1
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
2
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
3
|
Stanca E, Spedicato F, Giudetti AM, Giannotti L, Di Chiara Stanca B, Damiano F, Siculella L. EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2. Int J Mol Sci 2024; 25:9095. [PMID: 39201781 PMCID: PMC11354350 DOI: 10.3390/ijms25169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPβ subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation.
Collapse
Affiliation(s)
- Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | | | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| |
Collapse
|
4
|
Jones SA, Ruprecht JJ, Crichton PG, Kunji ERS. Structural mechanisms of mitochondrial uncoupling protein 1 regulation in thermogenesis. Trends Biochem Sci 2024; 49:506-519. [PMID: 38565497 DOI: 10.1016/j.tibs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.
Collapse
Affiliation(s)
- Scott A Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
5
|
Anlar GG, Anwardeen N, Al Ashmar S, Pedersen S, Elrayess MA, Zeidan A. Metabolomics Profiling of Stages of Coronary Artery Disease Progression. Metabolites 2024; 14:292. [PMID: 38921428 PMCID: PMC11205943 DOI: 10.3390/metabo14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
Coronary artery disease (CAD) and atherosclerosis pose significant global health challenges, with intricate molecular changes influencing disease progression. Hypercholesterolemia (HC), hypertension (HT), and diabetes are key contributors to CAD development. Metabolomics, with its comprehensive analysis of metabolites, offers a unique perspective on cardiovascular diseases. This study leveraged metabolomics profiling to investigate the progression of CAD, focusing on the interplay of hypercholesterolemia, hypertension, and diabetes. We performed a metabolomic analysis on 221 participants from four different groups: (I) healthy individuals, (II) individuals with hypercholesterolemia (HC), (III) individuals with both HC and hypertension (HT) or diabetes, and (IV) patients with self-reported coronary artery disease (CAD). Utilizing data from the Qatar Biobank, we combined clinical information, metabolomic profiling, and statistical analyses to identify key metabolites associated with CAD risk. Our data identified distinct metabolite profiles across the study groups, indicating changes in carbohydrate and lipid metabolism linked to CAD risk. Specifically, levels of mannitol/sorbitol, mannose, glucose, and ribitol increased, while pregnenediol sulfate, oleoylcarnitine, and quinolinate decreased with higher CAD risk. These findings suggest a significant role of sugar, steroid, and fatty acid metabolism in CAD progression and point to the need for further research on the correlation between quinolinate levels and CAD risk, potentially guiding targeted treatments for atherosclerosis. This study provides novel insights into the metabolomic changes associated with CAD progression, emphasizing the potential of metabolites as predictive biomarkers.
Collapse
Affiliation(s)
- Gulsen Guliz Anlar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Najeha Anwardeen
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Sarah Al Ashmar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| |
Collapse
|
6
|
Mariam I, Krikigianni E, Rantzos C, Bettiga M, Christakopoulos P, Rova U, Matsakas L, Patel A. Transcriptomics aids in uncovering the metabolic shifts and molecular machinery of Schizochytrium limacinum during biotransformation of hydrophobic substrates to docosahexaenoic acid. Microb Cell Fact 2024; 23:97. [PMID: 38561811 PMCID: PMC10983653 DOI: 10.1186/s12934-024-02381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal β-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Chloe Rantzos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
- Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
| |
Collapse
|
7
|
Scatozza F, Giardina MM, Valente C, Vigiano Benedetti V, Facchiano A. Anti-Melanoma Effects of Miconazole: Investigating the Mitochondria Involvement. Int J Mol Sci 2024; 25:3589. [PMID: 38612401 PMCID: PMC11011910 DOI: 10.3390/ijms25073589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.
