1
|
Bernardoni BL, D'Agostino I, Scianò F, La Motta C. The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: a 2019-2023 update of the patent literature. Expert Opin Ther Pat 2024; 34:1085-1103. [PMID: 39365044 DOI: 10.1080/13543776.2024.2412573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Aldose reductase (AKR1B1, EC: 1.1.1.21) is a recognized target for the treatment of long-term diabetic complications since its activation in hyperglycemia and role in the polyol pathway. In particular, the tissue-specificity of AKR1B1 expression makes the design of the traditional Aldose Reductase Inhibitors (ARIs) and the more recent Aldose Reductase Differential Inhibitors (ARDIs) exploitable strategies to treat pathologies resulting from diabetic conditions. AREAS COVERED A brief overview of the roles and functions of AKR1B1 along with known ARIs and ARDIs was provided. Then, the design of the latest inhibitors in the scientific scenario was discussed, aiming at introducing the research achievement in the field of intellectual properties. Patents dealing with AKR1B1 and diabetes filed in the 2019-2023 period were collected and analyzed. Reaxys, Espacenet, SciFindern, and Google Patents were surveyed, using 'aldose reductase' and 'inhibitor' as the reference keywords. The search results were then filtered by PRISMA protocol, thus obtaining 16 records to review. EXPERT OPINION Although fewer in number than in the early 2000s, patent applications are still being filed in the field of ARIs, with a large number of Chinese inventors reporting new synthetic ARIs in favor of the repositioning approach.
Collapse
Affiliation(s)
| | | | - Fabio Scianò
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Boroughani M, Tahmasbi Z, Heidari MM, Johari M, Hashempur MH, Heydari M. Potential therapeutic effects of green tea ( Camellia sinensis) in eye diseases, a review. Heliyon 2024; 10:e28829. [PMID: 38601618 PMCID: PMC11004586 DOI: 10.1016/j.heliyon.2024.e28829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
This review aims to evaluate the therapeutic potential of green tea (GT), scientifically named Camellia sinensis, in treating eye diseases. We provide an overview of the ingredients and traditional use of Camellia sinensis, followed by a detailed discussion of its therapeutic uses in various eye diseases, including ocular surface diseases (allergic diseases, dry eye, pterygium, and infections), cataract, glaucoma, uveitis, retinal diseases, and optic nerve diseases. The pharmacologic activities related to ocular diseases, such as anti-vascular endothelial growth factor, aldose reductase inhibitor activity, anti-bacterial, anti-inflammatory, and antioxidant effects are also explored in this review. The dose and route of administration of GT in various studies are discussed. Safety issues related to the use of GT, such as the side effects associated with high doses and long-term use, are also addressed. The review highlights the potential of GT as a natural therapeutic agent for a variety of ocular diseases. Its various pharmacologic activities make it a promising treatment option. However, more well-designed studies are needed to determine the optimal dose and route of administration and to assess its long-term safety and efficacy. Overall, GT appears to be a promising adjunct therapy for various ocular diseases.
Collapse
Affiliation(s)
- Mohadese Boroughani
- Student research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tahmasbi
- Student research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadkarim Johari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Lv Y, Yao X, Li X, Ouyang Y, Fan C, Qian Y. Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy. Neural Regen Res 2024; 19:598-605. [PMID: 37721290 PMCID: PMC10581560 DOI: 10.4103/1673-5374.380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus. Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies. However, existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research. Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy, it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods. This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods. Various metabolic mechanisms (e.g., polyol, hexosamine, protein kinase C pathway) are associated with diabetic peripheral neuropathy, and researchers are looking for more effective treatments through these pathways.
Collapse
Affiliation(s)
- Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Sardelli G, Scali V, Signore G, Balestri F, Cappiello M, Mura U, Del Corso A, Moschini R. Response of a Human Lens Epithelial Cell Line to Hyperglycemic and Oxidative Stress: The Role of Aldose Reductase. Antioxidants (Basel) 2023; 12:antiox12040829. [PMID: 37107204 PMCID: PMC10135174 DOI: 10.3390/antiox12040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
A common feature of different types of diabetes is the high blood glucose levels, which are known to induce a series of metabolic alterations, leading to damaging events in different tissues. Among these alterations, both increased polyol pathway flux and oxidative stress are considered to play relevant roles in the response of different cells. In this work, the effect on a human lens epithelial cell line of stress conditions, consisting of exposure to either high glucose levels or to the lipid peroxidation product 4-hydroxy-2-nonenal, is reported. The occurrence of osmotic imbalance, alterations of glutathione levels, and expression of inflammatory markers was monitored. A common feature of the two stress conditions was the expression of COX-2, which, only in the case of hyperglycemic stress, occurred through NF-κB activation. In our cell model, aldose reductase activity, which is confirmed as the only activity responsible for the osmotic imbalance occurring in hyperglycemic conditions, seemed to have no role in controlling the onset of the inflammatory phenomena. However, it played a relevant role in cellular detoxification against lipid peroxidation products. These results, in confirming the multifactorial nature of the inflammatory phenomena, highlight the dual role of aldose reductase as having both damaging but also protecting activity, depending on stress conditions.
