1
|
Singh D, Jadon KS, Verma A, Kakani RK. Harnessing nature's defenders: unveiling the potential of microbial consortia for plant defense induction against Alternaria blight in cumin. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01191-y. [PMID: 39212847 DOI: 10.1007/s12223-024-01191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Present study was aimed to develop an efficient microbial consortium for combating Alternaria blight disease in cumin. The research involved isolating biocontrol agents against Alternaria burnsii, characterizing their biocontrol and growth promotion traits, and assessing compatibility. A pot experiment was conducted during rabi season of 2022-2023 to evaluate the bioefficacy of four biocontrol agents (1F, 16B, 31B, and 223B) individually and in consortium, focusing on disease severity, plant growth promotion, and defense responses in cumin challenged with A. burnsii. Microbial isolates 1F, 16B, 31B, and 223B significantly inhibited A. burnsii growth in dual plate assays (~ 86%), displaying promising biocontrol and plant growth promotion activities. They were identified as Trichoderma afroharzianum 1F, Aneurinibacillus aneurinilyticus 16B, Pseudomonas lalkuanensis 31B, and Bacillus licheniformis 223B, respectively. The excellent compatibility was observed among all selected biocontrol agents. Cumin plants treated with consortia of 1F + 16B + 31B + 223B showed least percent disease index (32.47%) and highest percent disease control (64.87%). Consortia of biocontrol agents significantly enhanced production of secondary metabolites (total phenol, flavonoids, antioxidant, and tannin) and activation of antioxidant-defense enzymes (POX, PPOX, CAT, SOD, PAL, and TAL) compared to individual biocontrol treatment and infected control. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual biocontrol agent and infected control treatment. The four-microbe consortium significantly enhanced chlorophyll (154%), carotenoid content (88%), plant height (78.77%), dry weight (72.81%), and seed yield (104%) compared to infected control. Based on these findings, this environmentally friendly four-microbe consortium may be recommended for managing Alternaria blight in cumin.
Collapse
Affiliation(s)
- Devendra Singh
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India.
| | - Kuldeep Singh Jadon
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Aman Verma
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Rajesh Kumar Kakani
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| |
Collapse
|
2
|
Singh D, Jadon KS, Verma A, Geat N, Sharma R, Meena KK, Kakani RK. Formulations of synergistic microbial consortia for enhanced systemic resistance against Fusarium wilt in cumin. Int Microbiol 2024:10.1007/s10123-024-00553-3. [PMID: 39020234 DOI: 10.1007/s10123-024-00553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
The study aimed to understand the dynamic interplay between plants and their associated microbes to develop an efficient microbial consortium for managing Fusarium wilt of cumin. A total of 601 rhizospheric and endophytic bacteria and fungi were screened for antagonistic activity against Fusarium oxysporum f.sp. cumini (Foc). Subsequently, ten bacteria and ten fungi were selected for characterizing their growth promotion traits and ability to withstand abiotic stress. Furthermore, a pot experiment was conducted to evaluate the bioefficacy of promising biocontrol isolates-1F, 16B, 31B, and 223B in mono and consortium mode, focusing on disease severity, plant growth, and defense responses in cumin challenged with Foc. Promising isolates were identified as Trichoderma atrobruneum 15F, Pseudomonas sp. 2B, Bacillus amyloliquefaciens 9B, and Bacillus velezensis 32B. In planta, results revealed that cumin plants treated with consortia of 15F, 2B, 9B, and 32B showed highest percent disease control (76.35%) in pot experiment. Consortia of biocontrol agents significantly enhanced production of secondary metabolites and activation of antioxidant-defense enzymes compared to individual strain. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual strain and positive control. The four-microbe consortium significantly enhanced chlorophyll (~ 2.74-fold), carotenoid content (~ 2.14-fold), plant height (~ 1.8-fold), dry weight (~ 1.96-fold), and seed yield (~ 19-fold) compared to positive control in pot experiment. Similarly, four microbe consortia showed highest percent disease control (72.2%) over the positive control in field trial. Moreover, plant growth, biomass, yield, and yield attributes of cumin were also significantly increased in field trial over the positive control as well as negative control.
Collapse
Affiliation(s)
- Devendra Singh
- Division of Pant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, Rajasthan, India.
| | - Kuldeep Singh Jadon
- Division of Pant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, Rajasthan, India
| | - Aman Verma
- Division of Pant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, Rajasthan, India
| | - Neelam Geat
- Department of Plant Pathology, Agricultural Research Station, Mandor, Agriculture University Jodhpur, Jodhpur, 342304, India
| | - Rajneesh Sharma
- Division of Pant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, Rajasthan, India
| | - Kamlesh Kumar Meena
- Division of Integrated Farming Systems, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, Rajasthan, India
| | - Rajesh Kumar Kakani
- Division of Pant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, Rajasthan, India
| |
Collapse
|
3
|
Tannir H, Debs E, Mansour G, Neugart S, El Hage R, Khalil MI, El Darra N, Louka N. Microbial Decontamination of Cuminum cyminum Seeds Using "Intensification of Vaporization by Decompression to the Vacuum": Effect on Color Parameters and Essential Oil Profile. Foods 2024; 13:2264. [PMID: 39063348 PMCID: PMC11275638 DOI: 10.3390/foods13142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cumin seeds are frequently utilized in herbal infusions and as flavoring agents in home cuisine. Nevertheless, studies have demonstrated that spices are frequently contaminated with pathogenic bacteria, including bacterial spores. The aim of this study was to assess the effectiveness of a new decontamination method called "Intensification of Vaporization by Decompression to the Vacuum" (IVDV) on intentionally contaminated Cuminum cyminum seeds. The study also examined the impact of this treatment on the color and oil profile of the treated samples. The untreated samples were inoculated with Escherichia coli (ATCC 25922) and Salmonella Typhimurium (ATCC 14028) and then subjected to IVDV treatment. Response surface methodology was employed to obtain safe, high-quality cumin seeds presenting a balance between microbial load, color, and oil profile. The optimal IVDV conditions were achieved at a pressure of 3.5 bar and a time of 133.45 s, resulting in typical 4 log reductions observed with 99.99% of Escherichia coli and Salmonella Typhimurium inactivation. The treated spices presented a mild color modification compared to the untreated ones, manifested by a darker shade (decreased L* value), reduced greenness (increased a* value), and heightened yellowness (increased b* value). The GC-MS analysis detected the existence of seven compounds in the treated cumin, with cuminaldehyde being the primary compound (83.79%). Furthermore, the use of IVDV treatment resulted in an increase in the total content of essential oils in some samples, whereby six monoterpenes were identified in the untreated sample compared to seven monoterpenes in IVDV-treated samples. This innovative technology demonstrated high efficacy in decontaminating C. cyminum seeds, improving the extractability of the essential oils while only slightly affecting the color.
