1
|
Arabia A, Pallarés N, Munné-Bosch S, Muñoz P. Variability in strawberry tunnels impacts fruit quality and limits melatonin effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1745-1759. [PMID: 39394858 DOI: 10.1002/jsfa.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Fluctuations in environmental conditions within fields and crop plant performance can greatly affect production and quality standards. These factors are particularly relevant for producers, who require sustained optimal production to profit from small margins. Fluctuations might be exacerbated at the end of the crop season, where neither of the aforementioned factors are optimal. In the present integrated study, we assess strawberries' nutritional quality and the impact of harvest timing, tunnel conditions and inter-individual variability in a Mediterranean production tunnel divided into blocks, where two harvests were performed 3 weeks apart. In addition, the effects of sprayed melatonin at the end of productive season were also evaluated. RESULTS End-season harvesting negatively impacted fruit hydration, antioxidant capacity and ripening-related hormones in strawberry fruits. Additionally, tunnel distribution influenced fruit nutritional quality, with light radiation being the main variable factor disturbing antioxidant contents. Nutrients exhibited high inter-individual plant variability, accounting for 20% variation, and were strongly correlated with fruit hydration and ripening-related phytohormones. Finally, melatonin applications affected neither fruit production, nor nutritional parameters, for which the effects were masked by the intrinsic strawberry variability. Overall, the results underline the limitations of this type of application for field implementation. CONCLUSION Fruit quality variation in strawberry fields is explained by environmental and inter-individual variability. Likewise, the implementation of regulatory molecules such as melatonin in field applications relies on crop homogeneity and might have limited applicability in heterogeneous productive systems. Consequently, identifying and reducing microclimate variability in productive fields is paramount for advancing agricultural practices to uphold unwavering standards on fruit quality. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Núria Pallarés
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Vultaggio L, Ciriello M, Campana E, Bellitto P, Consentino BB, Rouphael Y, Colla G, Mancuso F, La Bella S, Napoli S, Sabatino L. Single or Blended Application of Non-Microbial Plant-Based Biostimulants and Trichoderma atroviride as a New Strategy to Enhance Greenhouse Cherry Tomato Performance. PLANTS (BASEL, SWITZERLAND) 2024; 13:3048. [PMID: 39519966 PMCID: PMC11548452 DOI: 10.3390/plants13213048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The need to increase yield and enhance the sustainability of crop production systems has led to the development and employment of natural products, such as plant biostimulants. In recent years, a number of reports have researched the effects of biostimulants on plant performance; however, few studies have focused on the mutual application of microbial and/or non-microbial biostimulants. This research, conducted in the framework of the SO.MI.PR.O.N regional project, aimed to investigate the single or mutual application of three biostimulants, a tropical plant extract (PE), a vegetal protein hydrolysate (PH), and Trichoderma atroviride, on 'Creativo' F1 cherry tomato plants cultivated during two growing cycles (2022-2023 and 2023-2024). Our results showed that plants treated with the combination Tricho + PE + PH had statistically significant higher fresh shoot biomass (+64.2%, 1647.0 g plant-1), total fruit production (+37.9%, 1902.5 g plant-1), marketable fruit production (+52.9%, 1778.5 g plant-1), and average weight of marketable fruits (+53.1%, 17.0 g) compared to control plants (untreated plants). Furthermore, biostimulant treatments, especially T. atroviride, variably enhanced cherry tomato fruits' qualitative traits, such as firmness, total soluble solids, ascorbic acid, lycopene, and total polyphenols compared to control plants. Overall, the best combinations to increase tomato fruit qualitative features were PE + PH, Tricho + PE, and Tricho + PH. From an economic point of view, the best treatment for achieving the highest net return was PE. This study underlines that biostimulant features (yield, qualitative aspects, and economic profitability) can be supported through the application of specific biostimulant combinations.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Emanuela Campana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Pietro Bellitto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Beppe Benedetto Consentino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (E.C.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Fabiana Mancuso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Salvatore La Bella
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
- Research Consortium for the Development of Innovative Agro-Environmental Systems (Corissia), Via della Libertà 203, 90143 Palermo, Italy
| | - Simona Napoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| | - Leo Sabatino
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (L.V.); (P.B.); (F.M.); (S.L.B.); (L.S.)
| |
Collapse
|
3
|
Mohamed MHM, Ali MME, Zewail RMY, Liava V, Petropoulos SA. Response of Purslane Plants Grown under Salinity Stress and Biostimulant Formulations. PLANTS (BASEL, SWITZERLAND) 2024; 13:2431. [PMID: 39273915 PMCID: PMC11397487 DOI: 10.3390/plants13172431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Purslane has been suggested as an alternative crop suitable for human consumption due to its high content of minerals, omega-3 fatty acids, and several health-beneficial compounds. In this study, we aimed to evaluate the effect of salinity stress (tap water (control), 2000, 4000, 6000, 8000, and 10,000 mg L-1), biostimulant application (putrescine and salicylic acid at 200 mg L-1), and the combination of the tested factors (i.e., salinity × biostimulant application) on the growth and chemical composition of purslane plants (Portulaca oleracea L.) over two growing seasons (2022 and 2023). Irrigation with tap water and putrescine application resulted in the highest plant height, weight of aboveground and underground parts, and number of shoots per plant. In contrast, the lowest values of growing parameters were recorded under severe saline stress (10,000 mg L-1), especially for the plants that were not treated with biostimulants. The same trends were observed for macronutrients (N, P, K), total carbohydrates, total chlorophylls, and vitamin C content in leaves. Moreover, nitrate and proline content was higher in plants grown under salinity stress, especially under severe stress (8000-10,000 mg L-1) without biostimulant application. In general, the application of biostimulants mitigated the negative impact of salinity on plant growth and leaf chemical composition, while the effect of putrescine on the tested parameters was more beneficial than that of salicylic acid. In conclusion, this study provides useful information regarding the use of putrescine and salicylic acid as biostimulatory agents with the aim of increasing purslane growth under salinity conditions.