Collapse
Affiliation(s)
- Gemma Sardelli
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Viola Scali
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2211450
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Casertano M, Genovese M, Santi A, Pranzini E, Balestri F, Piazza L, Del Corso A, Avunduk S, Imperatore C, Menna M, Paoli P. Evidence of Insulin-Sensitizing and Mimetic Activity of the Sesquiterpene Quinone Avarone, a Protein Tyrosine Phosphatase 1B and Aldose Reductase Dual Targeting Agent from the Marine Sponge Dysidea avara. Pharmaceutics 2023; 15:pharmaceutics15020528. [PMID: 36839851 PMCID: PMC9964544 DOI: 10.3390/pharmaceutics15020528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM. Therefore, modern drug discovery in its early stages aims to identify potential modulators for multiple targets; for this purpose, exploration of the chemical space of natural products represents a powerful tool. Our study demonstrates that avarone, a sesquiterpene quinone obtained from the sponge Dysidea avara, is capable of inhibiting in vitro PTP1B, the main negative regulator of the insulin receptor, while it improves insulin sensitivity, and mitochondria activity in C2C12 cells. We observe that when avarone is administered alone, it acts as an insulin-mimetic agent. In addition, we show that avarone acts as a tight binding inhibitor of aldose reductase (AKR1B1), the enzyme involved in the development of diabetic complications. Overall, avarone could be proposed as a novel natural hit to be developed as a multitarget drug for diabetes and its pathological complications.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center for Marine Pharmacology, Via Bonanno 6, 56126 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center for Marine Pharmacology, Via Bonanno 6, 56126 Pisa, Italy
| | - Sibel Avunduk
- Medical Laboratory Programme, Vocational School of Health Care, Mugla University, Marmaris 48187, Turkey
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (M.M.); (P.P.); Tel.: +39-081678518 (M.M.); +39-0552751248 (P.P.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Correspondence: (M.M.); (P.P.); Tel.: +39-081678518 (M.M.); +39-0552751248 (P.P.)
| |
Collapse
|
6
|
Balestri F, Poli G, Piazza L, Cappiello M, Moschini R, Signore G, Tuccinardi T, Mura U, Del Corso A. Dissecting the Activity of Catechins as Incomplete Aldose Reductase Differential Inhibitors through Kinetic and Computational Approaches. BIOLOGY 2022; 11:biology11091324. [PMID: 36138801 PMCID: PMC9495972 DOI: 10.3390/biology11091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The increased glucose levels occurring in diabetes lead to several metabolic alterations responsible for the onset of the so-called diabetic complications, which include nephropathies, neuropathies, retinopathies, and cataract. An increased flux of glucose through the polyol pathway is considered the most relevant among these alterations. For this reason, the block of the polyol pathway, through the inhibition of the enzyme aldose reductase, is considered a valuable strategy to impair the onset of diabetic complications. However, aldose reductase also exerts a beneficial effect inside cells, since it can remove toxic aldehydes. Thus, to ameliorate the outcome of the use of aldose reductase inhibitors, the use of “differential inhibitors” has been proposed. These inhibitors should block the catalytic activity depending on the substrate the enzyme is working on, thus preserving the detoxifying action of the enzyme. In this work, derivatives of catechins are analyzed to evaluate their inhibitory action on aldose reductase. The study was conducted both in vitro on the isolated enzyme and in silico through a computational approach. Results demonstrated that gallocatechin gallate and catechin gallate act as differential inhibitors and that this action may be linked to an incomplete inhibitory effect. Abstract The inhibition of aldose reductase is considered as a strategy to counteract the onset of both diabetic complications, upon the block of glucose conversion in the polyol pathway, and inflammation, upon the block of 3-glutathionyl-4-hydroxynonenal reduction. To ameliorate the outcome of aldose reductase inhibition, minimizing the interference with the detoxifying role of the enzyme when acting on toxic aldehydes, “differential inhibitors”, i.e., molecules able to inhibit the enzyme depending on the substrate the enzyme is working on, has been proposed. Here we report the characterization of different catechin derivatives as aldose reductase differential inhibitors. The study, conducted through both a kinetic and a computational approach, highlights structural constraints of catechin derivatives relevant in order to affect aldose reductase activity. Gallocatechin gallate and catechin gallate emerged as differential inhibitors of aldose reductase able to preferentially affect aldoses and 3-glutathionyl-4-hydroxynonenal reduction with respect to 4-hydroxynonenal reduction. Moreover, the results highlight how, in the case of aldose reductase, a substrate may affect not only the model of action of an inhibitor, but also the degree of incompleteness of the inhibitory action, thus contributing to differential inhibitory phenomena.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2211450
