1
|
Docrat TF, Eltahir AOE, Hussein AA, Marnewick JL. Green synthesis of metal nanocarriers: A perspective for targeting glioblastoma. Drug Discov Today 2024; 29:104219. [PMID: 39476945 DOI: 10.1016/j.drudis.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 11/11/2024]
Abstract
Glioblastoma, the most aggressive brain cancer, is challenging to treat owing to the difficulty of crossing the blood-brain barrier, high recurrence rates and significant mortality. This review highlights the potential of green synthesis methods in developing metal nanoparticles (MNPs) as a sustainable solution for drug delivery systems targeting glioblastoma. We explore the unique properties and modes of action of MNPs synthesised through eco-friendly processes by focusing on their bioavailability and precision in brain targeting, and discuss the potential of MNPs to target glioblastoma at the molecular level. Integrating green synthesis into cancer therapeutics represents a novel paradigm shift towards treatments with higher efficacy and lower environmental impact, offering hope in the fight against glioblastoma.
Collapse
Affiliation(s)
- Taskeen F Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Ali O E Eltahir
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa; Permanent address: Department of Chemistry, Omdurman Islamic University, Omdurman, P.O. Box 382, Khartoum, Sudan
| | - Ahmed A Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
2
|
Nkemzi AQ, Okaiyeto K, Oyenihi O, Opuwari CS, Ekpo OE, Oguntibeju OO. Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of Helichrysum cymosum. 3 Biotech 2024; 14:291. [PMID: 39507059 PMCID: PMC11535088 DOI: 10.1007/s13205-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
The current research involved the synthesis of zinc oxide nanoparticles (ZnO-NPs) using an aqueous extract of Helichrysum cymosum shoots, and subsequent characterization via different analytical methods, such as UV-Vis spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Transmission electron microscope (TEM), and zeta potential. The biological effects of the ZnO-NPs were then tested against C3A hepatocyte cells and L6 myocyte cell lines via series of analysis, including cytotoxicity, antioxidant, anti-inflammatory, and antidiabetic effect via enzymatic inhibition. The UV-Vis analysis showed a maximum absorption spectrum at 360, and the TEM analysis reveals a spherical and hexagonal structures, with an average dimension of 28.05-58.3 nm, and the XRD reveals a crystalline hexagonal structure. The zeta potential evaluation indicated that the ZnO-NPs are relatively stable at - 20 mV, and the FTIR analysis identified some important functional group associated with phenolics, carboxylic acid, and amides that are responsible for reducing and stabilizing the ZnO-NPs. The synthesized ZnO-NPs demonstrated cytotoxic effects on the cell lines at higher concentrations (125 µg/mL and 250 µg/mL), complicating the interpretation of the results of the inflammatory and antioxidant assays. However, there was a significant (p < 0.05) increase in the inhibitions of pancreatic lipase, alpha-glucosidase, and alpha-amylase, indicating beneficial antidiabetic effects.
Collapse
Affiliation(s)
- Achasih Q. Nkemzi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Omolola Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Chinyerum S. Opuwari
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
| | - Okobi E. Ekpo
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Oluwafemi O. Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| |
Collapse
|
3
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Afreen A, Hameed H, Tariq M, Sharif MS, Ahmed R, Waheed A, Kousar MB, Akram Z. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa-mediated gold nanoparticles with advanced microscopy techniques. Microsc Res Tech 2024; 87:1984-1996. [PMID: 38619301 DOI: 10.1002/jemt.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.
Collapse
Affiliation(s)
- Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Clinical and Translational Oncology, Scuola Superiore Meridionale Via Mezzocannone, Naples, Italy
| | - Rashid Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Momina Bint Kousar
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zeeshan Akram
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| |
Collapse
|
6
|
Ismail E, Mohamed A, Elzwawy A, Maboza E, Dhlamini MS, Adam RZ. Comparative Study of Callistemon citrinus (Bottlebrush) and Punica granatum (Pomegranate) Extracts for Sustainable Synthesis of Silver Nanoparticles and Their Oral Antimicrobial Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:974. [PMID: 38869599 PMCID: PMC11173488 DOI: 10.3390/nano14110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
A comparative study was applied to investigate the potential of Callistemon citrinus (bottlebrush) flower extract (BBE) and Punica granatum (pomegranate) peel extracts (PPE) for the sustainable synthesis of the silver nanoparticles, Ag-BBE and Ag-PPE, respectively. The synthesis process of Ag NPs using the selected extracts was applied under optimized conditions. Hence, the effect of the selected plant's type on the different characteristics of the synthesized green Ag NPs was investigated. The UV-Vis spectroscopy revealed the presence of the characteristic silver peaks at 419 and 433 nm of the Ag-BBE and Ag-PPE, respectively. The XRD spectra reported the fcc phase formation of Ag NPs. The TEM results highlighted the morphological features of the synthesized Ag NPs. with a size range of 20-70 nm, and with 10-30 nm for Ag-BBE and Ag-PPE, correspondingly. The Raman spectra revealed characteristic silver bands in the Ag-PPE and reflected some bands related to the natural extract in the Ag-BBE sample. The antimicrobial activity and statistical analysis investigation were conducted against four selected oral pathogens (Staphylococcus aureus (SA), Candida albicans (CA), Staphylococcus epidermidis (S. epi), and Enterococcus faecalis (EF)). Both tested extracts, BBE, and PPE, revealed potential effectivity as reducing and capping agents for Ag NP green synthesis. However, the synthesized NPs demonstrated different features, depending on the used extract, reflecting the influence of the plant's biomolecules on the nanoparticles' properties.
Collapse
Affiliation(s)
- Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
- Physics Department, Faculty of Science (Girl’s Branch), Al Azhar University, Nasr City 11884, Cairo, Egypt
| | - Abubaker Mohamed
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC), 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Ernest Maboza
- Oral and Dental Research Laboratory, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | | | - Razia Z. Adam
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| |
Collapse
|
7
|
Eltahir AOE, Lategan KL, David OM, Pool EJ, Luckay RC, Hussein AA. Green Synthesis of Gold Nanoparticles Using Liquiritin and Other Phenolics from Glycyrrhiza glabra and Their Anti-Inflammatory Activity. J Funct Biomater 2024; 15:95. [PMID: 38667552 PMCID: PMC11051159 DOI: 10.3390/jfb15040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Phenolic compounds are the main phytochemical constituents of many higher plants. They play an important role in synthesizing metal nanoparticles using green technology due to their ability to reduce metal salts and stabilize them through physical interaction/conjugation to the metal surface. Six pure phenolic compounds were isolated from licorice (Glycyrrhiza glabra) and employed in synthesizing gold nanoparticles (AuNPs). The isolated compounds were identified as liquiritin (1), isoliquiritin (2), neoisoliquiritin (3), isoliquiritin apioside (4), liquiritin apioside (5), and glabridin (6). The synthesized AuNPs were characterized using UV, zeta sizer, HRTEM, and IR and tested for their stability in different biological media. The phenolic isolates and their corresponding synthesized NP conjugates were tested for their potential in vitro cytotoxicity. The anti-inflammatory effects were investigated in both normal and inflammation-induced settings, where inflammatory biomarkers were stimulated using lipopolysaccharides (LPSs) in the RAW 264.7 macrophage cell line. LPS, functioning as a mitogen, promotes cell growth by reducing apoptosis, potentially contributing to observed outcomes. Results indicated that all six pure phenolic isolates inhibited cell proliferation. The AuNP conjugates of all the phenolic isolates, except liquiritin apioside (5), inhibited cell viability. LPS initiates inflammatory markers by binding to cell receptors and setting off a cascade of events leading to inflammation. All the pure phenolic isolates, except isoliquiritin, neoisoliquiritin, and isoliquiritin apioside inhibited the inflammatory activity of RAW cells in vitro.