Collapse
Affiliation(s)
- Mostafa H M Mohamed
- Department of Horticulture, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Maha Mohamed Elsayed Ali
- Department of Soil and Water Sciences, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Reda M Y Zewail
- Botany Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt
| | - Vasiliki Liava
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Spyridon A Petropoulos
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| |
Collapse
|
4
|
Shahrajabian MH, Petropoulos SA. Editorial for the Special Issue on Plant Biostimulants in Sustainable Horticulture and Agriculture: Development, Function, and Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2342. [PMID: 39273826 PMCID: PMC11396779 DOI: 10.3390/plants13172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The growing need for food production through sustainable cultivation practices, without reducing crop yield and producer income, is a major objective due to increased environmental pollution and the gradual degradation of cultivated soils [...].
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
5
|
Farruggia D, Di Miceli G, Licata M, Leto C, Salamone F, Novak J. Foliar application of various biostimulants produces contrasting response on yield, essential oil and chemical properties of organically grown sage ( Salvia officinalis L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1397489. [PMID: 39011298 PMCID: PMC11248988 DOI: 10.3389/fpls.2024.1397489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
Sage (Salvia officinalis L.) is a medicinal and aromatic plant (MAP) belonging to the Lamiaceae family. Its morphological, productive and chemical characteristics are affected by abiotic and biotic factors. The use of biostimulants seems to be one of the most interesting innovative practices due to fact they can represent a promising approach for achieving sustainable and organic agriculture. Despite a large application in horticulture, the use of biostimulants on MAPs has been poorly investigated. On this basis, a field experiment in a 2-year study was done to assess the effect of foliar treatments with different types of biostimulants (containing seaweeds, fulvic acids and protein hydrolysates) and two frequencies of application on morphological, productive, and chemical characteristics of S. officinalis grown organically in Mediterranean environment. Morphological, productive, and chemical parameters were affected by the factors. The biostimulant application generated higher plant height, chlorophyll content, relative water content, biomass yield and essential oil yield compared to control plants. In addition, more frequent application of biostimulants produced higher biomass and essential oil yield. The application of fulvic acid and protein hydrolysates every week produced the highest total fresh yields (between 3.9 and 8.7 t ha-1) and total dry yields (between 1.3 and 2.5 t ha-1). The essential oil yield almost doubled (33.9 kg ha-1) with a higher frequency of protein hydrolysates application. In this study, 44 essential oil compounds were identified, and the frequency factor significantly influenced the percentage of 38 compounds. The highest percentage of some of the most representative monoterpenes, such as 1,8-cineole, α-thujone and camphor, were observed in biostimulated plants, with average increases between 6% and 35% compared to control plants. The highest values for total phenolics, rosmarinic acid, antioxidant activity were obtained in control plants and with a lower frequency of biostimulant applications. This study emphasizes how biostimulant applications may be used to improve sage production performance and essential oil parameters when produced in agricultural organic system. At the same time, biostimulants application caused a decrease in total phenolic, antioxidant activity and rosmarinic acid values.
Collapse
Affiliation(s)
- Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Claudio Leto
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
- Research Consortium for the Development of Innovative Agro-Environmental Systems (CoRiSSIA), Palermo, Italy
| | - Francesco Salamone
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Johannes Novak
- Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Kong M, He J, Wang J, Gong M, Huo Q, Bai W, Song J, Song J, Han W, Lv G. Xylooligosaccharides Enhance Lettuce Root Morphogenesis and Growth Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:1699. [PMID: 38931130 PMCID: PMC11207311 DOI: 10.3390/plants13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Enhancing root development is pivotal for boosting crop yield and augmenting stress resilience. In this study, we explored the regulatory effects of xylooligosaccharides (XOSs) on lettuce root growth, comparing their impact with that of indole-3-butyric acid potassium salt (IBAP). Treatment with XOS led to a substantial increase in root dry weight (30.77%), total root length (29.40%), volume (21.58%), and surface area (25.44%) compared to the water-treated control. These enhancements were on par with those induced by IBAP. Comprehensive phytohormone profiling disclosed marked increases in indole-3-acetic acid (IAA), zeatin riboside (ZR), methyl jasmonate (JA-ME), and brassinosteroids (BRs) following XOS application. Through RNA sequencing, we identified 3807 differentially expressed genes (DEGs) in the roots of XOS-treated plants, which were significantly enriched in pathways associated with manganese ion homeostasis, microtubule motor activity, and carbohydrate metabolism. Intriguingly, approximately 62.7% of the DEGs responsive to XOS also responded to IBAP, underscoring common regulatory mechanisms. However, XOS uniquely influenced genes related to cutin, suberine, and wax biosynthesis, as well as plant hormone signal transduction, hinting at novel mechanisms of stress tolerance. Prominent up-regulation of genes encoding beta-glucosidase and beta-fructofuranosidase highlights enhanced carbohydrate metabolism as a key driver of XOS-induced root enhancement. Collectively, these results position XOS as a promising, sustainable option for agricultural biostimulation.