Collapse
Affiliation(s)
- Hana Tannir
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon; (H.T.); (M.I.K.)
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon;
| | - Georges Mansour
- Food Department, Lebanese Agricultural Research Institute, Fanar P.O. Box 2611, Lebanon;
| | - Susanne Neugart
- Division of Quality and Sensory of Plant Products, Department of Crop Sciences, Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Rima El Hage
- Food Microbiology Laboratory, Lebanese Agricultural Research Institute (LARI), Fanar Station, Jdeideh El Metn P.O. Box 90-1965, Lebanon;
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon; (H.T.); (M.I.K.)
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Nada El Darra
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Nicolas Louka
- Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Centre d’Analyses et de Recherche, Faculté des Sciences, Saint-Joseph University of Beirut, Riad El Solh, P.O. Box 17-5208, Beirut 1104-2020, Lebanon
| |
Collapse
|
4
|
Senekovič J, Ciringer T, Ambrožič-Dolinšek J, Islamčević Razboršek M. The Effect of Combined Elicitation with Light and Temperature on the Chlorogenic Acid Content, Total Phenolic Content and Antioxidant Activity of Berula erecta in Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1463. [PMID: 38891272 PMCID: PMC11174371 DOI: 10.3390/plants13111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Chlorogenic acid is one of the most prominent bioactive phenolic acids with great pharmacological, cosmetic and nutritional value. The potential of Berula erecta in tissue culture was investigated for the production of chlorogenic acid and its elicitation combined with light of different wavelengths and low temperature. The content of chlorogenic acid in the samples was determined by HPLC-UV, while the content of total phenolic compounds and the antioxidant activity of their ethanol extracts were evaluated spectrophotometrically. The highest fresh and dry biomasses were obtained in plants grown at 23 °C. This is the first study in which chlorogenic acid has been identified and quantified in Berula erecta. The highest chlorogenic acid content was 4.049 mg/g DW. It was determined in a culture grown for 28 days after the beginning of the experiment at 12 °C and under blue light. The latter also contained the highest content of total phenolic compounds, and its extracts showed the highest antioxidant activity. Berula erecta could, potentially, be suitable for the in vitro production of chlorogenic acid, although many other studies should be conducted before implementation on an industrial scale.
Collapse
Affiliation(s)
- Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | - Terezija Ciringer
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
| | - Jana Ambrožič-Dolinšek
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
- Faculty of Education, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
| | - Maša Islamčević Razboršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
5
|
Różyło R, Gładyszewski G, Chocyk D, Dziki D, Świeca M, Matwijczuk A, Rząd K, Karcz D, Gawłowski S, Wójcik M, Gawlik U. The Influence of Micronization on the Properties of Black Cumin Pressing Waste Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2501. [PMID: 38893765 PMCID: PMC11173985 DOI: 10.3390/ma17112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study was to investigate the effect of micronization on the characteristics of black cumin pressing waste material. The basic composition, amino acid, and fatty acid content of the raw material-specifically, black cumin pressing waste material-were determined. The samples were micronized in a planetary ball mill for periods ranging from 0 to 20 min. The particle sizes of micronized samples of black cumin pressing waste material were then examined using a laser analyzer, the Mastersizer 3000. The structures of the produced micronized powders was examined by X-ray diffraction. Additionally, the FTIR (Fourier-transform infrared) spectra of the micronized samples were recorded. The measurement of phenolic and antiradical properties was conducted both before and after in vitro digestion, and the evaluation of protein digestibility and trypsin inhibition was also conducted. The test results, including material properties, suggest that micronization for 10 min dramatically reduced particle diameters (d50) from 374.7 to 88.7 µm, whereas after 20 min, d50 decreased to only 64.5 µm. The results obtained using FTIR spectroscopy revealed alterations, especially in terms of intensity and, to a lesser extent, the shapes of the bands, indicating a significant impact on the molecular properties of the tested samples. X-ray diffraction profiles revealed that the internal structures of all powders are amorphous, and micronization methods have no effect on the internal structures of powders derived from black cumin pressing waste. Biochemical analyses revealed the viability of utilizing micronized powders from black cumin pressing waste materials as beneficial food additives, since micronization increased total phenolic extraction and antiradical activity.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Grzegorz Gładyszewski
- Department of Applied Physics, Lublin University of Technology, 20-618 Lublin, Poland; (G.G.); (D.C.)
| | - Dariusz Chocyk
- Department of Applied Physics, Lublin University of Technology, 20-618 Lublin, Poland; (G.G.); (D.C.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland; (M.Ś.); (U.G.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences, 20-950 Lublin, Poland; (A.M.); (K.R.)