Collapse
|
8
|
Barbonetti A, Tienforti D, Castellini C, Giulio FD, Muselli M, Pizzocaro A, Vena W, Baroni MG, Pivonello R, Isidori AM, Maggi M, Corona G. Effect of antioxidants on semen parameters in men with oligo-astheno-teratozoospermia: a network meta-analysis. Andrology 2024; 12:538-552. [PMID: 37495550 DOI: 10.1111/andr.13498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Although antioxidants are largely used in subfertile men with oligo-astheno-teratozoospermia (OAT), the choice among different molecules is challenged by the lack of comparative head-to-head studies. The network meta-analysis (NMA) can overcome limitations of pairwise meta-analyses, since it incorporates direct and indirect evidence into a single model generating an effectiveness hierarchy. OBJECTIVE To assess with a NMA the effects of antioxidants in improving seminal parameters in idiopathic OAT. MATERIALS AND METHODS PubMed, Scopus, Cinahl, and Cochrane Library databases were searched for randomized controlled trials (RCTs) comparing any antioxidant treatment to each other or placebo in men with at least one idiopathic seminal abnormality. Data were included in a random-effects NMA, where efficacy of treatments was ranked by surface under the cumulative ranking curve (SUCRA). RESULTS 29 RCTs provided information on 2045 men (mean age: 33.5 years) with idiopathic OAT and 19 antioxidant preparations. Compared to placebo, l-carnitine, especially in combination with l-acetyl-carnitine (LAC), had the highest SUCRA for sperm concentration, progressive motility, and morphology. Folate was the only other compound effective on sperm concentration. Vitamin E+selenium or zinc had the highest SUCRA for total motility. A contribution on progressive motility was revealed for pentoxifylline and vitamin E+CoQ10.
Collapse
Affiliation(s)
- Arcangelo Barbonetti
- Andrology Unit, Department of Clinical Medicine, Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniele Tienforti
- Andrology Unit, Department of Clinical Medicine, Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Castellini
- Andrology Unit, Department of Clinical Medicine, Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Di Giulio
- Andrology Unit, Department of Clinical Medicine, Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mario Muselli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Pizzocaro
- Endocrinology, Diabetology and Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Walter Vena
- Endocrinology, Diabetology and Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Marco Giorgio Baroni
- Andrology Unit, Department of Clinical Medicine, Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Unità di Andrologia e Medicina della Riproduzione Sessuale Maschile e Femminile, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Università Federico II di Napoli, Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Mario Maggi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, - Careggi Teaching Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Endocrinology Unit, Careggi Teaching Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
9
|
Jennings EA, Abi-Rached ZH, Jones DE, Ryan RO. 3-Methylglutarylcarnitine: A biomarker of mitochondrial dysfunction. Clin Chim Acta 2023; 551:117629. [PMID: 37935273 PMCID: PMC10872575 DOI: 10.1016/j.cca.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The acylcarnitines comprise a wide range of acyl groups linked via an ester bond to the hydroxyl group of L-carnitine. Mass spectrometry methods are capable of measuring the relative abundance of hundreds of acylcarnitines in a single drop of blood. As such, acylcarnitines can serve as sensitive biomarkers of disease. For certain acylcarnitines, however, their biochemical origin, and biomedical significance, remain unclear. One such example is 3-methylglutaryl (3MG) carnitine (C5-3M-DC). Whereas 3MG carnitine levels are normally very low, elevated levels are detected in discrete inborn errors of metabolism (IEM) as well as different forms of heart disease. Moreover, acute injury, including γ radiation exposure, paraquat poisoning, and traumatic brain injury manifest elevated levels of 3MG carnitine in blood and/or urine. Recent evidence indicates that two distinct biosynthetic routes to 3MG carnitine exist. The first, caused by an inherited deficiency in the leucine catabolism pathway enzyme, 3-hydroxy-3-methylglutaryl (HMG) CoA lyase, leads to a buildup of trans-3-methylglutaconyl (3MGC) CoA. Reduction of the double bond in trans-3MGC CoA generates 3MG CoA, which is then converted to 3MG carnitine by carnitine acyltransferase. This route, however, cannot explain why 3MG carnitine levels increase in IEMs that do not affect leucine metabolism or various chronic and acute disease states. In these cases, disease-related defects in aerobic energy metabolism result in diversion of acetyl CoA to trans-3MGC CoA. Once formed, trans-3MGC CoA is reduced to 3MG CoA and esterified to form 3MG carnitine. Thus, 3MG carnitine, represents a potential biomarker of disease processes associated with compromised mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Elizabeth A Jennings
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Zane H Abi-Rached
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Dylan E Jones
- Department of Physical & Environmental Sciences Colorado Mesa University, Grand Junction, CO 81501, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
10
|