Collapse
Affiliation(s)
- Ali O. E. Eltahir
- Chemistry Department, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Kim L. Lategan
- Department of Medical Bioscience, University of Western the Cape, Bellville 7535, South Africa; (K.L.L.); (O.M.D.); (E.J.P.)
| | - Oladipupo M. David
- Department of Medical Bioscience, University of Western the Cape, Bellville 7535, South Africa; (K.L.L.); (O.M.D.); (E.J.P.)
| | - Edmund J. Pool
- Department of Medical Bioscience, University of Western the Cape, Bellville 7535, South Africa; (K.L.L.); (O.M.D.); (E.J.P.)
| | - Robert C. Luckay
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, Stellenbosch 7602, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
8
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
9
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Younis AB, Milosavljevic V, Fialova T, Smerkova K, Michalkova H, Svec P, Antal P, Kopel P, Adam V, Zurek L, Dolezelikova K. Synthesis and characterization of TiO 2 nanoparticles combined with geraniol and their synergistic antibacterial activity. BMC Microbiol 2023; 23:207. [PMID: 37528354 PMCID: PMC10394861 DOI: 10.1186/s12866-023-02955-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.
Collapse
Affiliation(s)
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Peter Antal
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
11
|
Klein W, Ismail E, Maboza E, Hussein AA, Adam RZ. Green-Synthesized Silver Nanoparticles: Antifungal and Cytotoxic Potential for Further Dental Applications. J Funct Biomater 2023; 14:379. [PMID: 37504874 PMCID: PMC10381808 DOI: 10.3390/jfb14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/29/2023] Open
Abstract
Fungal infections caused by Candida albicans (C. albicans) are one of the most prevalent types of oral disorders in the elderly. It has been reported that drug resistance to fungal pathogens poses a severe risk to global healthcare systems and public health. Therefore, the goal of this work is to investigate the cytotoxic and antifungal properties of silver nanoparticles (AgNPs) produced using three different natural extracts: Berzelia lanuginose, Helichrysum cymosum, and Searsia crenata. According to the UV-Vis results, the synthesized AgNPs via B. lanuginose, H. cymosum, and S. crenata show surface plasmonic resonance (SPR) peaks at 430, 440, and 428 nm, respectively. HR-TEM revealed different shapes for the nanoparticles within the size ranges of 16-20, 31-60, and 57-72 nm for B. lanuginose, H. cymosum, and S. crenata, respectively. Using a human oral fibroblast cell line, the cytotoxicity of both AgNPs and plant extracts was tested at concentrations of 0.007, 0.012, 0.025, and 0.062 mg/mL (buccal mucosa fibroblasts). The antifungal activity showed growth inhibition zones of approximately 18 mm, 18.67 mm, and 18.33 mm for the AgNPs conjugated with B. lanuginose, H. cymosum, and S. crenata, respectively. For the studied samples, the minimum inhibitory concentration (MIC50) was less than 0.015 mg/mL. The AgNPs exhibited antifungal activity that was concentration- and size-dependent. The results of this study offer new insights into the cytotoxicity and antifungal activity of the green-synthesized AgNPs.
Collapse
Affiliation(s)
- Widadh Klein
- Prosthodontics Department, Faculty of Dentistry, University of the Western Cape, Parow, Cape Town 7505, South Africa
| | - Enas Ismail
- Prosthodontics Department, Faculty of Dentistry, University of the Western Cape, Parow, Cape Town 7505, South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University, Cairo 11884, Egypt
| | - Ernest Maboza
- Prosthodontics Department, Faculty of Dentistry, University of the Western Cape, Parow, Cape Town 7505, South Africa
| | - Ahmed A Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Razia Z Adam
- Prosthodontics Department, Faculty of Dentistry, University of the Western Cape, Parow, Cape Town 7505, South Africa
| |
Collapse
|
12
|
Ismail E, Mabrouk M, Salem ZA, AbuBakr N, Beherei H. Evaluation of innovative polyvinyl alcohol/ alginate/ green palladium nanoparticles composite scaffolds: Effect on differentiated human dental pulp stem cells into osteoblasts. J Mech Behav Biomed Mater 2023; 140:105700. [PMID: 36801785 DOI: 10.1016/j.jmbbm.2023.105700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) scaffolds are attracting great concern for bone tissue engineering applications. However, selecting an appropriate material with optimal physical, chemical, and mechanical properties is considered a great challenge. The green synthesis approach is essential to avoid the production of harmful by-products through textured construction, sustainable, and eco-friendly procedures. This work aimed at the implementation of natural green synthesized metallic nanoparticles for the development of composite scaffolds for dental applications. In this study, innovative hybrid scaffolds of polyvinyl alcohol/alginate (PVA/Alg) composite loaded with various concentrations of green palladium nanoparticles (Pd NPs) have been synthesized. Various characteristic analysis techniques were used to investigate the synthesized composite scaffold's properties. The SEM analysis revealed impressive microstructure of the synthesized scaffolds dependent on the Pd NPs concentration. The results confirmed the positive effect of Pd NPs doping on the sample stability over time. The synthesized scaffolds were characterized by the oriented lamellar porous structure. The results confirmed the shape stability, without pores breakdown during the drying process. The XRD analysis confirmed that doping with Pd NPs does not affect the crystallinity degree of the PVA/Alg hybrid scaffolds. The mechanical properties results (up to 50 MPa) confirmed the remarkable effect of Pd NPs doping and its concentration on the developed scaffolds. The MTT assay results showed that the incorporation of Pd NPs into the nanocomposite scaffolds is necessary for increasing cell viability. According to the SEM results, the scaffolds with Pd NPs provided the differentiated grown osteoblast cells with enough mechanical support and stability and the cells had a regular form and were highly dense. In conclusion, the synthesized composite scaffolds expressed suitable biodegradable, osteoconductive properties, and the ability to construct 3D structures for bone regeneration, making them a potential option for treating critical deficiencies of bone.