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Klaudia Rząd
- Department of Biophysics, University of Life Sciences, 20-950 Lublin, Poland; (A.M.); (K.R.)
| | - Dariusz Karcz
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 31-155 Krakow, Poland
| | - Sławomir Gawłowski
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (S.G.); (M.W.)
| | - Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland; (M.Ś.); (U.G.)
| |
Collapse
|
6
|
Li D, Fu J, Ren S, Jiang X. Efficient extraction based on a polydimethylsiloxane/bimetallic ZnCo-MOF carbonization sponge coupled with GC-MS for the rapid analysis of volatile compounds in cumin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:524-536. [PMID: 38168938 DOI: 10.1039/d3ay01889j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A novel porous polydimethylsiloxane/bimetallic ZnCo-MOF carbonization (PDMS/ZnCo-MOF@C) sponge was successfully fabricated, followed by its utilization in GC-MS for the high efficiency extraction and determination of volatile compounds in cumin. The PDMS/ZnCo-MOF@C sponge exhibits outstanding properties with a considerable adsorption capacity, high surface area, and large pore volume and has shown potential as an ideal adsorbent for the separation and preconcentration of trace volatile compounds. The effect of different parameters on the extraction efficiency were investigated. Excellent analytical performances were achieved for the representative compounds (β-pinene, p-cymene, γ-terpinene, cuminaldehyde, and linalyl acetate), including wide linearity (2.31-440.1 ng) with high correlation coefficients (R2 ≥ 0.9979), low LODs (1.02-3.11 ng) and LOQs (2.45-7.08 ng), and satisfactory precision (intra-day RSDs ≤ 2.89% and inter-day RSDs ≤ 4.14%). The optimal method was applied for the analysis of cumin from different regions and 44 volatile compounds were identified. The correlation between the different regions of cumin and volatile compounds was explored using multivariate statistical analysis. These results demonstrated that PDMS/ZnCo-MOF@C is an efficient, simple and sensitive material for use in the pretreatment technique for the determination of the volatile compounds in aromatic plants.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Jihong Fu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Shuxian Ren
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Xinxing Jiang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
7
|
Kuley F, Rathod NB, Kuley E, Yilmaz MT, Ozogul F. Inhibition of Food-Borne Pathogen Growth and Biogenic Amine Synthesis by Spice Extracts. Foods 2024; 13:364. [PMID: 38338500 PMCID: PMC10855824 DOI: 10.3390/foods13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Food-borne pathogens and their toxins cause significant health problems in humans. Formation of biogenic amines (BAs) produced by microbial decarboxylation of amino acids in food is undesirable because it can induce toxic effects in consumers. Therefore, it is crucial to investigate the effects of natural additives with high bioactivity like spice extracts to inhibit the growth of these bacteria and the formation of BAs in food. In the present study, the antibacterial effects of diethyl ether spice (sumac, cumin, black pepper, and red pepper) extracts at doses of 1% (w/v) on Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, Campylobacter jejuni, Aeromonas hydrophila, Salmonella Paratyphi A, and Yersinia enterocolitica) food-borne pathogen bacterial strains (FBP) were established. In addition, the accumulation of ammonia (AMN), trimethylamine (TMA), and biogenic amines (BAs) in tyrosine decarboxylase broth (TDB) was investigated by using high performance liquid chromatography (HPLC). Sumac extract exhibited the highest antibacterial potential against all FBPs, followed by cumin and peppers. AMN (570.71 mg/L) and TMA (53.66 mg/L) production were strongly inhibited by sumac extract in the levels of 55.10 mg/L for Y. enterocolitica and 2.76 mg/L for A. hydrophila, respectively. With the exception of S. aureus, black pepper dramatically reduced the synthesis of putrescine, serotonin, dopamine, and agmatine by FBP especially for Gram-negative ones. Furthermore, sumac extracts inhibited histamine and tyramine production by the majority of FBP. This research suggests the application of sumac extracts as natural preservatives for inhibiting the growth of FBPs and limiting the production of AMN, TMA, and BAs.
Collapse
Affiliation(s)
- Ferhat Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Killa-Roha 402116, Maharashtra State, India;
| | - Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
8
|
Wu YC, Su MC, Wu CS, Chen PY, Chen IF, Lin FH, Kuo SM. Ameliorative Effects of Cumin Extract-Encapsulated Chitosan Nanoparticles on Skeletal Muscle Atrophy and Grip Strength in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2023; 13:6. [PMID: 38275626 PMCID: PMC10812640 DOI: 10.3390/antiox13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Skeletal muscle atrophy is a disorder characterized by reductions in muscle size and strength. Cumin extract (CE) possesses anti-inflammatory, antioxidant, and hypoglycemic properties. Its pharmaceutical applications are hindered by its low water solubility and by its cytotoxicity when administered at high doses. In this study, we have developed a simplified water distillation method using a rotary evaporator to isolate the active components in cumin seeds. The anti-inflammatory effects of CE and its potential to ameliorate skeletal muscle atrophy in rats with streptozotocin (STZ)-induced diabetes were evaluated. The half-maximal inhibitory concentration (IC50) of CE for cells was 80 μM. By encapsulating CE in chitosan nanoparticles (CECNs), an encapsulation efficacy of 87.1% was achieved with a slow release of 90% of CE after 24 h of culturing, resulting in CECNs with significantly reduced cytotoxicity (IC50, 1.2 mM). Both CE and CECNs significantly reduced the inflammatory response in interleukin (IL)-6 and IL-1β assays. STZ-induced diabetic rats exhibited sustained high blood glucose levels (>16.5 mmol/L), small and damaged pancreatic β islets, and skeletal muscle atrophy. CE and CECN treatments ameliorated skeletal muscle atrophy, recovered muscle fiber striated appearance, increased grip strength, and decreased IL-6 level. Furthermore, CE and CECNs led to a reduction of damage to the pancreas, restoring its morphological phenotype, increasing serum insulin levels, and lowering blood glucose levels in STZ-induced diabetic rats. Taken together, treatment with CECNs over a 6-week period yielded positive ameliorative effects in STZ-induced rats of muscle atrophy.