Collapse
Affiliation(s)
- Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Juan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jianbin Song
- Station of Dawenliu, Shandong Yellow River Delta Nature Reserve, Dongying 257509, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan 250013, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| |
Collapse
|
7
|
Aoudi Y, Agake SI, Habibi S, Stacey G, Yasuda M, Ohkama-Ohtsu N. Effect of Bacterial Extracellular Polymeric Substances from Enterobacter spp. on Rice Growth under Abiotic Stress and Transcriptomic Analysis. Microorganisms 2024; 12:1212. [PMID: 38930594 PMCID: PMC11205796 DOI: 10.3390/microorganisms12061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Plant biostimulants have received attention as sustainable alternatives to chemical fertilizers. Extracellular polymeric substances (EPSs), among the compounds secreted by plant growth-promoting rhizobacteria (PGPRs), are assumed to alleviate abiotic stress. This study aims to investigate the effect of purified EPSs on rice under abiotic stress and analyze their mechanisms. A pot experiment was conducted to elucidate the effects of inoculating EPSs purified from PGPRs that increase biofilm production in the presence of sugar on rice growth in heat-stress conditions. Since all EPSs showed improvement in SPAD after the stress, Enterobacter ludwigii, which was not characterized as showing higher PGP bioactivities such as phytohormone production, nitrogen fixation, and phosphorus solubilization, was selected for further analysis. RNA extracted from the embryos of germinating seeds at 24 h post-treatment with EPSs or water was used for transcriptome analysis. The RNA-seq analysis revealed 215 differentially expressed genes (DEGs) identified in rice seeds, including 139 up-regulated and 76 down-regulated genes. A gene ontology (GO) enrichment analysis showed that the enriched GO terms are mainly associated with the ROS scavenging processes, detoxification pathways, and response to oxidative stress. For example, the expression of the gene encoding OsAAO5, which is known to function in detoxifying oxidative stress, was two times increased by EPS treatment. Moreover, EPS application improved SPAD and dry weights of shoot and root by 90%, 14%, and 27%, respectively, under drought stress and increased SPAD by 59% under salt stress. It indicates that bacterial EPSs improved plant growth under abiotic stresses. Based on our results, we consider that EPSs purified from Enterobacter ludwigii can be used to develop biostimulants for rice.
Collapse
Affiliation(s)
- Yosra Aoudi
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Shin-ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi 183-8538, Tokyo, Japan;
- Division of Plant Science and Technology, University of Missouri—Bond Life Sciences Center, 1201 Rollins St., Columbia, MO 65201-4231, USA
| | - Safiullah Habibi
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Gary Stacey
- Division of Plant Science and Technology, University of Missouri—Bond Life Sciences Center, 1201 Rollins St., Columbia, MO 65201-4231, USA
| | - Michiko Yasuda
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi 183-8538, Tokyo, Japan;
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi 183-8538, Tokyo, Japan;
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
8
|
Wazeer H, Shridhar Gaonkar S, Doria E, Pagano A, Balestrazzi A, Macovei A. Plant-Based Biostimulants for Seeds in the Context of Circular Economy and Sustainability. PLANTS (BASEL, SWITZERLAND) 2024; 13:1004. [PMID: 38611532 PMCID: PMC11013454 DOI: 10.3390/plants13071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Plant-based biostimulants (PBs), agents rich in bioactive compounds, are emerging as key players able to sustainably improve plant growth and crop productivity to address food security. PBs are generally applied as foliar spray or soil irrigation, while more recently, the application as seed priming treatments is being envisaged as a highly sustainable method to also improve seed quality and germination. Therefore, this review proposes to explore the use of PBs for the seeds industry, specifically discussing about the relevance of product market values, sustainable methods for their production, why and how PBs are used for seed priming, and pinpointing specific strengths and challenges. The collected research studies indicate that PBs applied to seeds result in improved germination, seedling growth, and stress tolerance, although the molecular mechanisms at work are still largely overlooked. The high variability of bioactive molecules and used sources point towards a huge reservoir of nature-based solutions in support of sustainable agriculture practices.
Collapse
Affiliation(s)
| | | | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (H.W.); (S.S.G.); (A.P.); (A.B.)
| | | | | | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (H.W.); (S.S.G.); (A.P.); (A.B.)
| |
Collapse
|
9
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
10
|
Zuzunaga-Rosas J, Calone R, Mircea DM, Shakya R, Ibáñez-Asensio S, Boscaiu M, Fita A, Moreno-Ramón H, Vicente O. Mitigation of salt stress in lettuce by a biostimulant that protects the root absorption zone and improves biochemical responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1341714. [PMID: 38434431 PMCID: PMC10906269 DOI: 10.3389/fpls.2024.1341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Horticultural crops constantly face abiotic stress factors such as salinity, which have intensified in recent years due to accelerated climate change, significantly affecting their yields and profitability. Under these conditions, it has become necessary to implement effective and sustainable solutions to guarantee agricultural productivity and food security. The influence of BALOX®, a biostimulant of plant origin, was tested on the responses to salinity of Lactuca sativa L. var. longifolia plants exposed to salt concentrations up to 150 mM NaCl, evaluating different biometric and biochemical properties after 25 days of treatment. Control plants were cultivated under the same conditions but without the biostimulant treatment. An in situ analysis of root characteristics using a non-destructive, real-time method was also performed. The salt stress treatments inhibited plant growth, reduced chlorophyll and carotenoid contents, and increased the concentrations of Na+ and Cl- in roots and leaves while reducing those of Ca2+. BALOX® application had a positive effect because it stimulated plant growth and the level of Ca2+ and photosynthetic pigments. In addition, it reduced the content of Na+ and Cl- in the presence and the absence of salt. The biostimulant also reduced the salt-induced accumulation of stress biomarkers, such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Therefore, BALOX® appears to significantly reduce osmotic, ionic and oxidative stress levels in salt-treated plants. Furthermore, the analysis of the salt treatments' and the biostimulant's direct effects on roots indicated that BALOX®'s primary mechanism of action probably involves improving plant nutrition, even under severe salt stress conditions, by protecting and stimulating the root absorption zone.