Collapse
Affiliation(s)
- Enas Ismail
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Parow, 7505, Cape Town, South Africa; Physics Department, Faculty of Science, Girl's Branch, Al Azhar University, Nasr City, Cairo, Egypt.
| | - Mostafa Mabrouk
- Refractories, Ceramics, and Building Materials Department, National Research Centre, 33El Bohouthst, Dokki, Giza, Egypt.
| | - Zeinab A Salem
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, P.O 11553, Egypt; Faculty of Oral and Dental Medicine, Ahram Canadian University, 6 October City, P.O 12573, Egypt
| | - Nermeen AbuBakr
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, P.O 11553, Egypt; Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, P.O 11553, Egypt
| | - Hanan Beherei
- Refractories, Ceramics, and Building Materials Department, National Research Centre, 33El Bohouthst, Dokki, Giza, Egypt
| |
Collapse
|
13
|
Viswanathan S, Palaniyandi T, Chellam DC, Ahmed MF, Shoban N, Pushpakumar M, Abdul Wahab MR, Baskar G, Ravi M, Sivaji A, Natarajan S, Sankareswaran SK. Anti-cancer activity of Hypnea valentiae seaweed loaded gold nanoparticles through EMT signaling pathway in A549 cells. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Rokkarukala S, Cherian T, Ragavendran C, Mohanraju R, Kamaraj C, Almoshari Y, Albariqi A, Sultan MH, Alsalhi A, Mohan S. One-pot green synthesis of gold nanoparticles using Sarcophyton crassocaule, a marine soft coral: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of toxic organic pollutants. Heliyon 2023; 9:e14668. [PMID: 36994394 PMCID: PMC10040709 DOI: 10.1016/j.heliyon.2023.e14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Marine bio-resources are being extensively researched as a priceless supply of substances with therapeutic potential. This work report the first time attempt made towards the green synthesis of gold nanoparticles (AuNPs) using the aqueous extract of marine soft coral (SCE), Sarcophyton crassocaule. The synthesis was conducted under optimized conditions and the visual coloration of reaction mixture changed from yellowish to ruby red at 540 nm. The electron microscopic (TEM, SEM) studies exhibited spherical and oval shaped SCE-AuNPs in the size ranges of 5–50 nm. The organic compounds present in SCE were primarily responsible for the biological reduction of gold ions validated by FT-IR while the zeta potential confirmed the overall stability of SCE-AuNPs. The synthesized SCE-AuNPs exhibited variety of biological efficacies like antibacterial, antioxidant and anti-diabetic in nature. The biosynthesized SCE-AuNPs demonstrated remarkable bactericidal efficacy against clinically significant bacterial pathogens with inhibition zones of mm. Additionally, SCE-AuNPs exhibited greater antioxidant capacity in terms of DPPH: 85 ± 0.32% and RP: 82 ± 0.41%). The ability of enzyme inhibition assays to inhibit α-amylase (68 ± 0.21%) and α-glucosidase (79 ± 0.2%) was quite high. The study also highlighted the spectroscopic analysis of the biosynthesized SCE-AuNPs' catalytic effectiveness of 91% in the reduction processes of the perilous organic dyes, exhibiting pseudo-first order kinetics.
Collapse
Affiliation(s)
- Samson Rokkarukala
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
- Corresponding author.
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair campus, Brookshabad, Port Blair, Andamans- 744112
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Drug Testing Laboratory, Directorate of Research, SRM Institute Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India
| | - Yosif Almoshari
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed Albariqi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Muhammad H. Sultan
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of pharmaceutics, College of pharmacy, Jazan University,P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Saveetha University, Chennai, India
- Corresponding author. .
| |
Collapse
|
15
|
Al-Yahmadi K, Kyaw HH, Myint MTZ, Al-Mamari R, Dobretsov S, Al-Abri M. Development of portable sensor for the detection of bacteria: effect of gold nanoparticle size, effective surface area, and interparticle spacing upon sensing interface. DISCOVER NANO 2023; 18:45. [PMID: 37382758 DOI: 10.1186/s11671-023-03826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 06/30/2023]
Abstract
In this study, systematic development of a portable sensor for the rapid detection of Escherichia coli (E. coli) and Exiguobacterium aurantiacum (E. aurantiacum) was reported. A conductive glass was utilized as a substrate and developed the electrode patterns on it. Trisodium citrate (TSC) and chitosan-stabilized gold nanoparticles (AuNPs) (CHI-AuNP-TSC) and chitosan-stabilized AuNPs (CHI-AuNP) were synthesized and utilized as a sensing interface. The morphology, crystallinity, optical properties, chemical structures, and surface properties of immobilized AuNPs on the sensing electrodes were investigated. The sensing performance of the fabricated sensor was evaluated by using an electrochemical method to observe the current changes in cyclic voltammetric responses. The CHI-AuNP-TSC electrode has higher sensitivity toward E. coli than CHI-AuNP with a limit of detection (LOD) of 1.07 CFU/mL. TSC in the AuNPs synthesis process played a vital role in the particle size, the interparticle spacing, the sensor's effective surface area, and the presence of CHI around AuNPs, thus enhancing the sensing performance. Moreover, post-analysis of the fabricated sensor surface exhibited the sensor stability and the interaction between bacteria and the sensor surface. The sensing results showed a promising potential for rapid detection using a portable sensor for various water and food-borne pathogenic diseases.
Collapse
Affiliation(s)
- Khadija Al-Yahmadi
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, 123, Muscat, Oman
| | - Rahma Al-Mamari
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Sergey Dobretsov
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| |
Collapse
|
16
|
Antidiabetic potential of Gymnemic acid mediated gold nanoparticles (Gym@AuNPs) on Streptozotocin-induced diabetic rats-An implication on in vivo approach. Int J Pharm 2023; 636:122843. [PMID: 36921739 DOI: 10.1016/j.ijpharm.2023.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Gymnemic acid is glycosides of triterpene with recognized and valuable applications for several chronic diseases, mainly diabetics. Despite this, it requires a delivery system in order to range its therapeutic target due to its limited solubility and bioavailability. Therefore, the Gymnemic acid mediated gold nanoparticles (Gym@AuNPs) was synthesised by eco-friendly approach. The synthesised Gym@AuNPs was confirmed by the colour change from light yellow to a deep ruby red. UV - visible spectroscopy results showed a strong narrow peak at 530 nm, confirming the controlled synthesis of monodispersed Gym@AuNPs. The reduction potential of standard Gymnemic acid (Gym) on synthesis of Gym@AuNPs was confirmed by using HPLC analysis. The spherical shaped Gym@AuNPs was observed by FESEM and HR-TEM studies with average size of 48.52 ± 5.53 nm. The XRD analysis exhibited a face-centered cubic (FCC) crystalline nature of Gym@AuNPs. The in vivo antidiabetic activity of Gym and Gym@AuNPs were validated using Streptozotocin induced diabetic Albino wistar rats. The Gym@AuNPs and Gym were regulates the glucose and lipid levels in experimental animals. The histopathology outcomes shown that the Gym@AuNPs were restoration of pancreatic islets cells in the animals. This investigation demonstrated that the Gym@AuNPs had the potential anti-diabetic properties.