Vaillant F, Llano S, Ángel Martín A, Moreno-Castellanos N. Main urinary biomarkers of golden berries (Physalis peruviana) following acute and short-term nutritional intervention in healthy human volunteers. Food Res Int 2023; 173:113443. [PMID: 37803771 DOI: 10.1016/j.foodres.2023.113443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
The metabolites entering the bloodstream and being excreted in urine as a result of consuming golden berries are currently unidentified. However, these metabolites potentially underlie the health benefits observed in various in vitro, animal, and human models. A nutritional intervention with 18 healthy human volunteers was performed, and urine was collected at baseline and after acute and short-term fruit consumption for 19 days. After UPLC-ESI/QToF-MS analysis, untargeted metabolomics was performed on the urine samples, and from the 50 most discriminant ions (VIP > 2) generated by a validated PLS-DA model (CV-ANOVA = 3.7e-35; R^2Y = 0.86, Q^2Y = 0.62 and no overfitting), 22 compounds were identified with relatively high confidence. The most discriminant metabolites confirmed by DHS/GC-MS2 analysis of volatiles in urine were sesquiterpenes (C15H22): 3 stereoisomers, β-vatirenene, β-vetivenene, and β-vetispirene, and 2 isomers, eremophila-1(10),8,11-triene and α-curcumene. Another major urinary biomarker was 4β-hydroxywithanolide E and its phase II derivatives, which were observed in urine for all individual up to 24 h after the fruit was consumed; thus, the bioavailability of this biomarker in humans was demonstrated for the first time. Additionally, the excretion of certain acylcarnitines and hypoxanthine in urine increased after golden berry consumption, which may be associated with a detoxifying effect and may occur because fats were utilized rather than carbohydrates to meet the body's energy needs. The main biomarkers of golden berry consumption are specific to this fruit, confirming its potential for the functional food market.
Collapse
Affiliation(s)
- Fabrice Vaillant
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, vereda Llano Grande, Rionegro Antioquia, Colombia; French Agricultural Research Centre for International Development (CIRAD), UMR Qualisud, Rionegro (Ant.), Colombia; Joint Research Unit-UMR Qualisud, Univ Montpellier, Univ. d'Avignon, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France.
| | - Sandra Llano
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, vereda Llano Grande, Rionegro Antioquia, Colombia.
| | - Alberto Ángel Martín
- Observatorio Epidemiológico de Nutrición y Enfermedades Crónicas/OENEC, School of nutrition and dietetics, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Natalia Moreno-Castellanos
- Centro de Investigación en Ciencia y Tecnología de Alimentos/CICTA, Department of Basic Sciences, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia.
| |
Collapse
|
11
|
Roy S, Roy S, Mahata B, Pramanik J, Hennrich ML, Gavin AC, Teichmann SA. CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells. Front Immunol 2023; 14:1229703. [PMID: 38022565 PMCID: PMC10644475 DOI: 10.3389/fimmu.2023.1229703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Bidesh Mahata
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jhuma Pramanik
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco L. Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
- Cellzome, a GlaxoSmithKline (GSK) company, Genomic Sciences, Pharma R&D, Heidelberg, Germany
| | - Anne-Claude Gavin
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah A. Teichmann
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
12
|
Peruch M, Giacomello E, Radaelli D, Concato M, Addobbati R, Fluca AL, Aleksova A, D’Errico S. Subcellular Effectors of Cocaine Cardiotoxicity: All Roads Lead to Mitochondria-A Systematic Review of the Literature. Int J Mol Sci 2023; 24:14517. [PMID: 37833964 PMCID: PMC10573028 DOI: 10.3390/ijms241914517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cocaine abuse is a serious public health problem as this drug exerts a plethora of functional and histopathological changes that potentially lead to death. Cocaine causes complex multiorgan toxicity, including in the heart where the blockade of the sodium channels causes increased catecholamine levels and alteration in calcium homeostasis, thus inducing an increased oxygen demand. Moreover, there is evidence to suggest that mitochondria alterations play a crucial role in the development of cocaine cardiotoxicity. We performed a systematic review according to the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) scheme to evaluate the mitochondrial mechanisms determining cocaine cardiotoxicity. Among the initial 106 articles from the Pubmed database and the 17 articles identified through citation searching, 14 final relevant studies were extensively reviewed. Thirteen articles included animal models and reported the alteration of specific mitochondria-dependent mechanisms such as reduced energy production, imbalance of membrane potential, increased oxidative stress, and promotion of apoptosis. However, only one study evaluated human cocaine overdose samples and observed the role of cocaine in oxidative stress and the induction of apoptosis though mitochondria. Understanding the complex processes mediated by mitochondria through forensic analysis and experimental models is crucial for identifying potential therapeutic targets to mitigate or reverse cocaine cardiotoxicity in humans.