Collapse
Affiliation(s)
- Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
- Innovak Global S. A. de C. V., La Concordia, Chihuahua, Mexico
| | - Roberta Calone
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Bologna, Rome, Italy
| | - Diana M. Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Rashmi Shakya
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
- Department of Botany, Miranda House, University of Delhi, Delhi, India
| | - Sara Ibáñez-Asensio
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Héctor Moreno-Ramón
- Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
11
|
Sun W, Shahrajabian MH, Kuang Y, Wang N. Amino Acids Biostimulants and Protein Hydrolysates in Agricultural Sciences. PLANTS (BASEL, SWITZERLAND) 2024; 13:210. [PMID: 38256763 PMCID: PMC10819947 DOI: 10.3390/plants13020210] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The effects of different types of biostimulants on crops include improving the visual quality of the final products, stimulating the immune systems of plants, inducing the biosynthesis of plant defensive biomolecules, removing heavy metals from contaminated soil, improving crop performance, reducing leaching, improving root development and seed germination, inducing tolerance to abiotic and biotic stressors, promoting crop establishment and increasing nutrient-use efficiency. Protein hydrolysates are mixtures of polypeptides and free amino acids resulting from enzymatic and chemical hydrolysis of agro-industrial protein by-products obtained from animal or plant origins, and they are able to alleviate environmental stress effects, improve growth, and promote crop productivity. Amino acids involve various advantages such as increased yield and yield components, increased nutrient assimilation and stress tolerance, and improved yield components and quality characteristics. They are generally achieved through chemical or enzymatic protein hydrolysis, with significant capabilities to influence the synthesis and activity of some enzymes, gene expression, and redox-homeostasis. Increased yield, yield components, and crop quality; improved and regulated oxidation-reduction process, photosynthesis, and physiological activities; decreased negative effects of toxic components; and improved anti-fungal activities of plants are just some of the more important benefits of the application of phenols and phenolic biostimulants. The aim of this manuscript is to survey the impacts of amino acids, different types of protein hydrolysates, phenols, and phenolic biostimulants on different plants by presenting case studies and successful paradigms in several horticultural and agricultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | | | | | |
Collapse
|
12
|
Shahrajabian MH, Sun W. Iranian Traditional Medicine (ITM) and Natural Remedies for Treatment of the Common Cold and Flu. Rev Recent Clin Trials 2024; 19:91-100. [PMID: 38047364 DOI: 10.2174/0115748871275500231127065053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Traditional Iranian medicine is usually used for both prevention and relief of cold and flu symptoms in China, Iran, and many other Asian countries all over the world. There are 4 kinds of influenza viruses. Unlike type B, which may cause seasonal epidemics, type A viruses can cause pandemics, and influenza C may lead to mild human infection with little public health effects. A literature review was done by using multiple databases such as ISI Web of knowledge, PubMed, Science Direct and Google Scholar. The most notable antiviral medicinal plants for flu and cold are honeysuckle flowers, thyme leaf, green chiretta, andrographis, peppermint oil and leaf and calendula. The most important expectorant medicinal plants for cold and flu are snake root, tulsi, licorice root, slippery elm, clove, and sage leaf. Recommended immunostimulant medicinal plants for cold and flu are eucalyptus, Echinacea root, ginseng, garlic, slippery elm, marshmallow, Usnea lichen, Isatis root, ginger root, and myrrh resin. Iranian traditional medicine, which is one of the oldest schools of traditional medicine, is one of the main concepts of disease and health, and it can be considered as an important complementary and alternative medicine, as in some cases, modern medicine has many side effects, low efficiency, and high costs. Medicinal plants and herbs, which are included in many traditional systems, have significant and promising bioactive components in organic life.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Shahrajabian MH, Sun W. Carob ( Ceratonia siliqua L.), Pharmacological and Phytochemical Activities of Neglected Legume of the Mediterranean Basin, as Functional Food. Rev Recent Clin Trials 2024; 19:127-142. [PMID: 38288801 DOI: 10.2174/0115748871278128240109074506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 06/25/2024]
Abstract