Collapse
|
17
|
Wang H, Wang D, Huangfu H, Chen S, Qin Q, Ren S, Zhang Y, Fu L, Zhou Y. Highly efficient photothermal branched Au-Ag nanoparticles containing procyanidins for synergistic antibacterial and anti-inflammatory immunotherapy. Biomater Sci 2023; 11:1335-1349. [PMID: 36594408 DOI: 10.1039/d2bm01212j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Periodontitis is an inflammatory disease caused by bacterial infection. Excessive immune response and high levels of reactive oxygen species (ROS) further lead to the irreversible destruction of surrounding tissues. Developing new antimicrobial materials that regulate the immune system to resist inflammation can effectively treat periodontal inflammation. A nanoplatform integrating Ag+, photothermal therapy (PTT), and procyanidins (PC) for precision antibacterial and synergistic immunotherapy for periodontitis was proposed. This work loaded PC into AuAg nanoparticles, and the resulting nanocomposite was named AuAg-PC. PTT can effectively remove pathogenic bacteria, but high temperatures can cause tissue damage. Ag+ contributes to the preparation of a nanoparticle branched structure that improves the photothermal efficiency and helps PTT achieve an excellent antibacterial effect and avoid periodontal tissue damage. PC regulates host immunity by eliminating intracellular ROS, inhibiting inflammatory factors, and regulating macrophage polarisation in periodontal disease sites. It enhances the host's resistance to bacterial inflammation. AuAg-PC exerted an excellent anti-inflammatory effect and promoted tissue repair in animal periodontal inflammation models. Hence, AuAg-PC significantly combats periodontal pathogens and shows great application potential in the photothermal-assisted immunotherapy of periodontitis. This design provided a new controllable and efficient treatment platform for controlling persistent inflammation infection and regulating immunity.
Collapse
Affiliation(s)
- Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Huimin Huangfu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Qiuyue Qin
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Sicong Ren
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Fu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
18
|
Tyavambiza C, Meyer M, Wusu AD, Madiehe AM, Meyer S. The Antioxidant and In Vitro Wound Healing Activity of Cotyledon orbiculata Aqueous Extract and the Synthesized Biogenic Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms232416094. [PMID: 36555732 PMCID: PMC9781072 DOI: 10.3390/ijms232416094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The synthesis of silver nanoparticles using biogenic methods, particularly plants, has led to the discovery of several effective nanoparticles. In many instances, plant-derived silver nanoparticles have been shown to have more activity than the plant extract which was used to synthesize the nanoparticles. Silver nanoparticles have been successfully synthesized using the medicinal plant, Cotyledon orbiculata. This is a shrub found in the Western Cape province of South Africa. It has a long history of use in traditional medicine in the treatment of wounds and skin infections. The C. orbiculata synthesized silver nanoparticles (Cotyledon-AgNPs) were reported to have good antimicrobial and anti-inflammatory activities; however, their wound-healing properties have not been determined. This study aimed to determine the wound healing activity of Cotyledon-AgNPs using the scratch assay. Gene expression studies were also done to determine the nanoparticles' mechanism of action. The Cotyledon-AgNPs showed good antioxidant, growth-promoting and cell migration properties. Gene expression studies showed that the C. orbiculata water extract and Cotyledon-AgNPs promoted wound healing by upregulating genes involved in cell proliferation, migration and growth while downregulating pro-inflammatory genes. This confirms, for the first time that a water extract of C. orbiculata and silver nanoparticles synthesized from this extract are good wound-healing agents.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Adedoja Dorcas Wusu
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7530, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Correspondence: ; Tel.: +27-21-959-6251
| |
Collapse
|
19
|
Mandhata CP, Sahoo CR, Padhy RN. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview. Biol Trace Elem Res 2022; 200:5307-5327. [PMID: 35083708 DOI: 10.1007/s12011-021-03078-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Recently there had been a great interest in biologically synthesized nanoparticles (NPs) as potential therapeutic agents. The shortcomings of conventional non-biological synthesis methods such as generation of toxic byproducts, energy consumptions, and involved cost have shifted the attention towards green syntheses of NPs. Among noble metal NPs, gold nanoparticles (AuNPs) are the most extensively used ones, owing to the unique physicochemical properties. AuNPs have potential therapeutic applications, as those are synthesized with biomolecules as reducing and stabilizing agent(s). The green method of AuNP synthesis is simple, eco-friendly, non-toxic, and cost-effective with the use of renewable energy sources. Among all taxa, cyanobacteria have attracted considerable attention as nano-biofactories, due to cellular uptake of heavy metals from the environment. The cellular bioactive pigments, enzymes, and polysaccharides acted as reducing and coating agents during the process of biosynthesis. However, cyanobacteria-mediated AuNPs have potential biomedical applications, namely, targeted drug delivery, cancer treatment, gene therapy, antimicrobial agent, biosensors, and imaging.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
20
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
21
|
Li M, Wei J, Song Y, Chen F. Gold nanocrystals: optical properties, fine-tuning of the shape, and biomedical applications. RSC Adv 2022; 12:23057-23073. [PMID: 36090439 PMCID: PMC9380198 DOI: 10.1039/d2ra04242h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Noble metal nanomaterials with special physical and chemical properties have attracted considerable attention in the past decades. In particular, Au nanocrystals (NCs), which possess high chemical inertness and unique surface plasmon resonance (SPR), have attracted extensive research interest. In this study, we review the properties and preparation of Au NCs with different morphologies as well as their important applications in biological detection. The preparation of Au NCs with different shapes by many methods such as seed-mediated growth method, seedless synthesis, polyol process, ultrasonic method, and hydrothermal treatment has already been introduced. In the seed-mediated growth method, the influence factors in determining the final shape of Au NCs are discussed. Au NCs, which show significant size-dependent color differences are proposed for preparing biological probes to detect biomacromolecules such as DNA and protein, while probe conjugate molecules serves as unique coupling agents with a target. Particularly, Au nanorods (NRs) have some unique advantages in the application of biological probes and photothermal cancer therapy compared to Au nanoparticles (NPs).
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, Qilu Hospital Shandong University 107 Wenhua Xi Road Jinan 250012 P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| |
Collapse
|
22
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
23
|
Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2337. [PMID: 35889562 PMCID: PMC9317100 DOI: 10.3390/nano12142337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Neurodegenerative disorders (NDs) affect a great number of people worldwide and also have a significant socio-economic impact on the aging population. In this context, nanomedicine applied to neurological disorders provides several biotechnological strategies and nanoformulations that improve life expectancy and the quality of life of patients affected by brain disorders. However, available treatments are limited by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (B-CSFB). In this regard, nanotechnological approaches could overcome these obstacles by updating various aspects (e.g., enhanced drug-delivery efficiency and bioavailability, BBB permeation and targeting the brain parenchyma, minimizing side effects). The aim of this review is to carefully explore the key elements of different neurological disorders and summarize the available nanomaterials applied for neurodegeneration therapy looking at several types of nanocarriers. Moreover, nutraceutical-loaded nanoparticles (NPs) and synthesized NPs using green approaches are also discussed underling the need to adopt eco-friendly procedures with a low environmental impact. The proven antioxidant properties related to several natural products provide an interesting starting point for developing efficient and green nanotools useful for neuroprotection.