Collapse
Affiliation(s)
- Michela Peruch
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Emiliana Giacomello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Davide Radaelli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Monica Concato
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| | - Riccardo Addobbati
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Alessandra Lucia Fluca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34149 Trieste, Italy
| | - Aneta Aleksova
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34149 Trieste, Italy
| | - Stefano D’Errico
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.P.); (E.G.); (D.R.); (M.C.); (A.L.F.); (A.A.)
| |
Collapse
|
13
|
Bingham PM, Zachar Z. Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. Int J Mol Sci 2023; 24:14365. [PMID: 37762668 PMCID: PMC10531647 DOI: 10.3390/ijms241814365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.
Collapse
Affiliation(s)
- Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | |
Collapse
|
14
|
Bu X, Zhao W, Li W, Zou H, Li M, Wang G. Comparative Transcriptomics of Chilodonella hexasticha and C. uncinata Provide New Insights into Adaptations to a Parasitic Lifestyle and Mdivi-1 as a Potential Agent for Chilodonellosis Control. Int J Mol Sci 2023; 24:13058. [PMID: 37685862 PMCID: PMC10488290 DOI: 10.3390/ijms241713058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.
Collapse
Affiliation(s)
- Xialian Bu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weishan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenxiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Labatory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.B.); (W.Z.); (W.L.); (H.Z.); (G.W.)
| |
Collapse
|
15
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Taniuchi Y, van Till JWO, Wojtkowski T, Toyoshima J, Koibuchi A, Sargent B, Han D. Single- and Multiple-dose Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP1128, a Novel Peroxisome Proliferator-activated Receptor δ Modulator, in Healthy Participants. Clin Pharmacol Drug Dev 2023; 12:810-818. [PMID: 36942507 DOI: 10.1002/cpdd.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) plays a central role in modulating mitochondrial function in ischemia-reperfusion injury. ASP1128, a potent and selective modulator of PPARδ, is currently under investigation for treating acute kidney injury. This randomized, first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ASP1128 administered intravenously in healthy participants. Forty-nine participants received a single dose of ASP1128 0.3-10 mg (n = 37) or placebo (n = 12) and 53 received daily (7 days) doses of ASP1128 3-100 mg (n = 39) or placebo (n = 14), including a cohort aged ≥65 years (ASP1128 100 mg, n = 3; placebo, n = 2). Treatment-emergent adverse events occurred in 37.8%, 59.0%, and 33.3%-35.7% of participants in the single ASP1128, multiple ASP1128, and placebo groups, respectively. All were mild in severity, and the frequency of adverse events did not appear to be dose-related. One participant (multiple ASP1128 3 mg group) withdrew with an infusion site erythema, possibly related to study drug. Exposure was roughly dose-proportional, and elimination was generally consistent across doses (mean t½ 14.6-17.4 hours in the 10, 30, and 100 mg groups on day 7). There was little accumulation in plasma following multiple dosing; steady state was reached after ∼4 days. ASP1128 treatment led to rapid and dose-related upregulation of six fatty acid oxidation-related PPARδ target genes at ≥10 mg, which lasted >24 hours postdose. In conclusion, single and multiple intravenous doses of ASP1128 were generally well tolerated, with dose-dependent pharmacokinetics and target gene engagement in healthy participants.