Carob (Ceratonia siliqua L.) has been widely cultivated in different parts of the world, particularly in the Mediterranean region, and the tree belongs to the family Leguminosae. Several studies have indicated that carobs and their products can improve human health and help prevent different specific chronic diseases. Carob can considered as functional food due to its high content in dietary fibers, low-fat content, and high content of minerals. Its fruit is a pod containing 10%-20% seeds, and the pods consist of sugars, proteins, crude fibers, minerals, vitamins, polyphenols, vitamins, and lipids. In many countries in the Middle east, carob is mainly used to prepare as a traditional drink and some kinds of confectioneries. The powders can be utilized to prepare carob juice concentrate. The systematic review of documents from clinical trials and scientific societies dedicated to traditional medicine in China has been carried out. The goal of this review article is a survey of chemical compounds, and pharmaceutical benefits of carob, especially by considering traditional medicinal sciences. Moreover, clinical trials research promotes studies to highlight and focus on the scope of application of traditional medicinal science in the growing system of medicine.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Berna-Sicilia JA, Quizhpe-Romero M, Hurtado-Navarro M, Pascual JA, Carvajal M, Bárzana G. Combined Soil Microorganism Amendments and Foliar Micronutrient Nanofertilization Increased the Production of Allium cepa L. through Aquaporin Gene Regulation. Life (Basel) 2023; 14:4. [PMID: 38276252 PMCID: PMC10820050 DOI: 10.3390/life14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The aim of this study was to investigate the impact of changes in aquaporin expression on the growth of onion (Allium cepa L.) plants when subjected to dual applications of microorganism-based soil amendments and foliar nanoencapsulated mineral nutrients. Multiple physiological parameters related to water, gas exchange, and nutrient content in leaf, root, and bulb tissues were determined. Additionally, the gene expression of aquaporins, specifically PIP1, PIP2 (aquaporin subfamily plasma membrane intrinsic protein), and TIP2 (aquaporin subfamily tonoplast intrinsic protein), was analyzed. The findings revealed that the foliar application of nutrients in a nanoencapsulated form significantly enhanced nutrient penetration, mobilization, and overall plant growth to a greater extent than free-form fertilizers. Amendments with microorganisms alone did not promote growth but influenced the production of secondary metabolites in the bulbs. The combination of microorganisms and nanoencapsulated mineral nutrients demonstrated synergistic effects, increasing dry matter, mineral content, and aquaporin gene expression. This suggests that aquaporins play a pivotal role in the transport of nutrients from leaves to storage organs, resulting in the overexpression of PIP2 aquaporins in bulbs, improved water uptake, and enhanced cell growth. Therefore, the combined treatment with microorganisms and nanoencapsulated mineral nutrients may be an optimal approach for enhancing onion productivity by regulating aquaporins under field conditions.
Collapse
Affiliation(s)
- José A. Berna-Sicilia
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain; (J.A.B.-S.); (M.Q.-R.); (M.H.-N.)
| | - Mercy Quizhpe-Romero
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain; (J.A.B.-S.); (M.Q.-R.); (M.H.-N.)
| | - María Hurtado-Navarro
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain; (J.A.B.-S.); (M.Q.-R.); (M.H.-N.)
- Enzymology and Bioremediation of Soils and Organic Waste Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain;
| | - José A. Pascual
- Enzymology and Bioremediation of Soils and Organic Waste Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain;
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain; (J.A.B.-S.); (M.Q.-R.); (M.H.-N.)
| | - Gloria Bárzana
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain; (J.A.B.-S.); (M.Q.-R.); (M.H.-N.)
| |
Collapse
|
15
|
Tamburino R, Docimo T, Sannino L, Gualtieri L, Palomba F, Valletta A, Ruocco M, Scotti N. Enzyme-Based Biostimulants Influence Physiological and Biochemical Responses of Lactuca sativa L. Biomolecules 2023; 13:1765. [PMID: 38136636 PMCID: PMC10742310 DOI: 10.3390/biom13121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Biostimulants (BSs) are natural materials (i.e., organic or inorganic compounds, and/or microorganisms) having beneficial effects on plant growth and productivity, and able to improve resilience/tolerance to biotic and abiotic stresses. Therefore, they represent an innovative alternative to the phyto- and agrochemicals, being environmentally friendly and a valuable tool to cope with extreme climate conditions. The objective of this study was to investigate the effects of several biomolecules (i.e., Xylanase, β-Glucosidase, Chitinase, and Tramesan), alone or in combinations, on lettuce plant growth and quality. With this aim, the influence of these biomolecules on biomass, pigment content, and antioxidant properties in treated plants were investigated. Our results showed that Xylanase and, to a lesser extent, β-Glucosidase, have potentially biostimulant activity for lettuce cultivation, positively influencing carotenoids, total polyphenols, and ascorbic acid contents; similar effects were found with respect to antioxidative properties. Furthermore, the effect of the more promising molecules (Xylanase and β-Glucosidase) was also evaluated in kiwifruit cultured cells to test their putative role as sustainable input for plant cell biofactories. The absence of phytotoxic effects of both molecules at low doses (0.1 and 0.01 µM), and the significantly enhanced cell biomass growth, indicates a positive impact on kiwifruit cells.
Collapse
Affiliation(s)
- Rachele Tamburino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Teresa Docimo
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Lorenza Sannino
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Francesca Palomba
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), 80055 Portici, Italy; (L.G.); (F.P.); (M.R.)
| | - Nunzia Scotti
- Istituto di Bioscienze e BioRisorse (CNR-IBBR), 80055 Portici, Italy; (R.T.); (T.D.); (L.S.)