Collapse
|
24
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Viswanathan S, Palaniyandi T, Kannaki P, Shanmugam R, Baskar G, Rahaman AM, Paul LTD, Rajendran BK, Sivaji A. Biogenic synthesis of gold nanoparticles using red seaweed Champia parvula and its anti-oxidant and anticarcinogenic activity on lung cancer. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2074926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - P. Kannaki
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - A. Mugip Rahaman
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - L. Tharrun Daniel Paul
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
26
|
Evaluation of antioxidant activity of extracts from Leucosidea sericea. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction:
Leucosidea sericea finds applications in the treatment of herpes and HIV.
Objective: The aim of the current study was to evaluate the antioxidant activity and determine the total flavonoid contents (TFCs) and total phenolic contents (TPCs) of hexane, chloroform, ethyl acetate, acetone and methanol crude extracts obtained from leaves and stem-bark of L. sericea.
Methods: Maceration and hot solvent extraction methods were used to obtain various crude extracts. DPPH and ferric reducing power assays were used to evaluate the antioxidant activity. Colorimetric aluminium chloride and Folin-Ciocalteu methods were used to determine the TFCs and TPCs, respectively.
Results: The methanol leaf extract showed highest radical scavenging activity of 82.00±0.93% at a concentration of 3000 µg/ml followed by ethyl acetate leaf extract and methanol stem-bark extract with 79.40±5.21 and 75.16±1.15%, respectively. Acetone stem-bark extract showed highest ferric reducing power of 0.539±0.004 at 700 nm at a concentration of 100 µg/ml followed by hexane leaf extract and hexane stem-bark extract with 0.474±0.014 and 0.437±0.013 at 700 nm, respectively. Ethyl acetate stem-bark extract showed highest TFCs of 655.6±0.1111 mg QE/g of DW of the extract followed by acetone stem-bark extract with 450.0±0.00711 mg QE/g of DW of the extract. Acetone stem-bark extract showed highest TPCs of 891.9±0.657 mg TAE/g of the DW of extract followed by methanol stem-bark extract with 878.3±0.029 mg TAE/g of DW of the extract.
Conclusion: The antioxidant activity of various solvent extracts from leaves and stem-bark of L. sericea was evaluated. L. sericea could be a source of potent antioxidants.
Collapse
|
27
|
Chen H, Wang W, Yu S, Wang H, Tian Z, Zhu S. Procyanidins and Their Therapeutic Potential against Oral Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092932. [PMID: 35566283 PMCID: PMC9104295 DOI: 10.3390/molecules27092932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Procyanidins, as a kind of dietary flavonoid, have excellent pharmacological properties, such as antioxidant, antibacterial, anti-inflammatory and anti-tumor properties, and so they can be used to treat various diseases, including Alzheimer’s disease, diabetes, rheumatoid arthritis, tumors, and obesity. Given the low bioavailability of procyanidins, great efforts have been made in drug delivery systems to address their limited use. Nowadays, the heavy burden of oral diseases such as dental caries, periodontitis, endodontic infections, etc., and their consequences on the patients’ quality of life indicate a strong need for developing effective therapies. Recent years, plenty of efforts are being made to develop more effective treatments. Therefore, this review summarized the latest researches on versatile effects and enhanced bioavailability of procyanidins resulting from innovative drug delivery systems, particularly focused on its potential against oral diseases.
Collapse
Affiliation(s)
- Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shiyang Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Huimin Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Zilu Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
- Correspondence: ; Tel.: +86-135-7878-5725
| |
Collapse
|
28
|
Zineb OY, Rashwan AK, Karim N, Lu Y, Tangpong J, Chen W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ould Yahia Zineb
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
29
|
Ramabulana T, Ndlovu M, Mosa RA, Sonopo MS, Selepe MA. Phytochemical Profiling and Isolation of Bioactive Compounds from Leucosidea sericea (Rosaceae). ACS OMEGA 2022; 7:11964-11972. [PMID: 35449904 PMCID: PMC9016878 DOI: 10.1021/acsomega.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In the study, ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis of Leucosidea sericea leaf and stem extracts led to the identification of various classes of compounds. Further chromatographic purifications resulted in the isolation of 22 compounds that consisted of a new triterpenoid named leucosidic acid A (1), an acetophenone derivative 2, a phloroglucinol derivative 3, three chromones 4-6, seven pentacyclic triterpenoids 7-13, a phytosterol glucoside 14, a flavonoid 15, and seven flavonoid glycosides 16-22. Nineteen of these compounds including the previously undescribed triterpenoid 1 are isolated for the first time from L. sericea. The structures of the isolated compounds were assigned based on their high-resolution mass spectrometry and nuclear magnetic resonance data. Some of the isolated triterpenoids were evaluated for inhibitory activity against α-amylase, α-glucosidase, and pancreatic lipase. Of the tested compounds, 1-hydroxy-2-oxopomolic acid (7) and pomolic acid (13) showed higher potency on α-glucosidase than acarbose, which is used as a positive control in this study. The two compounds inhibited α-glucosidase with IC50 values of 192.1 ± 13.81 and 85.5 ± 6.87 μM, respectively.
Collapse
Affiliation(s)
- Tshifhiwa Ramabulana
- Department
of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Musawenkosi Ndlovu
- Department
of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Rebamang A. Mosa
- Department
of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Molahlehi S. Sonopo
- Radiochemistry, South African Nuclear Energy Corporation Limited, Pelindaba, Brits 0240, South Africa
| | - Mamoalosi A. Selepe
- Department
of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| |
Collapse
|
30
|
Nanoformulation of plant-based natural products for type 2 diabetes mellitus: From formulation design to therapeutic applications. Curr Ther Res Clin Exp 2022; 96:100672. [PMID: 35586563 PMCID: PMC9108891 DOI: 10.1016/j.curtheres.2022.100672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Inorganic element based nanoformulations were prominent in the delivery drug leads. Polymer and lipid based nanoformulations are emerging as novel formulations. Majority of investigations on nanoherbal formulations were on in vitro models. Proper glycemic control was an important property in nanoherbalformulations.
