic Agriculture, 437100, Xianning, China
| | - Yuxi Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068, Wuhan, China
- South Hubei Industrial Technology Research Institute for Characteristic Agriculture, 437100, Xianning, China
| | - Zhengqi Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068, Wuhan, China
- South Hubei Industrial Technology Research Institute for Characteristic Agriculture, 437100, Xianning, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 100048, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 100048, Beijing, China
| | - Wei Song
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, 710069, Xi'an, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068, Wuhan, China.
| |
Collapse
|
28
|
Xiao Y, Huang Y, Long F, Yang D, Huang Y, Han Y, Wu Y, Zhong K, Bu Q, Gao H, Huang Y. Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models. Food Chem 2022; 404:134382. [DOI: 10.1016/j.foodchem.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
|
29
|
Theabrownin Alleviates Colorectal Tumorigenesis in Murine AOM/DSS Model via PI3K/Akt/mTOR Pathway Suppression and Gut Microbiota Modulation. Antioxidants (Basel) 2022; 11:antiox11091716. [PMID: 36139789 PMCID: PMC9495753 DOI: 10.3390/antiox11091716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, yet therapeutic options for CRC often exhibit strong side effects which cause patients’ well-being to deteriorate. Theabrownin (TB), an antioxidant from Pu-erh tea, has previously been reported to have antitumor effects on non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma, gliomas, and melanoma. However, the potential antitumor effect of TB on CRC has not previously been investigated in vivo. The present study therefore aimed to investigate the antitumor effect of TB on CRC and the underlying mechanisms. Azoxymethane (AOM)/dextran sodium sulphate (DSS) was used to establish CRC tumorigenesis in a wild type mice model. TB was found to significantly reduce the total tumor count and improve crypt length and fibrosis of the colon when compared to the AOM/DSS group. Immunohistochemistry staining shows that the expression of the proliferation marker, Ki67 was reduced, while cleaved caspase 3 was increased in the TB group. Furthermore, TB significantly reduced phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and the downstream mechanistic target of rapamycin (mTOR)and cyclin D1 protein expression, which might contribute to cell proliferation suppression and apoptosis enhancement. The 16s rRNA sequencing revealed that TB significantly modulated the gut microbiota composition in AOM/DSS mice. TB increased the abundance of short chain fatty acid as well as SCFA-producing Prevotellaceae and Alloprevotella, and it decreased CRC-related Bacteroidceae and Bacteroides. Taken together, our results suggest that TB could inhibit tumor formation and potentially be a promising candidate for CRC treatment.
Collapse
|
30
|
Wang Y, Chen Y, Zhang J, Zhang C. Overexpression of llm1 Affects the Synthesis of Secondary Metabolites of Aspergillus cristatus. Microorganisms 2022; 10:microorganisms10091707. [PMID: 36144309 PMCID: PMC9502445 DOI: 10.3390/microorganisms10091707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Putative methyltransferases are thought to be involved in the regulation of secondary metabolites in filamentous fungi. Here, we report the effects of overexpression of a predicted LaeA-like methyltransferase gene llm1 on the synthesis of secondary metabolites in Aspergillus cristatus. Our results revealed that overexpression of the gene llm1 in A. cristatus significantly hindered the production of conidia and enhanced sexual development, and reduced oxidative tolerance to hydrogen peroxide. Compared with the wild-type, the metabolic profile of the overexpression transformant was distinct, and the contents of multiple secondary metabolites were markedly increased, mainly including terpenoids and flavonoids, such as (S)-olEuropeic acid, gibberellin A62, gibberellin A95, ovalitenone, PD 98059, and 1-isomangostin. A total of 600 significantly differentially expressed genes (DEGs) were identified utilizing transcriptome sequencing, and the DEGs were predominantly enriched in transmembrane transport and secondary metabolism-related biological processes. In summary, the strategy of overexpressing global secondary metabolite regulators successfully activated the expression of secondary metabolite gene clusters, and the numerous secondary metabolites were greatly strengthened in A. cristatus. This study provides new insights into the in-depth exploitation and utilization of novel secondary metabolites of A. cristatus.