| |
Collapse
|
16
|
Song X, Zheng R, Liu Y, Liu Z, Yu J, Li J, Zhang P, Gao Q, Li H, Li C, Liu X. Combined application of microbial inoculant and kelp-soaking wastewater promotes wheat seedlings growth and improves structural diversity of rhizosphere microbial community. Sci Rep 2023; 13:20697. [PMID: 38001242 PMCID: PMC10673839 DOI: 10.1038/s41598-023-48195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial processing of kelp generates large amounts of kelp-soaking wastewater (KSW), which contains a large amount of nutrient-containing substances. The plant growth-promoting effect might be further improved by combined application of growth-promoting bacteria and the nutrient-containing KSW. Here, a greenhouse experiment was conducted to determine the effect of the mixture of KSW and Bacillus methylotrophicus M4-1 (MS) vs. KSW alone (SE) on wheat seedlings, soil properties and the microbial community structure in wheat rhizosphere soil. The available potassium, available nitrogen, organic matter content and urease activity of MS soil as well as the available potassium of the SE soil were significantly different (p < 0.05) from those of the CK with water only added, increased by 39.51%, 36.25%, 41.61%, 80.56% and 32.99%, respectively. The dry and fresh weight of wheat seedlings from MS plants increased by 166.17% and 50.62%, respectively, while plant height increased by 16.99%, compared with CK. Moreover, the abundance and diversity of fungi in the wheat rhizosphere soil were significantly increased (p < 0.05), the relative abundance of Ascomycetes and Fusarium spp. decreased, while the relative abundance of Bacillus and Mortierella increased. Collectively, the combination of KSW and the plant growth-promoting strain M4-1 can promote wheat seedlings growth and improve the microecology of rhizosphere microorganisms, thereby solving the problems of resource waste and environmental pollution, ultimately turning waste into economic gain.
Collapse
Affiliation(s)
- Xin Song
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
| | - Rui Zheng
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Zhaoyang Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jian Yu
- Shandong Nongda Fertilizer Technology Co. Ltd, Taian, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Huying Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Chaohui Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China.
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China.
| |
Collapse
|
17
|
Bhatnagar S, Kumari R, Kaur I. Seaweed and a biocontrol agent and their effects on the growth and production of Brassica juncea: a sustainable approach. World J Microbiol Biotechnol 2023; 40:16. [PMID: 37978090 DOI: 10.1007/s11274-023-03835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Chemical fertilizers are crucial for increasing agricultural growth and productivity, but inorganic fertilizers can negatively impact agricultural systems. To address this issue, sustainable techniques like organic farming are being developed, which improve soil quality and nutritional status while preserving human safety. In the Botanical Garden, of Department of Botany at the University of Delhi, India, experiments on Brassica juncea were carried out over a three-year period in six micro plots, each measuring 10 square meters. Vermicompost (V), Sargassum johnstoni (S), NPK (N), Trichoderma viride (T), and Sargassum + Trichoderma viride were five distinct organic combinations that were used to replenish the garden soil (ST). The aim of the study was to assess the effects of organic fertilizers and compare the results with commercially available chemical fertilizers (NPK) on Brassica growth and yield. The study found that soil modified with seaweed fertilizers significantly improved the morphological, reproductive, and biochemical properties of plants. Sargassum + Trichoderma soil amendment led to early flowering and fruiting, better-quality produce, and a low incidence of fungal infection and aphid infestation. This study reveals a new cost-effective method for crop development and production sustainability, benefiting both farmers and environmentalists.
Collapse
Affiliation(s)
- Sonal Bhatnagar
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India
| | - Reeta Kumari
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India.
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India.
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India.
| | - Inderdeep Kaur
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India
| |
Collapse
|
18
|
Mannino G. A New Era of Sustainability: Plant Biostimulants. Int J Mol Sci 2023; 24:16329. [PMID: 38003519 PMCID: PMC10671204 DOI: 10.3390/ijms242216329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Today, environmental sustainability has become a fundamental concern in nearly every aspect of our daily lives, including the food sector [...].
Collapse
Affiliation(s)
- Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| |
Collapse
|
19
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Agathokleous E, Frei M, Knopf OM, Muller O, Xu Y, Nguyen TH, Gaiser T, Liu X, Liu B, Saitanis CJ, Shang B, Alam MS, Feng Y, Ewert F, Feng Z. Adapting crop production to climate change and air pollution at different scales. NATURE FOOD 2023; 4:854-865. [PMID: 37845546 DOI: 10.1038/s43016-023-00858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Oliver M Knopf
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | | | | | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Athens, Greece
| | - Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China.
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
22
|
Valleggi L, Carella G, Perria R, Mugnai L, Stefanini FM. A Bayesian model for control strategy selection against Plasmopara viticola infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1117498. [PMID: 37546263 PMCID: PMC10399454 DOI: 10.3389/fpls.2023.1117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Plant pathogens pose a persistent threat to grape production, causing significant economic losses if disease management strategies are not carefully planned and implemented. Simulation models are one approach to address this challenge because they provide short-term and field-scale disease prediction by incorporating the biological mechanisms of the disease process and the different phenological stages of the vines. In this study, we developed a Bayesian model to predict the probability of Plasmopara viticola infection in grapevines, considering various disease management approaches. To aid decision-making, we introduced a multi-attribute utility function that incorporated a sustainability index for each strategy. The data used in this study were derived from trials conducted during the production years 2018-2020, involving the application of five disease management strategies: conventional Integrated Pest Management (IPM), conventional organic, IPM with substantial fungicide reduction combined with host-defense inducing biostimulants, organic management with biostimulants, and the use of biostimulants only. Two scenarios were considered, one with medium pathogen pressure (Average) and another with high pathogen pressure (Severe). The results indicated that when sustainability indexes were not considered, the conventional IPM strategy provided the most effective disease management in the Average scenario. However, when sustainability indexes were included, the utility values of conventional strategies approached those of reduced fungicide strategies due to their lower environmental impact. In the Severe scenario, the application of biostimulants alone emerged as the most effective strategy. These results suggest that in situations of high disease pressure, the use of conventional strategies effectively combats the disease but at the expense of a greater environmental impact. In contrast to mechanistic-deterministic approaches recently published in the literature, the proposed Bayesian model takes into account the main sources of heterogeneity through the two group-level effects, providing accurate predictions, although precise estimates of random effects may require larger samples than usual. Moreover, the proposed Bayesian model assists the agronomist in selecting the most effective crop protection strategy while accounting for induced environmental side effects through customizable utility functions.