Background Herbal remedies are used to manage type 2 diabetes mellitus (type 2 DM) as the sole treatment or as a complementary therapy. Limitations of herbal remedies, such as poor stability and limited absorption, impede their development as therapeutic agents, which could be overcome by nanoformulations. Objectives This review attempts to summarize the studies reported between 2009 and 2020 in the development of medicinal plant-based nanoformulations for the management of type 2 DM, discuss formulation methods, mechanisms of action, and identify gaps in the literature to conduct future research on nanoparticle-based herbal treatment options targeting type 2 DM. Methods To retrieve articles published between January 2009 and December 2020, the electronic databases PubMed, Science Direct, and Google Scholar were searched with the keywords nanoparticle, plant, and diabetes in the entire text. Peer-reviewed research articles on herbal nanoformulations published in English-language based on in vitro and/or in vivo models of type 2 DM and/or its complications were included. The literature search and selection of titles/abstracts were carried out independently by 2 authors. The list of full-text articles was selected considering inclusion and exclusion criteria, with the agreement of all the authors. Results Among the reported studies, 68% of the studies were on inorganic herbal nanoformulations, whereas 17% and 8% were of polymer-based and lipid-based herbal nanoformulations, respectively. Some of the important biological properties of nanoformulations included improvement in glycemic control and insulin levels, inhibition of the formation of advanced glycation end products, and regeneration of pancreatic β cells. The aforementioned properties were observed by screening nanoformulations using in vitro cellular and noncellular models, as well as in vivo animal models of type 2 DM studied for acute or subacute durations. Only 2 clinical trials with patients with diabetes were reported, indicating the need for further research on medicinal plant-based nanoformulations as a therapeutic option for the management of type 2 DM. Conclusions Medicinal plant extracts and isolated compounds have been nanoformulated using various methods. The properties of the nanoformulations were found superior to those of the corresponding herbal extracts and isolated compounds. At both the preclinical and clinical levels, there are a number of poorly explored research areas in the development and bioactivity assessment of herbal nanoformulations. (Curr Ther Res Clin Exp. 2022; 83:XXX–XXX) © 2022 Elsevier HS Journals, Inc.
Collapse
|
31
|
Ahmad S, Zainab, Ahmad H, Khan I, Alghamdi S, Almehmadi M, Ali M, Ullah A, Hussain H, Khan NM, Ali F, Ahmad M. Green synthesis of gold nanaoparticles using Delphinium Chitralense tuber extracts, their characterization and enzyme inhibitory potential. BRAZ J BIOL 2022; 82:e257622. [PMID: 35293518 DOI: 10.1590/1519-6984.257622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Green synthesis has been introduced as an alternative to chemical synthesis due to the serious consequences. Metal nanoparticles synthesized through green approach have different pharmaceutical, medical and agricultural applications. The present study followed a green and simple route for the preparation of potentially bioactive gold nanoparticles (Au NPs). Au NPs were prepared via green synthesis approach using crude basic alkaloidal portion of the tuber of Delphinium chitralense. The green synthesized Au NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) fourier transform infrared (FTIR), and UV-Visible spectrophotometer. Morphological analysis shows that Au NPs have cubic geometry with different sizes. UV-Vis spectroscopic analysis confirmed the synthesis of Au NPs while XRD proved their pure crystalline phase. The Au NPs showed promising dose dependent inhibition of both AChE and BChE as compared to the crude as well as standard drug.
Collapse
Affiliation(s)
- S Ahmad
- University of Malakand, Department of Chemistry, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan.,Shaheed Benazir Bhutto University Sheringal, Department of Pharmacy, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- University of Malakand, Department of Chemistry, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - H Ahmad
- University of Malakand, Department of Chemistry, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - I Khan
- Bacha Khan University Charsadda, Department of Chemistry, Khyber Pakhtunkhwa, Pakistan
| | - S Alghamdi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Saudi Arabia
| | - M Almehmadi
- Taif University, College of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Taif, Saudi Arabia
| | - M Ali
- University of Malakand, Department of Chemistry, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - A Ullah
- Shaheed Benazir Bhutto University Sheringal, Department of Pharmacy, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - H Hussain
- Shaheed Benazir Bhutto University Sheringal, Department of Pharmacy, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - N M Khan
- Shaheed Benazir Bhutto University Sheringal, Department of Agriculture, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - F Ali
- Shaheed Benazir Bhutto University Sheringal, Department of Chemistry, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - M Ahmad
- University of Malakand, Department of Chemistry, Chakdara, Dir (L), Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
32
|
Effects of Natural Brown Cotton Bleached Gauze on Wound Healing. MATERIALS 2022; 15:ma15062070. [PMID: 35329520 PMCID: PMC8954754 DOI: 10.3390/ma15062070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023]
Abstract
Natural brown cotton has favorable antibacterial and antioxidant properties. In this study, we explored the effect of gauze made from natural brown cotton after scouring and bleaching on wound healing in rats. In this work, a control experiment was adopted. The control group used absorbent cotton gauze, and the experimental group utilized natural brown cotton bleached gauze. The materials were applied to rat models to explore the effects of the two dressings on wound healing. By analyzing the wound healing state of rats, calculating the healing rate, and combining the pathological HE staining, Masson staining, and CD31 immunohistochemical staining, the results showed that both gauzes have positive effects on the wound healing of the rats. Moreover, compared with the control group, the wound healing rate of rats in the experimental group increased by 14.81%, the number of inflammatory cells decreased by 12.93%, the number of new blood vessels increased by 6.88%, the growth rate of the granulation tissue area was 10.76%, the step-up rate of the area occupied by collagen was 33.71%, and the increase rate of optical density value was 10.00%. This study found that natural brown cotton bleached gauze has a better effect on wound healing than ordinary absorbent cotton gauze, and can be used as medical dressings.
Collapse
|
33
|
Veeramani S, Narayanan AP, Yuvaraj K, Sivaramakrishnan R, Pugazhendhi A, Rishivarathan I, Jose SP, Ilangovan R. Nigella sativa flavonoids surface coated gold NPs (Au-NPs) enhancing antioxidant and anti-diabetic activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Ameen F, Al-Maary KS, Almansob A, AlNadhari S. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02047-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Hosny M, Fawzy M, El-Fakharany EM, Omer AM, El-Monaem EMA, Khalifa RE, Eltaweil AS. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:106806. [DOI: 10.1016/j.jece.2021.106806] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
36
|
Ayipo YO, Bakare AA, Badeggi UM, Jimoh AA, Lawal A, Mordi MN. Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100021. [PMID: 35815068 PMCID: PMC8806017 DOI: 10.1016/j.crchbi.2022.100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Ajibola Abdulahi Bakare
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Umar Muhammad Badeggi
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, P. M. B. 11, Minna 4947, Nigeria
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
37
|
Ahmad Kuthi N, Chandren S, Basar N, Jamil MSS. Biosynthesis of Gold Nanoisotrops Using Carallia brachiata Leaf Extract and Their Catalytic Application in the Reduction of 4-Nitrophenol. Front Chem 2022; 9:800145. [PMID: 35127648 PMCID: PMC8814362 DOI: 10.3389/fchem.2021.800145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The past decade has observed a significant surge in efforts to discover biological systems for the fabrication of metal nanoparticles. Among these methods, plant-mediated synthesis has garnered sizeable attention due to its rapid, cost-effective, environmentally benign single-step procedure. This study explores a step-wise, room-temperature protocol for the synthesis of gold nanoparticles (AuNPs) using Carallia brachiata, a mangrove species from the west coast of Peninsular Malaysia. The effects of various reaction parameters, such as incubation time, metal ion concentration, amount of extract and pH, on the formation of stable colloids were monitored using UV-visible (UV-Vis) absorption spectrophotometry. Our findings revealed that the physicochemical properties of the AuNPs were significantly dependent on the pH. Changing the pH of the plant extract from acidic to basic appears to have resulted in a blue-shift in the main characteristic feature of the surface plasmon resonance (SPR) band, from 535 to 511 nm. The high-resolution-transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FESEM) images revealed the morphologies of the AuNPs synthesized at the inherent pH, varying from isodiametric spheres to exotic polygons and prisms, with sizes ranging from 10 to 120 nm. Contrarily, an optimum pH of 10 generated primarily spherical-shaped AuNPs with narrower size distribution (8-13 nm). The X-ray diffraction (XRD) analysis verified the formation of AuNPs as the diffraction patterns matched well with the standard value of a face-centered cubic (FCC) Au lattice structure. The Fourier-transform infrared (FTIR) spectra suggested that different functional groups are involved in the biosynthetic process, while the phytochemical test revealed a clear role of the phenolic compounds. The reduction of 4-nitrophenol (4-NP) was selected as the model reaction for evaluating the catalytic performance of the green-synthesized AuNPs. The catalytic activity of the small, isotropic AuNPs prepared using basic aqueous extract was more effective than the nanoanisotrops, with more than 90% of 4-NP conversion achieved in under an hour with just 3 mg of the nanocatalyst.