| |
Collapse
|
7
|
Balestri F, Cappiello M, Moschini R, Mura U, Del-Corso A. Models of enzyme inhibition and apparent dissociation constants from kinetic analysis to study the differential inhibition of aldose reductase. J Enzyme Inhib Med Chem 2022; 37:1426-1436. [PMID: 35607924 PMCID: PMC9135441 DOI: 10.1080/14756366.2022.2076089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to explain the negative slope of KappM/kappcat versus inhibitor concentration observed in the study of epigallocatechin gallate acting as an inhibitor of aldose reductase, a kinetic analysis was performed to rationalise the phenomenon. Classical and non-classical models of complete and incomplete enzyme inhibition were devised and analysed to obtain rate equations suitable for the interpretation of experimental data. The results obtained from the different approaches were discussed in terms of the meaning of the emerging kinetic constants. A decrease of KappM/kappcat versus the inhibitor concentration was revealed to be a valuable indication of the occurrence of an incomplete inhibition. This indication, which is univocal in the case of an uncompetitive inhibition, may be especially useful when the residual activity resulting from inhibition is rather low.
Collapse
Affiliation(s)
- Francesco Balestri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Mario Cappiello
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Umberto Mura
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
8
|
Balestri F, Moschini R, Mura U, Cappiello M, Del Corso A. In Search of Differential Inhibitors of Aldose Reductase. Biomolecules 2022; 12:biom12040485. [PMID: 35454074 PMCID: PMC9024650 DOI: 10.3390/biom12040485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Aldose reductase, classified within the aldo-keto reductase family as AKR1B1, is an NADPH dependent enzyme that catalyzes the reduction of hydrophilic as well as hydrophobic aldehydes. AKR1B1 is the first enzyme of the so-called polyol pathway that allows the conversion of glucose into sorbitol, which in turn is oxidized to fructose by sorbitol dehydrogenase. The activation of the polyol pathway in hyperglycemic conditions is generally accepted as the event that is responsible for a series of long-term complications of diabetes such as retinopathy, cataract, nephropathy and neuropathy. The role of AKR1B1 in the onset of diabetic complications has made this enzyme the target for the development of molecules capable of inhibiting its activity. Virtually all synthesized compounds have so far failed as drugs for the treatment of diabetic complications. This failure may be partly due to the ability of AKR1B1 to reduce alkenals and alkanals, produced in oxidative stress conditions, thus acting as a detoxifying agent. In recent years we have proposed an alternative approach to the inhibition of AKR1B1, suggesting the possibility of a differential inhibition of the enzyme through molecules able to preferentially inhibit the reduction of either hydrophilic or hydrophobic substrates. The rationale and examples of this new generation of aldose reductase differential inhibitors (ARDIs) are presented.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
- Correspondence:
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56127 Pisa, Italy; (F.B.); (R.M.); (U.M.); (A.D.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
9
|
Perspective on the Structural Basis for Human Aldo-Keto Reductase 1B10 Inhibition. Metabolites 2021; 11:metabo11120865. [PMID: 34940623 PMCID: PMC8708191 DOI: 10.3390/metabo11120865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Human aldo-keto reductase 1B10 (AKR1B10) is overexpressed in many cancer types and is involved in chemoresistance. This makes AKR1B10 to be an interesting drug target and thus many enzyme inhibitors have been investigated. High-resolution crystallographic structures of AKR1B10 with various reversible inhibitors were deeply analyzed and compared to those of analogous complexes with aldose reductase (AR). In both enzymes, the active site included an anion-binding pocket and, in some cases, inhibitor binding caused the opening of a transient specificity pocket. Different structural conformers were revealed upon inhibitor binding, emphasizing the importance of the highly variable loops, which participate in the transient opening of additional binding subpockets. Two key differences between AKR1B10 and AR were observed regarding the role of external loops in inhibitor binding. The first corresponded to the alternative conformation of Trp112 (Trp111 in AR). The second difference dealt with loop A mobility, which defined a larger and more loosely packed subpocket in AKR1B10. From this analysis, the general features that a selective AKR1B10 inhibitor should comply with are the following: an anchoring moiety to the anion-binding pocket, keeping Trp112 in its native conformation (AKR1B10-like), and not opening the specificity pocket in AR.