Collapse
Affiliation(s)
| | | | | | | | | | - Briana Sargent
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - David Han
- Parexel Early Phase/California Clinical Trials Medical Group, Glendale, California, USA
| |
Collapse
|
17
|
Giangregorio N, Tonazzi A, Console L, Scalise M, Indiveri C. Inhibition of the Mitochondrial Carnitine/Acylcarnitine Carrier by Itaconate through Irreversible Binding to Cysteine 136: Possible Pathophysiological Implications. Biomolecules 2023; 13:993. [PMID: 37371573 DOI: 10.3390/biom13060993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid β-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and H2S. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses. The possible interaction between the CAC and itaconate has been investigated. METHODS the modulatory effects of itaconate on the transport activity of the native and recombinant CAC were tested using the proteoliposome experimental model together with site-directed mutagenesis and computational analysis. RESULTS Itaconate reacts with the CAC causing irreversible inhibition. Dose-response experiment performed with the native and recombinant protein showed IC50 for itaconate of 11 ± 4.6 mM and 8.4 ± 2.9 mM, respectively. The IC50 decreased to 3.8 ± 1.0 mM by lowering the pH from pH 7.0 to pH 6.5. Inhibition kinetics revealed a non-competitive type of inhibition. C136 is the main target of itaconate, as demonstrated by the increased IC50 of mutants in which this Cys was substituted by Val. The central role of C136 was confirmed by covalent docking. Administration of dimethyl itaconate to HeLa cells inhibited the CAC transport activity, suggesting that itaconate could react with the CAC also in intact cells.
Collapse
Affiliation(s)
- Nicola Giangregorio
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
18
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
19
|
Papierniak-Wyglądała A, Lamch W, Jurewicz E, Nałęcz KA. The activity and surface presence of organic cation/carnitine transporter OCTN2 (SLC22A5) in breast cancer cells depends on AKT kinase. Arch Biochem Biophys 2023; 742:109616. [PMID: 37187422 DOI: 10.1016/j.abb.2023.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
l-carnitine is indispensable for transfer of fatty acids to mitochondria for the process of β-oxidation, a process, whose significance in cancer has drawn attention in recent years. In humans majority of carnitine is delivered by diet and enters the cell due to activity of solute carriers (SLCs), mainly by ubiquitously expressed organic cation/carnitine transporter (OCTN2/SLC22A5). In control and cancer human breast epithelial cell lines the major fraction of OCTN2 is present as a not matured non-glycosylated form. Studies on overexpressed OCTN2 demonstrated an exclusive interaction with SEC24C, as the cargo-recognizing subunit of coatomer II in transporter exit from endoplasmic reticulum. Co-transfection with SEC24C dominant negative mutant completely abolished presence of the mature form of OCTN2, pointing to a possibility of trafficking regulation. SEC24C was previously shown to be phosphorylated by serine/threonine kinase AKT, known to be activated in cancer. Further studies on breast cell lines showed that inhibition of AKT with MK-2206 in control and cancer lines decreased level of OCTN2 mature form. Proximity ligation assay showed that phosphorylation of OCTN2 on threonine was significantly abolished by AKT inhibition with MK-2206. Carnitine transport was positively correlated with the level of OCTN2 phosphorylated by AKT on threonine moiety. The observed regulation of OCTN2 by AKT places this kinase in the center of metabolic control. This points to both proteins, AKT and OCTN2, as druggable targets, in particular in a combination therapy of breast cancer.
Collapse
Affiliation(s)
- Anna Papierniak-Wyglądała
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Weronika Lamch
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Katarzyna A Nałęcz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
20
|
Wieder N, Fried JC, Kim C, Sidhom EH, Brown MR, Marshall JL, Arevalo C, Dvela-Levitt M, Kost-Alimova M, Sieber J, Gabriel KR, Pacheco J, Clish C, Abbasi HS, Singh S, Rutter JC, Therrien M, Yoon H, Lai ZW, Baublis A, Subramanian R, Devkota R, Small J, Sreekanth V, Han M, Lim D, Carpenter AE, Flannick J, Finucane H, Haigis MC, Claussnitzer M, Sheu E, Stevens B, Wagner BK, Choudhary A, Shaw JL, Pablo JL, Greka A. FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. Cell Metab 2023; 35:887-905.e11. [PMID: 37075753 PMCID: PMC10257950 DOI: 10.1016/j.cmet.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.