Collapse
Affiliation(s)
- Najwa Ahmad Kuthi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Norazah Basar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | | |
Collapse
|
38
|
Al-Radadi NS. Biogenic proficient synthesis of (Au-NPs) via aqueous extract of Red Dragon Pulp and seed oil: Characterization, antioxidant, cytotoxic properties, anti-diabetic anti-inflammatory, anti-Alzheimer and their anti-proliferative potential against cancer cell lines. Saudi J Biol Sci 2022; 29:2836-2855. [PMID: 35531221 PMCID: PMC9073066 DOI: 10.1016/j.sjbs.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022] Open
Abstract
Novel Green synthesis of Au-NPs using Dragon fruit pulp and seed oil extract for the first time. Use of green and safer protocol for synthesis of Au-NPs further demonstrate that we can apply green chemistry protocols to reduce environmental pollution and disposal of waste toxicants. FTIR analysis confirmed the capping of therapeutically potent phytochemicals which are of great use in applied field especially medical. Significant Anti-diabetic, Anti-inflammatory, Anti-Alzheimer and Cytotoxic potential of biosynthesized Au-NPs create a new idea and shifting experts to treat cancerous cell lines.
Gold nanoparticles with tiny sizes and biostability are particularly essential and are employed in a variety of biomedical applications. Using a reducing agent and a stabilising agent to make gold nanoparticles has been reported in a number of studies. Gold nanoparticles with a particle size of 25.31 nm were synthesized in this study utilising Hylocereus polyrhizus (Red Pitaya) extract, which functions as a reducing and stabilising agent. The extract of Red Pitaya is said to be a powerful antioxidant and anti-cancer agent. Because of its substantial blood biocompatibility and physiological stability, green production of gold nanoparticles with H. polyrhizus fruit extract is an alternative to chemical synthesis and useful for biological and medical applications. The formation and size distribution of gold nanoparticles were confirmed by HPLC, UV-Vis spectrophotometer, X-ray diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, Transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The well-analysed NPs were used in various biological assays, including anti-diabetic, anti-inflammatory, anti-Alzheimer, and antioxidant (DPPH), and cytotoxic investigations. The NPs also showed a dose-dependent cytotoxic activity against HCT-116, HepG2 and MCF-7 cell lines, with IC50 of 100 µg/mL for HCT-116 cells, 155 µg/mL for HepG2, and for MCF-7 cells the value was 165 µg/mL respectively. Finally, the outstanding biocompatibility of Au-NPs has led to the conclusion that they are a promising choice for various biological applications.
Collapse
|
39
|
Mahmoudi M, Rastin M, Kazemi Arababadi M, Anaeigoudari A, Nosratabadi R. Enhancing the efficacy of Hypericum perforatum in the treatment of an experimental model of multiple sclerosis using gold nanoparticles: an in vivo study. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:325-336. [PMID: 36186934 PMCID: PMC9482707 DOI: 10.22038/ajp.2022.19574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/06/2022]
Abstract
Objective Hypericum perforatum is a herbal medicine used in traditional medicine for the treatment of depression due to its antidepressant and anti-inflammatory activities. Therefore, we evaluated the therapeutic efficacy of H. perforatum extract (HPE) in combination with gold nanoparticles (HPE-GNP) against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Materials and Methods EAE was induced in C57BL/6 mice with subcutaneous injection of MOG35-55 emulsified in complete Freund's adjuvant, and intraperitoneal pertussis toxin. Mice were treated with drugs in free (HPE) and nano-form (HPE-GNP) preparations. Splenocytes were isolated from all mice and the level of inflammatory and anti-inflammatory cytokines were evaluated by ELISA. The expression of T cells' transcription factors was also assessed using Real-Time PCR. Results Clinical score was reduced after HPE-GNP treatment. This change was associated with a decrease in the incidence and infiltration of inflammatory cells into the central nervous system. Additionally, treatment with HPE-GNP decreased the level of pro-inflammatory cytokines (IFN-γ, IL-17A and IL-6) and increased anti-inflammatory cytokines (TGF-β, IL-10 and IL-4). The real-time analysis revealed a decrease in the level of T-bet and ROR-γt but an increase in FoxP3 and GATA3 expression. Conclusion The current study demonstrated that HPE-GNP could potentially reduce clinical and pathological complications of EAE, but laboratory data showed that HPE-GNP was significantly more effective than HPE in the treatment of EAE.
Collapse
Affiliation(s)
- Mahmoud Mahmoudi
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Kazemi Arababadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran,Corresponding Author: Tel: +98-9137317876, Fax: +03433257660,
| |
Collapse
|
40
|
El-Maghrabi N, El-Borady OM, Hosny M, Fawzy M. Catalytic and Medical Potential of a Phyto-Functionalized Reduced Graphene Oxide-Gold Nanocomposite Using Willow-Leaved Knotgrass. ACS OMEGA 2021; 6:34954-34966. [PMID: 34963977 PMCID: PMC8697594 DOI: 10.1021/acsomega.1c05596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 05/02/2023]
Abstract
In the current study, a simple, environmentally friendly, and cost-effective reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was successfully phytosynthesized using the aqueous leaf extract of a common weed found on the Nile banks, Persicaria salicifolia, for the first time. The phytosynthesis of rGO-AuNPs was first confirmed via the color transformation from brown to black as well as throughvarious techniques such as transmission electron microscopy (TEM) and Raman spectroscopy. Two UV-vis peaks at 275 and 530 nm were observed for the nanocomposite with a typical particle size of mostly spherical AuNPs of 15-20 nm. However, other shapes were occasionally detected including rods, triangles, and rhomboids. Existing phytoconstituents such as flavonoids and glycosides in the plant extract were suggested to be responsible for the phytosynthesis of rGO-AuNPs. The excellent catalytic efficacy of rGO-AuNPs against MB degradation was confirmed, and a high antibacterial efficiency against Escherichia coli and Klebsiella pneumonia was also confirmed. Promising antioxidant performance of rGO-AuNPs was also proved. Furthermore, it was concluded that rGO-AuNPs acquired higher efficiency than AuNPs synthesized from the same plant extract in all of the studied applications.