Collapse
Affiliation(s)
- Lorenzo Valleggi
- Department of Statistics, Computer Science, Application (DISIA), University of Florence, Florence, Italy
| | - Giuseppe Carella
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Rita Perria
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Arezzo, Italy
| | - Laura Mugnai
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
23
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
24
|
Jolayemi OL, Malik AH, Vetukuri RR, Saripella GV, Kalyandurg PB, Ekblad T, Yong JWH, Olsson ME, Johansson E. Metabolic Processes and Biological Macromolecules Defined the Positive Effects of Protein-Rich Biostimulants on Sugar Beet Plant Development. Int J Mol Sci 2023; 24:9720. [PMID: 37298671 PMCID: PMC10253764 DOI: 10.3390/ijms24119720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different soils (low and high nutrient; LNC and HNC) were used as PBBs. The effect of these PBBs on agronomic traits, sugars, protein, and peptides, as well as metabolic processes, were evaluated on sugar beet in comparison with no treatment (control) and treatment with nutrient solution (NS). The results showed a significant growth enhancement of the plants using HWG and PF across the two soils. Sucrose and total sugar content in the roots were high in NS-treated plants and correlated to root growth in HNC soil. Traits related to protein composition, including nitrogen, peptide, and RuBisCO contents, were enhanced in PBB-treated plants (mostly for HWG and PF at 2 g/kg soil) by 100% and >250% in HNC and LNC, respectively, compared to control. The transcriptomic analysis revealed that genes associated with ribosomes and photosynthesis were upregulated in the leaf samples of plants treated with either HWG or PP compared to the control. Furthermore, genes associated with the biosynthesis of secondary metabolites were largely down-regulated in root samples of HWG or PF-treated plants. Thus, the PBBs enhanced protein-related traits in the plants through a higher transcription rate of genes related to protein- and photosynthesis, which resulted in increased plant growth, especially when added in certain amounts (2 g/kg soil). However, sucrose accumulation in the roots of sugar beet seemed to be related to the easy availability of nitrogen.
Collapse
Affiliation(s)
- Okanlawon L. Jolayemi
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Ali H. Malik
- Nelson Seed Development AB, SE-223 63 Lund, Sweden;
- Nelson Garden AB, SE-362 31 Tingsryd, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Ganapathi V. Saripella
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | | | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden;
| | - Marie E. Olsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| |
Collapse
|
25
|
Espinosa-Antón AA, Zamora-Natera JF, Zarazúa-Villaseñor P, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Águila Alcántara E, Torres-Morán MI, Velasco-Ramírez AP, Hernández-Herrera RM. Application of Seaweed Generates Changes in the Substrate and Stimulates the Growth of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1520. [PMID: 37050146 PMCID: PMC10096834 DOI: 10.3390/plants12071520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Ulva ohnoi is a cosmopolitan green seaweed with commercial potential given the biomass that may be generated. We evaluated the effects of substrate changes induced by U. ohnoi application on the vegetative response of tomato plants under greenhouse conditions. First, the decomposition dynamics and N release of the dry seaweed biomass were studied using the litterbag method. Subsequently, we evaluated the effect of seaweed powder (SP) or seaweed extract (SE) applications on substrate and plant growth. Additionally, the growth parameters responses evaluated were related to the changes in substrate properties associated with each treatment. The results showed that the dry seaweed biomass has a rapid rate of degradation (k = 0.07 day-1) and N release (k = 0.024 day-1). The SP application improved the physicochemical and biological characteristics of the substrate by increasing the availability of minerals, the fungi:bacteria ratio, and the growth morphophysiological parameters (length, area, dry and fresh weight), chlorophyll and mineral content. In contrast, SE treatment showed a positive effect on the root, mineral content, and soil microbes. This study highlights the agricultural potential of U. ohnoi powder as an alternative supplement that supports nutrition and promotes the vegetative growth of plants cultivated in soilless horticultural systems.