Collapse
|
31
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
32
|
Theabrownin in Black Tea Suppresses UVB-induced Matrix Metalloproteinase-1 Expression in HaCaT Keratinocytes. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0336-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Xiao X, Guo L, Dai W, Yan B, Zhang J, Yuan Q, Zhou L, Shan L, Efferth T. Green tea-derived theabrownin suppresses human non-small cell lung carcinoma in xenograft model through activation of not only p53 signaling but also MAPK/JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115167. [PMID: 35271947 DOI: 10.1016/j.jep.2022.115167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory and practice of traditional Chinese medicine (TCM), the pathogenesis of lung carcinoma is associated with many syndromes, such as "sputum stasis", "cough", "lung fever", "lung toxin", and "hemoptysis", which should be removed for therapeutic purpose. Tea is not only a world-wide beverage, but also a TCM herb, possessing activities against the above syndromes. Recently, green tea extract exerted inhibitory effects on a variety of tumor cells. As a pigment active substance of green tea, theabrownin (TB) has been found to inhibit many cancer cells. AIM OF THE STUDY This study focused on the efficacy and mechanism of TB on non-small cell lung cancer (NSCLC) cell lines. The in vivo efficacy of TB on p53-deficient NSCLC (H1299) cells and p53-wild type NSCLC (A549) cells NSCLC cells were determined, and its mechanism of action was explored. MATERIALS AND METHODS In vivo, two lung cancer cell lines, H1299 (p53-deficient) and A549 (p53-wild type) were selected to establish xenograft models of larval zebrafish, respectively. For in vitro experiments, wound healing assay, DAPI staining, TUNEL assay, immunofluorescence assay, and flow cytometry were conducted in these two cell lines. RNA sequencing (RNAseq), real time PCR (qPCR) and Western blot (WB) were performed for the mechanism study. RESULTS The in vivo results showed that TB significantly inhibited the H1299 and the A549 xenograft tumor growth in larval zebrafish (dosage ranged from 2.13 to 21.3 μg/ml). Wound healing assay results showed that TB suppressed the migration of H1299 cells. DAPI staining, TUNEL assay, and immunofluorescence assay results showed that TB inhibited the growth of H1299 cells by inducing apoptosis. RNAseq, qPCR and WB data showed that TB significantly up-regulated the MAPK/JNK pathway-related proteins (ASK-1, JNK and c-JUN) through phosphorylation activation, accompanying with down-regulation of the epithelial-mesenchymal transition (EMT)-associated genes (N-CADHERIN, SLUG, FIBROWNECTIN and ZEB1) and anti-apoptotic molecules (BCL-2), and up-regulation of the metastasis-related gene HSPA6 and the pro-apoptotic molecules (BIM, BAX, PARP, c-PARP, γ-H2A.X, c-CASP3, c-CASP8, c-CASP9, DDIT3 and DUSP8). CONCLUSION This study determined the in vivo efficacy of green tea-derived TB on p53-deficient NSCLC (H1299) cells and p53-wild type NSCLC (A549) cells and clarified its p53-independent mechanism mediated by the activation of MAPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Le Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jin Zhang
- Theabio Co., Ltd, Hangzhou, 310000, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
34
|
Xiao Y, He C, Chen Y, Ho CT, Wu X, Huang Y, Gao Y, Hou A, Li Z, Wang Y, Liu Z. UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chem 2022; 378:131999. [PMID: 35081481 DOI: 10.1016/j.foodchem.2021.131999] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023]
Abstract
Eurotium cristatum is the predominant fungus and key contributor to the characteristics of post-fermented Fu brick tea (FBT) during manufacturing. In this study, the influence of solid-state fermentation (SSF) with E. cristatum on the chemical profile dynamic changes of dark tea was investigated. Results indicated that total phenolics, flavonoids, theaflavins, thearubigins, and galloyl catechins consistently decreased, degalloyl catechins and gallic acid increased in the initial stage of fermentation and decreased after long-term fermentation, and theabrownins continually increased. UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis revealed that the metabolites of dark tea processed by SSF with E. cristatum were drastically different from the raw material. A total of 574 differential metabolites covering 11 subclasses were detected in the whole SSF of dark tea, and the most drastic changes occurred in the middle stage. Phenolic acids and flavonoids were the two major classes of differential metabolites. A series of reactions such as degradation, glycosylation, deglycosylation, methylation, and oxidative polymerization occurred during SSF. Overall, SSF with E. cristatum greatly influenced the metabolites of dark tea, which provided valuable insights that E. cristatum is critical in forming the chemical constituents of FBT.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Cheng He
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xing Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yao Gao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
35
|