Collapse
Affiliation(s)
- Yu-Chiuan Wu
- Republic of China Military Academy, Kaohsiung 830208, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
| | - Min-Chien Su
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| | - Chun-Shien Wu
- Center of General Education, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Pin-Yu Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| | - I-Fen Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Shyh-Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| |
Collapse
|
9
|
Hajib A, El Harkaoui S, Choukri H, Khouchlaa A, Aourabi S, El Menyiy N, Bouyahya A, Matthaeus B. Apiaceae Family an Important Source of Petroselinic Fatty Acid: Abundance, Biosynthesis, Chemistry, and Biological Proprieties. Biomolecules 2023; 13:1675. [PMID: 38002357 PMCID: PMC10669383 DOI: 10.3390/biom13111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 11/26/2023] Open
Abstract
Petroselinic fatty acid (PeFA) is considered a rare fatty acid and one of the most important fatty acids in the Apiaceae family. Its content varies depending on plant species, geographical origin, extraction method, ripeness, etc. Indeed, reported levels of petroselinic fatty acid range from 10.4 to 75.6% (in anise seed oil), 1 to 81.9% (in coriander seed oil), 28.5 to 57.6% (in caraway seed oil), 49.4 to 75.6% (in celery seed oil), 41.3 to 61.8% (in caraway seed oil), 79.9 to 87.2% (in dill seed oil), 43.1 to 81.9% (in fennel seed oil), and 35 to 75.1% (parsley seed oil). In this review, we also show current knowledge about genes encoding biosynthesis, from the desaturation of 16:0-ACP to petroselinic acid stored in triacylglycerol in the seeds. Furthermore, petroselinic acid is not related to the synthesis of ABA. PeFA was successfully isolated from Apiaceae family plant seeds in order to study their reactivity and biological activities. Several investigations showed that this fatty acid has a wide range of biological potentials, including antidiabetic, antibacterial, and antifungal activities. In cosmetics, PeFA alone or in association with other active compounds has interesting applications as an anti-inflammatory agent for the treatment of skin, hair, and nail disorders.
Collapse
Affiliation(s)
- Ahmed Hajib
- Laboratory of Bioactive and Molecules of Interest, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Said El Harkaoui
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Insitute for Nutrition and Food, Schützenberg 12, D-32756 Detmold, Germany
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas, Rabat 10000, Morocco
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Sarra Aourabi
- Laboratory of Bioactive and Molecules of Interest, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants (NAMAP), Taounate 34000, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Bertrand Matthaeus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Insitute for Nutrition and Food, Schützenberg 12, D-32756 Detmold, Germany
| |
Collapse
|
10
|
Wang L, Fu J, Jiang X, Li D. Efficient extraction approach based on polydimethylsiloxane/ZIF-derived carbons sponge followed by GC–MS for the determination of volatile compounds in cumin. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Li D, Jiang X, Zhang Y, Xue W, Fu J. Determination of volatile components in cumin by microwave-assisted PDMS/GO/DES headspace solid phase extraction combined with GC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:849-858. [PMID: 36722988 DOI: 10.1039/d2ay01995g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel approach based on polydimethylsiloxane/graphene oxide/deep eutectic solvent (PDMS/GO/DES) sponge headspace solid phase extraction followed by GC-MS was successfully developed to determine the volatile components in cumin. The PDMS/GO/DES exhibits outstanding properties with high adsorption capacity and good chemical stability, and has shown its potentiality as an ideal adsorbent for the extraction of volatile compounds. The influence factors of the extraction process were investigated. Excellent analytical performances were achieved, including wide linearity (0.60-107.72 ng) with high correlation coefficients (R2 ≥ 0.9951), low LODs (0.23-9.23 ng) and LOQs (0.54-18.47 ng), satisfactory precision (intra-day RSDs ≤ 2.85% and inter-day RSDs ≤ 3.92%). Under the optimal extraction conditions, the volatile components in 17 cumin samples from four origins in Xinjiang were analyzed and 31 compounds were identified. PCA was used to establish the relationship between the origins and the volatile compounds for further discriminant analysis. The results showed that the PDMS/GO/DES method was a rapid, simple and sensitive technique for the analysis of volatile components in spices.
Collapse
Affiliation(s)
- Dandan Li
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Xinxing Jiang
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Yaxue Zhang
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Wenxia Xue
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| | - Jihong Fu
- School of Chemical Engineering and Technology & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830000, Xinjiang, China.