Collapse
Affiliation(s)
- Nicolas Wieder
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurology with Experimental Neurology and Berlin Institute of Health, Charité, 10117 Berlin, Germany
| | - Juliana Coraor Fried
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Carlos Arevalo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Moran Dvela-Levitt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Jonas Sieber
- Department of Endocrinology, Metabolism and Cardiovascular Systems, University of Fribourg, Fribourg, Switzerland
| | | | - Julian Pacheco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Shantanu Singh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Justine C Rutter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aaron Baublis
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Renuka Subramanian
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjan Devkota
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonnell Small
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vedagopuram Sreekanth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Myeonghoon Han
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Donghyun Lim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hilary Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Mass General Hospital, Boston, MA 02114, USA
| | - Marcia C Haigis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Bridget K Wagner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amit Choudhary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Genetics of Neurogenic Orthostatic Hypotension in Parkinson’s Disease, Results from a Cross-Sectional In Silico Study. Brain Sci 2023; 13:brainsci13030506. [PMID: 36979316 PMCID: PMC10046202 DOI: 10.3390/brainsci13030506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The genetic basis of Neurogenic Orthostatic Hypotension (NOH) in Parkinson’s disease (PD) has been inadequately explored. In a cross-sectional study, we examined the association between NOH and PD-related single-nucleotide polymorphisms (SNPs) and mapped their effects on gene expression and metabolic and signaling pathways. Patients with PD, free from pathological conditions associated with OH, and not taking OH-associated medications were included. NOH was defined as per international guidelines. Logistic regression was used to relate SNPs to NOH. Linkage-disequilibrium analysis, expression quantitative trait loci, and enrichment analysis were used to assess the effects on gene expression and metabolic/signaling pathways. We included 304 PD patients in the study, 35 of whom had NOH (11.5%). NOH was more frequent in patients with SNPs in SNCA, TMEM175, FAM47E-STBD1, CCDC62, SCN3A, MIR4696, SH3GL2, and LZTS3/DDRGK1 and less frequent in those with SNPs in ITGA8, IP6K2, SIPA1L2, NDUFAF2. These SNPs affected gene expression associated with the significant hierarchical central structures of the autonomic nervous system. They influenced several metabolic/signaling pathways, most notably IP3/Ca++ signaling, the PKA-CREB pathway, and the metabolism of fatty acids. These findings provide new insights into the pathophysiology of NOH in PD and may provide targets for future therapies.
Collapse
|
23
|
Bu XL, Zhao WS, Li WX, Zou H, Wu SG, Li M, Wang GT. Mitochondrial metabolism of the facultative parasite Chilodonella uncinata (Alveolata, Ciliophora). Parasit Vectors 2023; 16:92. [PMID: 36882771 PMCID: PMC9993649 DOI: 10.1186/s13071-023-05695-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria. METHODS Fluorescence staining and transmission electron microscopy (TEM) were used to observe the morphology of mitochondria. Single-cell transcriptome data of C. uncinata were annotated by the Clusters of Orthologous Genes (COG) database. Meanwhile, the metabolic pathways were constructed based on the transcriptomes. The phylogenetic analysis was also made based on the sequenced cytochrome c oxidase subunit 1 (COX1) gene. RESULTS Mitochondria were stained red using Mito-tracker Red staining and were stained slightly blue by DAPI dye. The cristae and double membrane structures of the mitochondria were observed by TEM. Besides, many lipid droplets were evenly distributed around the macronucleus. A total of 2594 unigenes were assigned to 23 functional classifications of COG. Mitochondrial metabolic pathways were depicted. The mitochondria contained enzymes for the complete tricarboxylic acid (TCA) cycle, fatty acid metabolism, amino acid metabolism, and cytochrome-based electron transport chain (ETC), but only partial enzymes involved in the iron-sulfur clusters (ISCs). CONCLUSIONS Our results showed that C. uncinata possess typical mitochondria. Stored lipid droplets inside mitochondria may be the energy storage of C. uncinata that helps its transmission from a free-living to a parasitic lifestyle. These findings also have improved our knowledge of the mitochondrial metabolism of C. uncinata and increased the volume of molecular data for future studies of this facultative parasite.