Hu S, Li X, Gao C, Meng X, Li M, Li Y, Xu T, Hao Q. Detection of composition of functional component theabrownins in Pu-erh tea by degradation method. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Wang Y, Yuan Y, Wang C, Wang B, Zou W, Zhang N, Chen X. Theabrownins Produced via Chemical Oxidation of Tea Polyphenols Inhibit Human Lung Cancer Cells in vivo and in vitro by Suppressing the PI3K/AKT/mTOR Pathway Activation and Promoting Autophagy. Front Nutr 2022; 9:858261. [PMID: 35529455 PMCID: PMC9070389 DOI: 10.3389/fnut.2022.858261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
During the fermentation of dark tea, theabrownins (TBs), carbohydrates, and other substances get irreversibly complex. Recent research on the biological activity of TBs is not based on free TBs. In the present study, some brown polyphenol oxidized polymers, the generalized TBs (TBs-C), were prepared via alkali oxidation from tea polyphenols (TP). We also investigated the inhibitory mechanism of TBs-C on non-small-cell-lung cancer (NSCLC). TBs-C demonstrated a stronger inhibition than TP on the NSCLC cell lines A549, H2030, HCC827, H1975, and PC9. Next, A549 and H2030 cell lines were selected as subjects to explore this mechanism. TBs-C was found to inhibit proliferation, promote apoptosis, and induce G1 cell-cycle arrest in the cells. In addition, TBs-C increased autophagic flux, which in turn promoted the death of lung cancer cells. Moreover, TBs-C suppressed the PI3K/AKT/mTOR pathway activation, promoted autophagy, and increased the expression of p21 downstream of AKT, which resulted in G1 cell-cycle arrest. In xenotransplanted NSCLC nude mice derived from A549 cells, TBs-C could significantly suppress tumor growth by inhibiting the PI3K/AKT/mTOR pathway without causing hepatotoxicity, brain toxicity, or nephrotoxicity. We believe that our present findings would facilitate advancement in the research and industrialization of TBs.
Collapse
Affiliation(s)
- Yongyong Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Yuan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chunpeng Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Bingjie Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wenbin Zou
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ni Zhang,
| | - Xiaoqiang Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
- *Correspondence: Xiaoqiang Chen,
| |
Collapse
|
37
|
Wong M, Sirisena S, Ng K. Phytochemical profile of differently processed tea: A review. J Food Sci 2022; 87:1925-1942. [DOI: 10.1111/1750-3841.16137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Melody Wong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Australia
| | - Sameera Sirisena
- Department of Chemical Engineering, Faculty of Engineering and Information Technology The University of Melbourne Parkville Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Australia
| |
Collapse
|
38
|
Yuan D, Lin L, Peng Y, Zhou Y, Li L, Xiao W, Gong Z. Effects of black tea and black brick tea with fungal growth on lowering uric acid levels in hyperuricemic mice. J Food Biochem 2022; 46:e14140. [PMID: 35352364 DOI: 10.1111/jfbc.14140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Black tea, a traditional drink, can induce urination and quench thirst. Black brick tea with fungal growth, prepared by steaming, pressing, inducing fungal growth, and drying the black tea, is a new type of black tea with different sensory qualities and is suitable for storage. However, the effects of black brick tea with fungal growth on lowering uric acid are still unexplored. Therefore, the potassium oxonate was administered for 7 consecutive days to establish the hyperuricemic mice. Then allopurinol, black tea, and black brick tea with fungal growth were orally administered with hyperuricemic mice for 14 days. Serum uric acid levels, liver xanthine oxidase (XOD) and adenosine deaminase (ADA) activities, and expression of renal urate transporters and inflammatory response were detected. Compared to the model group, both types of black tea lowered serum uric acid by decreasing the uric acid production with inhibiting the activities of XOD and ADA, and increasing uric acid excretion because of downregulating urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expressions, and upregulating organic anion transporter 1 (OAT1), organic anion transporter 3 (OAT3), and organic cation transporter 1 (OCT1) expressions. They could also improve renal injury by suppressing the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, and nuclear factor-κB (NF-κB) signaling, thereby reducing renal proinflammatory cytokine levels. Compared with black tea, black brick tea with fungal growth with a higher content of theabrownins had a better effect on lowering serum uric acid. PRACTICAL APPLICATIONS: Black tea accounts for approximately 78% of the total consumed tea in the world. Black brick tea with fungal growth is a new kind of black tea product with different sensory qualities and is suitable for storage. The study found that black brick tea with fungal growth is superior to black tea in reducing serum uric acid levels, which make a significant contribution to promote people's health and stimulate the production and consumption of black brick tea with fungal growth. In addition, it provides a clue for future research to identify the effective components of black brick tea with fungal growth lowering uric acid.