| |
Collapse
|
12
|
Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFκB-Centric Signaling Axis. Pharmaceuticals (Basel) 2022; 16:ph16010063. [PMID: 36678560 PMCID: PMC9862254 DOI: 10.3390/ph16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that affects the patients' colorectal area culminating in an inflamed 'leaky gut.' The majority of UC treatments only provide temporary respite leading to its relapse. Therefore, this study investigated the efficacy of the enteric-coated 'Cologrit' (EC) tablet in alleviating UC-like inflammation. Cologrit is formulated using polyherbal extracts that have anti-inflammatory qualities according to ancient Ayurveda scriptures. Phytochemical profiling revealed the presence of gallic acid, rutin, ellagic acid, and imperatorin in Cologrit formulation. Cologrit treatment decreased inflammation in LPS-induced transformed THP-1 macrophages, and TNF-α-stimulated human colorectal (HT-29) cells through the modulation of NFκB activity, IL-6 production, and NFκB, IL-1β, IL-8, and CXCL5 mRNA expression levels. Cologrit also lessened human monocytic (U937) cell adhesion to HT29 cells. Methacrylic acid-ethylacrylate copolymer-coating of the enteric Cologrit tablets (EC) supported their dissolution, and the release of phytochemicals in the small intestine pH 7.0 environment in a simulated gastrointestinal digestion model. Small intestine EC digestae effectively abridged dextran sodium sulfate (2.5% w/v)-induced cell viability loss and oxidative stress in human colon epithelial Caco-2 cells. In conclusion, the enteric-coated Cologrit tablets demonstrated good small intestine-specific phytochemical delivery capability, and decreased UC-like inflammation, and oxidative stress through the regulation of TNF-α/NFκB/IL6 signaling axis.
Collapse
|
13
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Schrenk D, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of an essential oil from the fruit of Cuminum cyminum L. (cumin oil) for use in all animal species (FEFANA asbl). EFSA J 2022; 20:e07690. [PMID: 36545574 PMCID: PMC9762120 DOI: 10.2903/j.efsa.2022.7690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil obtained from the fruit of Cuminum cyminum L. (cumin oil), when used as a sensory additive in feed and water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the use of cumin oil up to the maximum proposed use levels in feed of 15 mg/kg complete feed is considered as safe for all animal species. The FEEDAP Panel considered the use in water for drinking as safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. No concerns for consumers were identified following the use of cumin oil up to the maximum proposed use level in feed. The additive under assessment should be considered as irritant to skin and eyes, and as a dermal and respiratory sensitiser. When handling the essential oil, exposure of unprotected users to estragole (and dillapiole) cannot be excluded. Therefore, to reduce the risk, the exposure of the users should be minimised. The use of cumin oil at the proposed use level in feed is not expected to pose a risk to the environment. Since C. cyminum and its preparations are recognised to flavour food and its function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary.
Collapse
|
14
|
Özcan MM. The Effect of Spice Powders on Bioactive Compounds, Antioxidant Activity, Phenolic Components, Fatty Acids, Mineral Contents and Sensory Properties of "Keşkek", Which Is a Traditional Food. Foods 2022; 11:3492. [PMID: 36360106 PMCID: PMC9654948 DOI: 10.3390/foods11213492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/14/2023] Open
Abstract
"Keşkek", which is a dish of Western Anatolia, Thrace, the Eastern Anatolia Region, the Black Sea and Central Anatolia, is a traditional dish made mainly of split wheat and meat-although it varies according to the regions in Anatolia-which is usually made at weddings and holidays. In this study, the effects of thyme, coriander and cumin spices on the fat content, bioactive properties, phenolic component, fatty acid composition, mineral contents and sensory properties of "Keşkek" were investigated. The oil yields of "Keşkek" types were determined to be between 14.90 (control) and 21.20% (with cumin). Total phenolic and flavonoid contents of "Keşkek" types' added spices were established as between 7.02 (control) and 77.10 mg/100 g Gallic Acid Equivalent (GAE) (with thyme) to 20.24 (control) and 132.14 mg quercetin equivalent (QE)/100 g (with thyme), respectively. Moreover, the antioxidant activity values of "Keşkek" samples varied between 0.04 (control) and 2.78 mmol Trolox Equivalent (TE)/kg (with thyme). Among these phenolic constituents, gallic acid was the most abundant, followed by catechin, rutin and 3,4-dihydroxybenzoic acid, in descending order. Oleic and linoleic acid contents of the "Keşkek" oils were detected between 25.51 (with thyme) and 30.58% (with cumin) to 38.28 (with cumin) and 48.49% (control), respectively. P, K, Mg and S were the major minerals of "Keşkek" samples. Considering the sensory characteristics of the "Keşkek" samples, "Keşkek" with thyme was appreciated, followed by "Keşkek" with cumin and "control and Keşkek" with coriander in decreasing order.
Collapse
Affiliation(s)
- Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, 42031 Konya, Turkey
| |
Collapse
|
15
|
Detection of cumin powder adulteration with allergenic nutshells using FT-IR and portable NIRS coupled with chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Shende V, Khamrui K, Prasad W, Wani AD, Hussain SA. Preparation of whey based savory beverage with enhanced bio-accessible zinc. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4288-4296. [PMID: 36033353 PMCID: PMC9391212 DOI: 10.1007/s13197-022-05497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/21/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022]
Abstract
Zinc is an essential micronutrient for numerous catalytic, structural and regulatory functions in human body. However, its direct fortification in the food matrix poses the challenges of decreased bio-accessibility by forming insoluble sediments. Complexing zinc with polysaccharides has been reported as a possible intervention to address this issue by keeping the zinc in soluble form. Present investigation was undertaken to transform paneer whey containing complexed zinc into a sensorially acceptable beverage by varying its pH from 3.5 to 5.5, common salt concentration from 0.5 to 1.5% and spices concentration at 0.2 and 0.4%. Changes in complexed zinc concentration, apparent viscosity, instrumental color parameters and sensory attributes were determined. Complexed zinc concentration increased (p < 0.05) with increasing pH, decreasing salt and increasing spices concentration. Whey beverage having 4.5 pH, 1.0% salt and 0.4% spices concentration was most preferred by the sensory panelists. In-vitro digestion of optimized whey beverage revealed that bio-accessibility of zinc was significantly higher (p < 0.05) in complex form than free from. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05497-y.