Collapse
Affiliation(s)
- Xia-lian Bu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 The People’s Republic of China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Wei-shan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Wen-xiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Shan-gong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
- Protist 10,000 Genomics Project (P10K) Consortium, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| | - Gui-tang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei The People’s Republic of China
| |
Collapse
|
24
|
Pasquadibisceglie A, Quadrotta V, Polticelli F. In Silico Analysis of the Structural Dynamics and Substrate Recognition Determinants of the Human Mitochondrial Carnitine/Acylcarnitine SLC25A20 Transporter. Int J Mol Sci 2023; 24:ijms24043946. [PMID: 36835358 PMCID: PMC9961348 DOI: 10.3390/ijms24043946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The Carnitine-Acylcarnitine Carrier is a member of the mitochondrial Solute Carrier Family 25 (SLC25), known as SLC25A20, involved in the electroneutral exchange of acylcarnitine and carnitine across the inner mitochondrial membrane. It acts as a master regulator of fatty acids β-oxidation and is known to be involved in neonatal pathologies and cancer. The transport mechanism, also known as "alternating access", involves a conformational transition in which the binding site is accessible from one side of the membrane or the other. In this study, through a combination of state-of-the-art modelling techniques, molecular dynamics, and molecular docking, the structural dynamics of SLC25A20 and the early substrates recognition step have been analyzed. The results obtained demonstrated a significant asymmetry in the conformational changes leading to the transition from the c- to the m-state, confirming previous observations on other homologous transporters. Moreover, analysis of the MD simulations' trajectories of the apo-protein in the two conformational states allowed for a better understanding of the role of SLC25A20 Asp231His and Ala281Val pathogenic mutations, which are at the basis of Carnitine-Acylcarnitine Translocase Deficiency. Finally, molecular docking coupled to molecular dynamics simulations lend support to the multi-step substrates recognition and translocation mechanism already hypothesized for the ADP/ATP carrier.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
25
|
Tonazzi A, Giangregorio N, Console L, Calvano CD, Prejanò M, Scalise M, Incampo G, Marino T, Russo N, Cataldi TRI, Indiveri C. Inhibition of the carnitine acylcarnitine carrier by carbon monoxide reveals a novel mechanism of action with non-metal-containing proteins. Free Radic Biol Med 2022; 188:395-403. [PMID: 35792242 DOI: 10.1016/j.freeradbiomed.2022.06.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126, Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126, Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Mario Prejanò
- Department CTC (Chemistry and Chemical Technology) University of Calabria, Via Bucci 14C, 87036, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Giovanna Incampo
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, via Orabona 4, 70126, Bari, Italy
| | - Tiziana Marino
- Department CTC (Chemistry and Chemical Technology) University of Calabria, Via Bucci 14C, 87036, Arcavacata di Rende, Italy
| | - Nino Russo
- Department CTC (Chemistry and Chemical Technology) University of Calabria, Via Bucci 14C, 87036, Arcavacata di Rende, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126, Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy.