Collapse
Affiliation(s)
- Dongyin Yuan
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Guangxi Subtropical Crops Research Institute, Nanning, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yingqi Peng
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yang Zhou
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Li Li
- Hunan Baojiachong Tea Farm Co. Ltd., Yiyang, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
39
|
Chen X, Hu Y, Wang B, Chen Y, Yuan Y, Zhou W, Song W, Wu Z, Li X. Characterization of Theabrownins Prepared From Tea Polyphenols by Enzymatic and Chemical Oxidation and Their Inhibitory Effect on Colon Cancer Cells. Front Nutr 2022; 9:849728. [PMID: 35369086 PMCID: PMC8965357 DOI: 10.3389/fnut.2022.849728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Theabrownins (TBs) are prepared from dark tea and contain a large number of complex heterogeneous components, such as carbohydrates, proteins, and flavonoids, which are difficult to remove. In addition, some toxic and harmful extraction solvents are used to purify TBs. These obstacles hinder the utilization and industrialization of TBs. In this study, tea polyphenols were used as substrates and polyphenol oxidase and sodium bicarbonate (NaHCO3) were used successively to prepare theabrownins (TBs-E). The UV-visible characteristic absorption peaks of the TBs-E were located at 203 and 270 nm and Fourier-transform IR analysis showed that they were polymerized phenolic substances containing the hydroxy and carboxyl groups. The TBs-E aqueous solution was negatively charged and the absolute values of the zeta potential increased with increasing pH. A storage experiment showed that TBs-E were more stable at pH 7.0 and in low-temperature environments around 25°C. HT-29 human colon cancer cells were used to evaluate the biological activity of TBs-E through 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT), H&E staining, propidium iodide immunofluorescent staining, flow cytometry, and real-time PCR assays. The TBs-E significantly inhibited cell growth and caused late apoptosis, particularly at the dose of 500 μg/ml. The TBs-E markedly reduced the expression of antioxidant enzyme genes and increased the generation of reactive oxygen species to break the redox balance, which may have led to cell damage and death. These results will promote research and industrialization of TBs.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- *Correspondence: Xiaoqiang Chen
| | - Yuxi Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Bingjie Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yin Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yao Yuan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Weilong Zhou
- National Center for Tea Quality Inspection and Testing, Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, China
| | - Wei Song
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, Xi'an, China
- Wei Song
| | - Zhengqi Wu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
40
|
Ma W, Shi Y, Yang G, Shi J, Ji J, Zhang Y, Wang J, Peng Q, Lin Z, Lv H. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components. Food Chem 2021; 375:131877. [PMID: 34953244 DOI: 10.1016/j.foodchem.2021.131877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022]
Abstract
In order to investigate the hypolipidaemic and antioxidant effects of various dark teas produced from different post-fermentation using the same raw material, a hyperlipidaemia zebrafish model combined with binding bile salts assay and antioxidant assays were performed in this study. Results showed that the hypolipidaemic effect of dark tea extracts increased significantly (p < 0.05) while the antioxidant ability decreased sharply compared with raw material. Particularly, Liupao tea (50%) and Pu-erh tea (48%) showed promising hypolipidaemic potential; however, the antioxidant capacity of Pu-erh tea decreased (31-49%) most dramatically. Besides, the levels of total polyphenols and catechins decreased sharply, but theabrownin, gallic acid, and caffeine increased significantly after post-fermentation. Moreover, the potential mechanisms of regulating hyperlipidaemia by dark tea extracts were discussed. These results suggest that microbial fermentation significantly affects the bioactivity of dark teas, and provide theoretical basis for processing and improving of dark tea products for hyperlipidaemia therapy.