Collapse
Affiliation(s)
- Vijay Shende
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Kaushik Khamrui
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Writdhama Prasad
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Aakash Dadarao Wani
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Shaik Abdul Hussain
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, 132001 Haryana India
| |
Collapse
|
17
|
Zuo E, Sun L, Yan J, Chen C, Chen C, Lv X. Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine. Sci Rep 2022; 12:13593. [PMID: 35948651 PMCID: PMC9365781 DOI: 10.1038/s41598-022-17810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Fennel contains many antioxidant and antibacterial substances, and it has very important applications in food flavoring and other fields. The kinds and contents of chemical substances in fennel vary from region to region, which can affect the taste and efficacy of the fennel and its derivatives. Therefore, it is of great significance to accurately classify the origin of the fennel. Recently, origin detection methods based on deep networks have shown promising results. However, the existing methods spend a relatively large time cost, a drawback that is fatal for large amounts of data in practical application scenarios. To overcome this limitation, we explore an origin detection method that guarantees faster detection with classification accuracy. This research is the first to use the machine learning algorithm combined with the Fourier transform-near infrared (FT-NIR) spectroscopy to realize the classification and identification of the origin of the fennel. In this experiment, we used Rubberband baseline correction on the FT-NIR spectral data of fennel (Yumen, Gansu and Turpan, Xinjiang), using principal component analysis (PCA) for data dimensionality reduction, and selecting extreme learning machine (ELM), Convolutional Neural Network (CNN), recurrent neural network (RNN), Transformer, generative adversarial networks (GAN) and back propagation neural network (BPNN) classification model of the company realizes the classification of the sample origin. The experimental results show that the classification accuracy of ELM, RNN, Transformer, GAN and BPNN models are above 96%, and the ELM model using the hardlim as the activation function has the best classification effect, with an average accuracy of 100% and a fast classification speed. The average time of 30 experiments is 0.05 s. This research shows the potential of the machine learning algorithm combined with the FT-NIR spectra in the field of food production area classification, and provides an effective means for realizing rapid detection of the food production area, so as to merchants from selling shoddy products as good ones and seeking illegal profits.
Collapse
Affiliation(s)
- Enguang Zuo
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Lei Sun
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute, Urumqi, 830011, China
| | - Junyi Yan
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China. .,College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Chen Chen
- College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Xiaoyi Lv
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.,College of Software, Xinjiang University, Urumqi, 830046, China.,Key Laboratory of signal detection and processing, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
18
|
Antioxidant and Antihyperglycemic Effects of Ephedra foeminea Aqueous Extract in Streptozotocin-Induced Diabetic Rats. Nutrients 2022; 14:nu14112338. [PMID: 35684137 PMCID: PMC9182796 DOI: 10.3390/nu14112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Ephedra foeminea is known in Jordan as Alanda and traditionally. It is used to treat respiratory symptoms such as asthma and skin rashes as an infusion in boiling water. The purpose of this study was to determine the antidiabetic property of Ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Methods: The aqueous extract of Ephedra foeminea plant was used to determine the potential of its efficacy in the treatment of diabetes, and this extract was tested on diabetic rats as a model. The chemical composition of Ephedra foeminea aqueous extract was determined using liquid chromatography–mass spectrometry (LC-MS). Antioxidant activity was assessed using two classical assays (ABTS and DPPH). Results: The most abundant compounds in the Ephedra foeminea extract were limonene (6.3%), kaempferol (6.2%), stearic acid (5.9%), β-sitosterol (5.5%), thiamine (4.1%), riboflavin (3.1%), naringenin (2.8%), kaempferol-3-rhamnoside (2.3%), quercetin (2.2%), and ferulic acid (2.0%). The antioxidant activity of Ephedra foeminea aqueous extract was remarkable, as evidenced by radical scavenging capacities of 12.28 mg Trolox/g in ABTS and 72.8 mg GAE/g in DPPH. In comparison to control, induced diabetic rats treated with Ephedra foeminea extract showed significant improvement in blood glucose levels, lipid profile, liver, and kidney functions. Interleukin 1 and glutathione peroxidase levels in the spleen, pancreas, kidney, and liver of induced diabetic rats treated with Ephedra foeminea extract were significantly lower than in untreated diabetic rats. Conclusions: Ephedra foeminea aqueous extract appears to protect diabetic rats against oxidative stress and improve blood parameters. In addition, it has antioxidant properties that might be very beneficial medicinally.
Collapse
|
19
|
Khalid W, Maqbool Z, Arshad MS, Kousar S, Akram R, Siddeeg A, Ali A, Qin H, Aziz A, Saeed A, Rahim MA, Zubair Khalid M, Ali H. Plant-derived functional components: prevent from various disorders by regulating the endocrine glands. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Safura Kousar
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ramish Akram
- Department of Rehabilitation Sciences, The University of Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, China
| | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | | | | - Hina Ali
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
20
|
Detection of nutshells in cumin powder using NIR hyperspectral imaging and chemometrics tools. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Impact of sumac, cumin, black pepper and red pepper extracts in the development of foodborne pathogens and formation of biogenic amines. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04006-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Kalhoro MT, Zhang H, Kalhoro GM, Wang F, Chen T, Faqir Y, Nabi F. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci Rep 2022; 12:2191. [PMID: 35140298 PMCID: PMC8828847 DOI: 10.1038/s41598-022-06321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022] Open
Abstract
Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts.