Collapse
|
10
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Enzymatic Inhibitors from Natural Sources: A Huge Collection of New Potential Drugs. Biomolecules 2021; 11:biom11020133. [PMID: 33498517 PMCID: PMC7909571 DOI: 10.3390/biom11020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
|
12
|
Ottanà R, Paoli P, Cappiello M, Nguyen TN, Adornato I, Del Corso A, Genovese M, Nesi I, Moschini R, Naß A, Wolber G, Maccari R. In Search for Multi-Target Ligands as Potential Agents for Diabetes Mellitus and Its Complications-A Structure-Activity Relationship Study on Inhibitors of Aldose Reductase and Protein Tyrosine Phosphatase 1B. Molecules 2021; 26:molecules26020330. [PMID: 33435264 PMCID: PMC7828111 DOI: 10.3390/molecules26020330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.
Collapse
Affiliation(s)
- Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, Polo Universitario Annunziata, 98168 Messina, Italy; (R.O.); (I.A.)
| | - Paolo Paoli
- Department of Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, University of Firenze, Viale Morgagni 50, 50134 Firenze, Italy; (P.P.); (M.G.); (I.N.)
| | - Mario Cappiello
- Department of Biology, Biochemistry Unit, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy; (M.C.); (A.D.C.); (R.M.)
| | - Trung Ngoc Nguyen
- Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2 + 4, 14195 Berlin, Germany; (T.N.N.); (A.N.); (G.W.)
| | - Ilenia Adornato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, Polo Universitario Annunziata, 98168 Messina, Italy; (R.O.); (I.A.)
| | - Antonella Del Corso
- Department of Biology, Biochemistry Unit, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy; (M.C.); (A.D.C.); (R.M.)
| | - Massimo Genovese
- Department of Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, University of Firenze, Viale Morgagni 50, 50134 Firenze, Italy; (P.P.); (M.G.); (I.N.)
| | - Ilaria Nesi
- Department of Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, University of Firenze, Viale Morgagni 50, 50134 Firenze, Italy; (P.P.); (M.G.); (I.N.)
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, Via S. Zeno, 51, 56123 Pisa, Italy; (M.C.); (A.D.C.); (R.M.)
| | - Alexandra Naß
- Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2 + 4, 14195 Berlin, Germany; (T.N.N.); (A.N.); (G.W.)
| | - Gerhard Wolber
- Molecular Design Lab, Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestr. 2 + 4, 14195 Berlin, Germany; (T.N.N.); (A.N.); (G.W.)
| | - Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, Polo Universitario Annunziata, 98168 Messina, Italy; (R.O.); (I.A.)
- Correspondence: ; Tel.: +39-090-6766406
| |
Collapse
|
13
|
Rahimifard M, Baeeri M, Bahadar H, Moini-Nodeh S, Khalid M, Haghi-Aminjan H, Mohammadian H, Abdollahi M. Therapeutic Effects of Gallic Acid in Regulating Senescence and Diabetes; an In Vitro Study. Molecules 2020; 25:molecules25245875. [PMID: 33322612 PMCID: PMC7763304 DOI: 10.3390/molecules25245875] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Gallic acid (GA), a plant-derived ubiquitous secondary polyphenol metabolite, can be a useful dietary supplement. This in vitro study’s primary purpose was to assess the anti-aging properties of GA using rat embryonic fibroblast (REF) cells, antidiabetic effects via pancreatic islet cells, and finally, elucidating the molecular mechanisms of this natural compound. REF and islet cells were isolated from fetuses and pancreas of rats, respectively. Then, several senescence-associated molecular and biochemical parameters, along with antidiabetic markers, were investigated. GA caused a significant decrease in the β-galactosidase activity and reduced inflammatory cytokines and oxidative stress markers in REF cells. GA reduced the G0/G1 phase in senescent REF cells that led cells to G2/M. Besides, GA improved the function of the β cells. Flow cytometry and spectrophotometric analysis showed that it reduces apoptosis via inhibiting caspase-9 activity. Taken together, based on the present findings, this polyphenol metabolite at low doses regulates different pathways of senescence and diabetes through its antioxidative stress potential and modulation of mitochondrial complexes activities.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
- Correspondence: (M.B.); (M.A.)
| | - Haji Bahadar
- Institute of Paramedical Sciences, Khyber Medical University, 25120 Peshawar, Pakistan;
| | - Shermineh Moini-Nodeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
| | - Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, 5618953141 Ardabil, Iran;
| | - Hossein Mohammadian
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417613151 Tehran, Iran; (M.R.); (S.M.-N.); (M.K.); (H.M.)
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
- Correspondence: (M.B.); (M.A.)
| |
Collapse
|