Collapse
Affiliation(s)
- Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yali Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junpeng Ji
- Hunter Biotechnology, Inc, Hangzhou 310051, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
41
|
Chen J, Wu X, Zhou Y, He J. Camellia nitidissima Chi leaf as pancreatic lipase inhibitors: Inhibition potentials and mechanism. J Food Biochem 2021; 45:e13837. [PMID: 34231229 DOI: 10.1111/jfbc.13837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/12/2023]
Abstract
In this study, Camellia nitidissima Chi leaf extract was investigated for its compounds and pancreatic lipase inhibitory potentials. The interaction was determined using ultraviolet (UV) spectroscopy, circular dichroism (CD), fluorescence spectroscopy (FS), and molecular docking to understand the inhibiton, kinetic, and conformation of extraction-pancreatic lipase complex. C. nitidissima Chi leaf extraction inhibited the pancreatic lipase activity in a dose-dependent manner at the concentration of 1-12 mg/ml. The Lineweaver-Burk plots indicated that the inhibition on pancreatic lipase by extraction was noncompetitive. In addition, the decrease in α-helix contents, increase in β-sheet and β-turn, and decrease in fluorescence intensity after extraction treatment indicated that the conformation of pancreatic lipase was changed. This work revealed that C. nitidissima Chi leaf extraction played a significant role in inhibiting pancreatic lipase activity and brought out a solution of delay fat accumulation. PRACTICAL APPLICATIONS: This study reports the components in the extract of C. nitidissima Chi leaf and its inhibitory effect and mechanism of pancreatic lipase. C. nitidissima Chi leaf is a good source of bioactive components, including multiflorin B, kaempferol-3-O-rutinoside, vicenin-2, apigenin-6-C-pentosyl-8-C-hexosyl, vitexin, kaempferol, and other ingredients. It can inhibit pancreatic lipase and be used to control obesity and treat hyperlipidemia. This study also revealed the structure changes of C. nitidissima Chi leaf extract on pancreatic lipase, and further revealed the inhibitory mechanism of C. nitidissima Chi leaf extract on lipase, which provides a theoretical basis for C. nitidissima Chi leaf as a lipase inhibitor.
Collapse
Affiliation(s)
- Jiahui Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuehui Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yue Zhou
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junhua He
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
42
|
Wu W, Hu Y, Zhang S, Liu D, Li Q, Lin Y, Liu Z. Untargeted metabolomic and lipid metabolism-related gene expression analyses of the effects and mechanism of aged Liupao tea treatment in HFD-induced obese mice. RSC Adv 2021; 11:23791-23800. [PMID: 35479821 PMCID: PMC9036539 DOI: 10.1039/d1ra04438a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Liupao tea (LPT) has been demonstrated to have beneficial effects on obesity induced by a high-fat diet (HFD); however, the effects and mechanism of aged Liupao tea (different storage years) treatment on obesity have not yet been reported. In this study, mice were divided into four groups as follows: the control group fed a normal diet; the model group fed an HFD; and the LPT aged 1 year (1Y) and LPT aged 10 years (10Y) groups receiving an HFD and water extractions from LPTs of different ages for 5 weeks. Our results revealed that aged LPT significantly alleviated HFD-induced obesity symptoms, especially in the 10Y group. Additionally, metabolomic analysis identified 11 common differential metabolites that were partly recovered to normal levels after aged LPT treatment, involved mainly in the metabolic pathways of the citrate cycle, purine metabolism, fatty acid metabolism, and amino acid metabolism. Aged LPT treatment also regulated lipid metabolism-related gene expression in the liver, which decreased the mRNA levels of SREBP-1C/HMGR/FAS involved in de novo lipogenesis and increased the mRNA levels of PPARα, LDLR and LCAT. Our study demonstrated that aged LPT may be used as a potential dietary supplement for improving obesity-related diseases caused by an HFD.