Collapse
Affiliation(s)
- Muhammad Talib Kalhoro
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Hong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China.
| | - Ghulam Mujtaba Kalhoro
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Fukai Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Tianhong Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| |
Collapse
|
23
|
Maharramova S, Veliyeva M, Amirova M, Azizova U, Majidova U, Abıyev H, Dashdamirova G, Mammadova F. Surrounding Plants as Reliable Immune Boosters. Health (London) 2022. [DOI: 10.4236/health.2022.1411078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Tavakoli-Rouzbehani OM, Faghfouri AH, Anbari M, Papi S, Shojaei FS, Ghaffari M, Alizadeh M. The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114510. [PMID: 34371114 DOI: 10.1016/j.jep.2021.114510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuminum Cyminum (CC) is a traditional herbal medicine using as an antiseptic, anti-carcinogenic, anti-mutagenic, anti-cancer, anti-hypertensive, anti-inflammatory, and antioxidant. Recently hypoglycemic characteristics of CC have been indicated. AIM OF THE STUDY We intended to conduct a meta-analysis on the effect of CC supplementation on glycemic parameters in patients with different chronic diseases. MATERIALS AND METHODS PubMed, Embase, Web of Science, and Scopus were searched until May 2021. Random effect model was conducted to perform the meta-analysis. Source of heterogeneity was explored using the meta-regression and subgroup analyses. The Cochrane Collaboration's tool was used to assess the quality of studies. The GRADE approach was used to assess the quality of evidence. RESULTS Findings of eight studies showed that CC supplementation reduced FBS (SMD = -1.4 mg/dl; 95 % CI: -2.29, -0.51; P = 0.002), HbA1c (SMD = -1.71 %; 95 % CI: -3.24, -0.18; P = 0.028), and HOMA-β (SMD = 0.46; 95 % CI: -0.62, 1.55; P = 0.404) significantly. Also, CC increased QUICKI level (SMD = 0.89; 95 % CI: 0.37, 1.4; P = 0.001. However, no significant effect of CC was observed on insulin (SMD = -0.70 μIU/dl; 95 % CI: -1.84, 0.45; P = 0.234) and HOMA-IR (SMD = 0.46; 95 % CI: -0.62, 1.55; P = 0.404). CONCLUSION CC had an improving effect on FBS, HbA1C, HOMA-B, and QUICKI. The effect of CC on amending HOMA-IR was significant after sensitivity analysis. However, the insulin level was not changed significantly.
Collapse
Affiliation(s)
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Anbari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Papi
- Department of Public Health, Faculty of Health, Social Determinants of Health Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Farid Salimi Shojaei
- Department of Medical Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Mehdi Ghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
In Vitro and In Vivo Antifungal Activities of Nine Commercial Essential Oils against Brown Rot in Apples. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
After harvest, numerous plant pathogenic fungi can infect fresh fruits during transit and storage. Although synthetic fungicides are often used to manage postharvest fruit diseases, their application may lead to problems such as the development of fungicide resistance and residues on fruits. In the present study, the antifungal potential of nine commercial essential oils (EOs) extracted from Eucalyptus radiata ssp. radiata, Mentha pulegium, Rosmarinus officinalis, Origanum compactum, Lavandula angustifolia, Syzygium aromaticum, Thymus vulgaris, Citrus aurantium, and Citrus sinensis were tested against the apple brown rot fungi Monilinia laxa and Monilinia fructigena at different concentrations in vitro (against mycelial growth and spore germination) and in vivo (on detached apple fruit and in semi-commercial postharvest conditions). In addition, fruit quality parameters were evaluated and the composition of the EOs was characterized by Fourier transform infrared (FT-IR) spectroscopy. In vitro results showed significant antifungal activity of all tested EOs on both fungal species. EOs from S. aromaticum were the most effective, whereby inhibition percentages ranged from 64.0 to 94.7% against M. laxa and from 63.9 to 94.4% against M. fructigena for the concentrations 12.5 and 100 µL/mL, respectively, with an EC50 of 6.74 µL/mL for M. laxa and 10.1 µL/mL for M. fructigena. The higher concentrations tested of S. aromaticum, T. vulgaris, C. aurantium, and C. sinensis EOs significantly reduced spore germination, brown rot incidence, and lesion diameter. Evaluation of the treatments during storage for 20 days at 4 °C on apple fruit quality parameters demonstrated the preservation of the fruit quality characteristics studied (weight loss, total soluble solids, titratable acidity, firmness, and maturity index). FT-IR spectra obtained from all tested EO samples presented characteristic peaks and a high diversity of functional groups such as O–H groups, C–H bonds, and C–C stretching. The EOs examined here may have the potential for controlling postharvest fungal diseases of fruit such as brown rot.
Collapse
|
26
|
Abstract
The excess level of reactive oxygen species (ROS) disturbs the oxidative balance leading to oxidative stress, which, in turn, causes diabetes mellites, cancer, and cardiovascular diseases. These effects of ROS and oxidative stress can be balanced by dietary antioxidants. In recent years, there has been an increasing trend in the use of herbal products for personal and beauty care. The Apiaceae (previously Umbelliferae) family is a good source of antioxidants, predominantly phenolic compounds, therefore, widely used in the pharmaceutical, cosmetic, cosmeceutical, flavor, and perfumery industries. These natural antioxidants include polyphenolic acids, flavonoids, carotenoids, tocopherols, and ascorbic acids, and exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis, and anticancer. This review discusses the Apiaceae family plants as an important source of antioxidants their therapeutic value and the use in cosmetics.