| |
Collapse
|
26
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
27
|
Li T, Jin M, Fei X, Yuan Z, Wang Y, Quan K, Wang T, Yang J, He M, Wei C. Transcriptome Comparison Reveals the Difference in Liver Fat Metabolism between Different Sheep Breeds. Animals (Basel) 2022; 12:ani12131650. [PMID: 35804549 PMCID: PMC9265030 DOI: 10.3390/ani12131650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hu sheep and Tibetan sheep are two commonly raised local sheep breeds in China, and they have different morphological characteristics, such as tail type and adaptability to extreme environments. A fat tail in sheep is the main adipose depot in sheep, whereas the liver is an important organ for fat metabolism, with the uptake, esterification, oxidation, and secretion of fatty acids (FAs). Meanwhile, adaptations to high-altitude and arid environments also affect liver metabolism. Therefore, in this study, RNA-sequencing (RNA-seq) technology was used to characterize the difference in liver fat metabolism between Hu sheep and Tibetan sheep. We identified 1179 differentially expressed genes (DEGs) (Q-value < 0.05) between the two sheep breeds, including 25 fat-metabolism-related genes. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 16 pathways were significantly enriched (Q-value < 0.05), such as the proteasome, glutamatergic synapse, and oxidative phosphorylation pathways. In particular, one of these pathways was enriched to be associated with fat metabolism, namely the thermogenesis pathway, to which fat-metabolism-related genes such as ACSL1, ACSL4, ACSL5, CPT1A, CPT1C, SLC25A20, and FGF21 were enriched. Then, the expression levels of ACSL1, CPT1A, and FGF21 were verified in mRNA and protein levels via qRT-PCR and Western blot analysis between the two sheep breeds. The results showed that the mRNA and protein expression levels of these three genes were higher in the livers of Tibetan sheep than those of Hu sheep. The above genes are mainly related to FAs oxidation, involved in regulating the oxidation of liver FAs. So, this study suggested that Tibetan sheep liver has a greater FAs oxidation level than Hu sheep liver. In addition, the significant enrichment of fat-metabolism-related genes in the thermogenesis pathway appears to be related to plateau-adaptive thermogenesis in Tibetan sheep, which may indicate that liver- and fat-metabolism-related genes have an impact on adaptive thermogenesis.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Xiaojuan Fei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China;
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
- Correspondence:
| |
Collapse
|
28
|
Giudice D, Console L, Arduini A, Indiveri C. Overproduction, Purification, and Stability of the Functionally Active Human Carnitine Acetyl Transferase. Mol Biotechnol 2022; 64:1431-1440. [PMID: 35727434 PMCID: PMC9573857 DOI: 10.1007/s12033-022-00522-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Human Carnitine Acetyl Transferase (hCAT) reversibly catalyzes the transfer of the acetyl-moiety from acetyl-CoA to L-carnitine, modulating the acetyl-CoA/CoA ratio in mitochondria. Derangement of acetyl-CoA/CoA ratio leads to metabolic alterations that could result in the onset or worsening of pathological states. Due to the importance of CAT as a pharmacological target and to the European directive for reducing animal experimentation, we have pointed out a procedure to produce a recombinant, pure, and functional hCAT using the E. coli expression system. The cDNA encoding for the hCAT was cloned into the pH6EX3 vector. This construct was used to transform the E. coli Rosetta strain. The optimal conditions for the overexpression of the fully active hCAT include induction with a low concentration of IPTG (0.01 mM) and a low growth temperature (25 °C). The recombinant protein was purified from bacterial homogenate by affinity chromatography. The pure hCAT is very stable in an aqueous solution, retaining full activity for at least two months if stored at − 20 °C. These results could be helpful for a broad set of functional studies on hCAT, including drug-design applications.
Collapse
Affiliation(s)
- Deborah Giudice
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4c, 87036, Arcavacata di Rende, Italy
| | - Lara Console
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4c, 87036, Arcavacata di Rende, Italy.,Unical Cure S.R.L, Via P. Bucci 4d, 87036, Arcavacata di Rende, Italy
| | - Arduino Arduini
- Unical Cure S.R.L, Via P. Bucci 4d, 87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, University of Calabria, Via P. Bucci 4c, 87036, Arcavacata di Rende, Italy. .,Unical Cure S.R.L, Via P. Bucci 4d, 87036, Arcavacata di Rende, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
29
|
Incampo G, Giangregorio N, Gambacorta N, Nicolotti O, Pacifico C, Palmieri L, Tonazzi A. Praseodymium trivalent ion is an effective inhibitor of mitochondrial basic amino acids and carnitine/acylcarnitine carriers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148557. [PMID: 35367451 DOI: 10.1016/j.bbabio.2022.148557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.
Collapse
Affiliation(s)
- Giovanna Incampo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Nicola Giangregorio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Concetta Pacifico
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|