Collapse
Affiliation(s)
- Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences Changsha Hunan 410125 PR China
| | - Yao Hu
- Nuclear Agronomy and Aerospace Breeding Research Institute, Hunan Academy of Agricultural Sciences Changsha Hunan 410125 PR China
| | - Shuguang Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences Changsha Hunan 410125 PR China
| | - Dongming Liu
- Changsha University of Science & Technology Changsha 410114 PR China
| | - Qing Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University Changsha 410128 PR China
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University Changsha 410128 PR China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University Changsha 410128 PR China
| |
Collapse
|
43
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
44
|
Shi J, Ma W, Wang C, Wu W, Tian J, Zhang Y, Shi Y, Wang J, Peng Q, Lin Z, Lv H. Impact of Various Microbial-Fermented Methods on the Chemical Profile of Dark Tea Using a Single Raw Tea Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4210-4222. [PMID: 33792297 DOI: 10.1021/acs.jafc.1c00598] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, we produced Pu-erh, Liubao, Qingzhuan, and Fuzhuan teas using a single raw tea material and applied widely targeted metabolomics to study the impact of various microbial-fermented methods on the chemical profile of dark tea. The contents of catechins and free amino acids decreased drastically, whereas the contents of gallic acid and theabrownins increased significantly during microbial fermentation. Pu-erh tea had the highest content of theabrownins (11.82 ± 0.49%). Moreover, MS-based metabolomics analysis revealed that the different types of dark teas were significantly different from their raw material. A total of 85 differential metabolites were screened among 569 metabolites identified referring to self-compiled database. Glycosylated, hydroxylated, methylated, and condensed and oxidated products originating from microbial bioconversion of their corresponding primitive forms were significantly increased in dark teas. These results suggest that various microbial-fermented methods greatly affect the metabolic profile of dark tea, which can provide useful information for dark tea biochemistry research.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanpi Wang
- Greentown Agricultural Testing Technology Co., Ltd., Hangzhou 310052, China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jun Tian
- Kunming Colourful Yunnan King-shine Tea Industry Co., Ltd., Kunming 650501, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yali Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
45
|
|
46
|
Xu J, Yan B, Zhang L, Zhou L, Zhang J, Yu W, Dong X, Yao L, Shan L. Theabrownin Induces Apoptosis and Tumor Inhibition of Hepatocellular Carcinoma Huh7 Cells Through ASK1-JNK-c-Jun Pathway. Onco Targets Ther 2020; 13:8977-8987. [PMID: 32982289 PMCID: PMC7490432 DOI: 10.2147/ott.s254693] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Theabrownin (TB), a main pigment and bioactive component of tea, has been shown anti-tumor activities against carcinomas, but its effects on hepatocellular carcinoma (HCC) remain unclear. Methods Hepatocellular carcinoma Huh7 cells were used for analyses. Cell viability assay was performed to determine TB′s anti-proliferative effect, and flow cytometry with annexin V-FITC/PI double staining and DAPI staining were performed to determine its pro-apoptotic effect. Real-time PCR and Western blot assays were conducted to detect the molecular actions of TB. And a xenograft model of zebrafishes was established to evaluate the in vivo effect of TB. SP600125 (JNK inhibitor) was in vivo and in vitro used to verify the regulatory role of the JNK signaling pathway in the anti-hepatic carcinoma mechanism of TB. Results TB exerted significant anti-proliferative and pro-apoptotic effects on Huh7 cells in a dose-dependent manner. The molecular data showed that TB up-regulated the gene expressions of NOXA, PUMA, P21, Bax, and Bim and up-regulated the protein expressions of ASK-1, Bax, phosphorylated JNK, and phosphorylated c-Jun with down-regulation of Bcl-2. The in vivo data showed that TB exerted significant tumor-inhibitory effect which was even stronger than that of cis-platinum. Furthermore, the JNK inhibitor significantly weakened TB′s effects both in vivo and in vitro and blocked the related molecular pathway. Conclusion TB exerts anti-proliferative, pro-apoptotic, and tumor-inhibitory effects on Huh7 cells through activation of the JNK signaling pathway. For the first time, this study provides new evidence of anti-HCC effects and mechanism of TB.
Collapse
Affiliation(s)
- Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, People's Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jin Zhang
- Theabio Co., Ltd, Hangzhou, People's Republic of China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Yao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|