Collapse
|
27
|
Yang B, Chen C, Chen F, Chen C, Tang J, Gao R, Lv X. Identification of cumin and fennel from different regions based on generative adversarial networks and near infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119956. [PMID: 34049008 DOI: 10.1016/j.saa.2021.119956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Cumin (Cuminum cyminum) and fennel (Foeniculum vulgare) are widely used seasonings and play a very important role in industries such as breeding, cosmetics, winemaking, drug discovery, and nano-synthetic materials. However, studies have shown that cumin and fennel from different regions not only differ greatly in the content of lipids, phenols and proteins but also the substances contained in their essential oils are also different. Therefore, realizing precise identification of cumin and fennel from different regions will greatly help in quality control, market fraud and production industrialization. In this experiment, cumin and fennel samples were collected from each region, a total of 480 NIR spectra were collected. We used deep learning and traditional machine learning algorithms combined with near infrared (NIR) spectroscopy to identify their origin. To obtain the model with the best generalization performance and classification accuracy, we used principal component analysis (PCA) to reduce spectral data dimensionality after Rubberband baseline correction, and then established classification models including quadratic discriminant analysis based on PCA (PCA-QDA) and multilayer perceptron based on PCA (PCA-MLP). We also directly input the spectral data after baseline correction into convolutional neural networks (CNN) and generative adversarial networks (GAN). The experimental results show that GAN is more accurate than the PCA-QDA, PCA-MLP and CNN models, and the classification accuracy reached 100%. In the cumin and fennel classification experiment in the same region, the four models achieve great classification results from three regions under the condition that all model parameters remain unchanged. The experimental results show that when the training data are limited and the dimension is high, the model obtained by GAN using competitive learning has more generalization ability and higher classification accuracy. It also provides a new method for solving the problem of limited training data in food research and medical diagnosis in the future.
Collapse
Affiliation(s)
- Bo Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Fangfang Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Jun Tang
- Centre for Physical and Chemical Analysis, Xinjiang University, Urumqi 830046, China
| | - Rui Gao
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, Xinjiang, China; Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi 830046, Xinjiang, China.
| |
Collapse
|
28
|
Sharma N, Tan MA, An SSA. Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1571. [PMID: 34679705 PMCID: PMC8533116 DOI: 10.3390/antiox10101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. In an effort to search for new strategies for treating AD, natural products have become candidates of choice. Plants are a rich source of bioactive and effective compounds used in treating numerous diseases. Various plant extracts are known to display neuroprotective activities by targeting different pathophysiological pathways in association with the diseases, such as inhibiting enzymes responsible for degrading neurotransmitters, reducing oxidative stress, neuroprotection, inhibiting amyloid plaque formation, and replenishing mitochondrial function. This review presented a comprehensive evaluation of the available scientific literature (in vivo, in vitro, and in silico) on the neuroprotective mechanisms displayed by the extracts/bioactive compounds from spices belonging to the Apiaceae family in ameliorating AD.
Collapse
Affiliation(s)
- Niti Sharma
- Department of Bionano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam 461-701, Korea;
| | - Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam 461-701, Korea;
| |
Collapse
|
29
|
Różyło R, Piekut J, Wójcik M, Kozłowicz K, Smolewska M, Krajewska M, Szmigielski M, Bourekoua H. Black Cumin Pressing Waste Material as a Functional Additive for Starch Bread. MATERIALS 2021; 14:ma14164560. [PMID: 34443082 PMCID: PMC8401299 DOI: 10.3390/ma14164560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
The aim of the study was to determine the effect of the addition of black cumin (Nigella sativa L.) pressing waste (BCW) and black cumin seeds (BCS) on the properties of starch bread. The control bread was prepared from wheat starch (100%) with a gluten-free certificate, plantain husk (5%), and guar gum (2%). BCS and BCW were added between 0 and 10% of wheat starch. We determined the physicochemical properties, color, texture, and sensory properties of the prepared bread. Gas chromatography–mass spectrometry (GC–MS) analysis was performed to detect the phenolic compounds in the bread. The bread prepared with 6% BCS and 4% BCW had a significantly higher volume than the starch control bread did. Sensory analysis (taste) showed that BCS and BCW could be added up to 4% and 8%, respectively. The addition of BCS and BCW reduced the brightness of the crumb. A significant decrease in the L * index of the crumb was observed from 50.9 for the control bread to 34.1 and 34.0 for bread with 10% BCS and BCW, respectively. The addition of BCS and BCW decreased the hardness, elasticity, and chewiness of the starch bread crumb. Starch bread enriched with BCS and BCW was characterized by a higher content of 2-hydroxybenzoic acid, 2-hydroxyphenyl acetic acid, and 4-hydroxyphenyl acetic acid.
Collapse
Affiliation(s)
- Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland;
- Correspondence:
| | - Jolanta Piekut
- Department of Agricultural, Food and Forestry Engineering, Bialystok University of Technology, 45E Wiejska Str., 15-351 Białystok, Poland;
| | - Monika Wójcik
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland;
| | - Katarzyna Kozłowicz
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (K.K.); (M.K.); (M.S.)
| | - Marzena Smolewska
- Faculty Chemical Laboratory, Bialystok University of Technology, 45E Wiejska Str., 15-351 Białystok, Poland;
| | - Marta Krajewska
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (K.K.); (M.K.); (M.S.)
| | - Marek Szmigielski
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, 28 Głęboka Str., 20-612 Lublin, Poland; (K.K.); (M.K.); (M.S.)
| | - Hayat Bourekoua
- Laboratoire de Nutrition et Technologie Alimentaire (LNTA), Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Equipe de Transformation et Elaboration de Produits Agro-Alimentaires (TEPA), Université Frères Mentouri-Constantine 1, Route de Ain El-Bey, Constantine 25000, Algeria;
| |
Collapse
|
30
|
Application of Biotechnological Techniques Aimed to Obtain Bioactive Compounds from Food Industry By-Products. Biomolecules 2021; 11:biom11010088. [PMID: 33445735 PMCID: PMC7828173 DOI: 10.3390/biom11010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, food losses represent a serious imbalance in the dimensions of availability and accessibility in the global food system in the short term [...].
Collapse
|