Collapse
Affiliation(s)
- Nourhan El-Maghrabi
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Ola M. El-Borady
- Institute
of Nanoscience and Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- ,
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, 101 Kasr Al Aini Street, Cairo 33516, Egypt
| |
Collapse
|
41
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
42
|
Akinfenwa AO, Abdul NS, Docrat FT, Marnewick JL, Luckay RC, Hussein AA. Cytotoxic Effects of Phytomediated Silver and Gold Nanoparticles Synthesised from Rooibos (Aspalathus linearis), and Aspalathin. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112460. [PMID: 34834822 PMCID: PMC8620073 DOI: 10.3390/plants10112460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/05/2023]
Abstract
The green chemistry approach has continuously been applied for the synthesis of functional nanomaterials to reduce waste, environmental hazards, and the use of toxic chemicals among other reasons. Bioactive natural compounds have been found great potential in this regard and are used to improve the stability, activity, and biodistribution of metal nanoparticles (MNPs). Aspalathin (ASP) from Aspalathus linearis (rooibos) has a well-defined pharmacological profile and functional groups capable of both reducing and capping agents in the synthesis of metallic nanoparticles (NP). This study provides the first report of the phytomediated synthesis of gold and silver nanoparticles (AuNPs/AgNPs) via ASP and the green rooibos (GR) extract. The study demonstrated a green chemistry approach to the biosynthesis of nanoparticles of GR-AuNPs, ASP-AuNPs, GR-AgNPs, and ASP-AgNPs. The results showed that GR and ASP could act both as reducing and stabilising agents in the formation of crystalline, with different shapes and dispersity of NPs in the ranges of 1.6-6.7 nm for AgNPs and 7.5-12.5 nm for the AuNPs. However, the ASP NPs were less stable in selected biogenic media compared to GR NPs and were later stabilised with polyethene glycol. The cytotoxicity studies showed that GR-AgNPs were the most cytotoxic against SH-SY5Y and HepG2 with IC50 108.8 and 183.4 μg/mL, respectively. The cellular uptake analysis showed a high uptake of AuNPs and indicated that AgNPs of rooibos at a lower dose (1.3-1.5 μg/mL) is favourable for its anticancer potential. This study is a contribution to plant-mediated metallic nanoparticles using a pure single compound that can be further developed for targeted drug delivery for cancer cells treatments in the coming years.
Collapse
Affiliation(s)
- Akeem O. Akinfenwa
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Naeem S. Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa; (N.S.A.); (F.T.D.); (J.L.M.)
| | - Fathima T. Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa; (N.S.A.); (F.T.D.); (J.L.M.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa; (N.S.A.); (F.T.D.); (J.L.M.)
| | - Robbie C. Luckay
- Chemistry & Polymer Science Department, Stellenbosch University, Matieland, Stellenbosch 7602, South Africa;
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa;
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|
43
|
Hosny M, Fawzy M, Abdelfatah AM, Fawzy EE, Eltaweil AS. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Paul RK, Kesharwani P, Raza K. Recent update on nano-phytopharmaceuticals in the management of diabetes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2046-2068. [PMID: 34228585 DOI: 10.1080/09205063.2021.1952381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to changed lifestyle and other reasons, diabetes has become one of the common metabolic disorder of the globe. Numerous therapeutic options are available, which controls the plasma glucose levels. However, most of the drugs are associated with some undesired side effects. Owing to the side effects and enhanced understanding of the phytochemicals, an inclination toward herbal medicine is seen in the population. These herbal products are also associated with concerns like poor aqueous solubility, compromised permeation, and a low degree of bioavailability. So, the emergence of nanotechnology in the herbal medicine is required to nullify the associated concerns of conventional antidiabetic drugs. The present review aims to compile the literature available for the nano-interventions pertinent to herbal products for diabetes management.
Collapse
Affiliation(s)
- Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
45
|
Akintelu SA, Yao B, Folorunso AS. Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon 2021; 7:e06591. [PMID: 33869841 PMCID: PMC8035509 DOI: 10.1016/j.heliyon.2021.e06591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology and nanoscience are gaining remarkable attention in this era due to their distinctive properties and multi applications. Gold nanoparticles (AuNPs) is one of the most relevant metal nanoparticles with enormous applications in various field of research and industries. The demand for AuNPs is increasing rapidly. Extensive awareness has been allotted to the development of novel approaches for the synthesis of AuNPs with quality morphological properties using biological sources due to the limitations associated with the chemical and physical methods. Several factors such as contact time, temperature, pH of solution media, concentration of gold precursors and volume of plant extract influences the synthesis, characterization and applications of AuNPs. Characterization of synthesized AuNPs is important in evaluating the morphological properties of AuNPs since the morphological properties of AuNPs affect their potential use in various applications. This review highlights various methods of synthesizing AuNPs, parameters influencing the biosynthesis of AuNPs from plant extract, several techniques used for AuNPs characterization and their potential in bioremediation and biomedical applications.
Collapse
Affiliation(s)
- Sunday Adewale Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China.,Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | | |
Collapse
|
46
|
Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021; 26:844. [PMID: 33562781 PMCID: PMC7915205 DOI: 10.3390/molecules26040844] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Collapse
Affiliation(s)
- Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Dóra I. Adamecz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Bettina Szerencsés
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Csaba Molnar
- Broad Institute of MIT and Harvard, Cambridge, 415 Main St, Cambridge, MA 02142, USA;
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1., H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Monika Kiricsi
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| |
Collapse
|
47
|
Enzymatic Inhibitors from Natural Sources: A Huge Collection of New Potential Drugs. Biomolecules 2021; 11:biom11020133. [PMID: 33498517 PMCID: PMC7909571 DOI: 10.3390/biom11020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
|
48
|
Kyhoiesh HAK, Al-Adilee KJ. Synthesis, spectral characterization, antimicrobial evaluation studies and cytotoxic activity of some transition metal complexes with tridentate (N,N,O) donor azo dye ligand. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
49
|
Biosynthesis, Characterization, and Biological Activities of Procyanidin Capped Silver Nanoparticles. J Funct Biomater 2020; 11:jfb11030066. [PMID: 32961705 PMCID: PMC7564108 DOI: 10.3390/jfb11030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.
Collapse
|
50
|
Meena, Sharma A, Kumar R, Ram S, Sharma PK. Chitosan embedded with Ag/Au nanoparticles: investigation of their structural, optical and sensing properties. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02233-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|