Collapse
Affiliation(s)
- Adrian Alejandro Espinosa-Antón
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Juan Francisco Zamora-Natera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Patricia Zarazúa-Villaseñor
- Departamento de Desarrollo Rural Sustentable, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Fernando Santacruz-Ruvalcaba
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Carla Vanessa Sánchez-Hernández
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Edith Águila Alcántara
- Departamento de Agronomía, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara 54830, Cuba
| | - Martha Isabel Torres-Morán
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Ana Paulina Velasco-Ramírez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| | - Rosalba Mireya Hernández-Herrera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Mexico
| |
Collapse
|
26
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Shahrajabian MH, Sun W. The Importance of Traditional Chinese Medicine in the Intervention and Treatment of HIV while Considering its Safety and Efficacy. Curr HIV Res 2023; 21:331-346. [PMID: 38047360 DOI: 10.2174/011570162x271199231128092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Natural products have been considered a potential resource for the development of novel therapeutic agents, since time immemorial. It is an opportunity to discover cost-effective and safe drugs at the earliest, with the goal to hit specific targets in the HIV life cycle. Natural products with inhibitory activity against human immunodeficiency virus are terpenes, coumarins, flavonoids, curcumin, proteins, such as lectins, laccases, bromotyrosines, and ribosome-inactivating proteins. Terpenes inhibit virus fusion, lectins and flavonoids have an inhibitory impact on viral binding, curcumin and flavonoids inhibit viral DNA integration. The most important medicinal plants which have been used in traditional Chinese medicinal sciences with anti-HIV properties are Convallaria majalis, Digitalis lanata, Cassia fistula, Croton macrostachyus, Dodonaea angustifolia, Ganoderma lucidum, Trametes versicolor, Coriolus versicolor, Cordyceps sinensis, Gardenia jasminoides, Morus alba, Scutellaria baicalensis, Ophiopogon japonicus, Platycodon grandiflorus, Fritillaria thunbergii, Anemarrhena asphodeloides, Trichosanthes kirilowii, Citrus reticulata, Glycyrrhiza uralensis, Rheum officinale, Poria cocos, Rheum palmatum, Astragalus membranaceus, Morinda citrifolia, Potentilla kleiniana, Artemisia capillaris, Sargassum fusiforme, Piperis longi fructus, Stellera chamaejasme, Curcumae rhizoma, Dalbergia odorifera lignum, Arisaematis Rhizoma preparatum, and Phellodendron amurense. The information provided is gathered from randomized control experiments, review articles, and analytical studies and observations, which are obtained from different literature sources, such as Scopus, Google Scholar, PubMed, and Science Direct from July 2000 to August 2023. The aim of this review article is to survey and introduce important medicinal plants and herbs that have been used for the treatment of HIV, especially the medicinal plants that are common in traditional Chinese medicine, as research to date is limited, and more evidence is required to confirm TCM,s efficacy.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microorganisms are essential parts of soil and play an important role in mediating many processes and influencing plant health. Arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB), the most common of such microorganisms, can benefit plants by enhancing the nutrient-absorbing ability of roots through bio-inoculation, also called biofertilization. Different methods have been tested and proven to be effective in the enhancement of soil nutrient availability. However, the effects of increased application of biological methods with minimal chemical fertilizers are still inconsistent. In this 2-year of fixed-point greenhouse test, we aimed to evaluate the impact of AMF (Rhizophagus irregularis) and/or NFB (Azotobacter) on growth, quality, and yield of eggplants under different N levels. Data showed that biofertilizer application with reduced chemical fertilizer had the highest impact on eggplant performance and yield. Indeed, low chemical fertilizers combined with adequate amounts of biofertilizers produced a higher plant height, length and width of leaves, dry matter, number of fruits per plant with better morphology, total yield per plant, and total soluble solids (TSS), suggesting that the use of Azotobacter and R. irregularis as biofertilizers could substantially reduce the use of chemical fertilizers without impairing the quality and yield of eggplant.
Collapse
|
29
|
Hernandiz AE, Jiménez-Arias D, Morales-Sierra S, Borges AA, De Diego N. Addressing the contribution of small molecule-based biostimulants to the biofortification of maize in a water restriction scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:944066. [PMID: 36119580 PMCID: PMC9471082 DOI: 10.3389/fpls.2022.944066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 06/12/2023]
Abstract
Biostimulants have become an asset for agriculture since they are a greener alternative to traditionally used plant protection products. Also, they have gained the farmers' acceptance due to their effect on enhancing the plant's natural defense system against abiotic stresses. Besides commercially available complex products, small molecule-based biostimulants are useful for industry and research. Among them, polyamines (PAs) are well-studied natural compounds that can elicit numerous positive responses in drought-stressed plants. However, the studies are merely focused on the vegetative development of the plant. Therefore, we aimed to evaluate how drenching with putrescine (Put) and spermidine (Spd) modified the maize production and the yield quality parameters. First, a dosage optimization was performed, and then the best PA concentrations were applied by drenching the maize plants grown under well-watered (WW) conditions or water deficit (WD). Different mechanisms of action were observed for Put and Spd regarding maize production, including when both PAs similarly improved the water balance of the plants. The application of Put enhanced the quality and quantity of the yield under WW and Spd under WD. Regarding the nutritional quality of the grains, both PAs increased the carbohydrates content, whereas the contribution to the protein content changed by the interaction between compound and growth conditions. The mineral content of the grains was also greatly affected by the water condition and the PA application, with the most relevant results observed when Spd was applied, ending with flour richer in Zn, Cu, and Ca minerals that are considered important for human health. We showed that the exogenous PA application could be a highly efficient biofortification approach. Our findings open a new exciting use to be studied deep in the biostimulant research.
Collapse
Affiliation(s)
- Alba E. Hernandiz
- Laboratory of Plant Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - David Jiménez-Arias
- ISOPlexis, Centro de Agricultura Sustentável e Tecnologia Alimentar, Campus Universitário da Penteada, Universidade da Madeira, Funchal, Portugal
- Chemical Plant Defence Activators Group, Department of Life and Earth Science, IPNA-CSIC, Campus de Anchieta, San Cristóbal de La Laguna, Spain
| | - Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada, Departamento de Botánica, Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Andres A. Borges
- Chemical Plant Defence Activators Group, Department of Life and Earth Science, IPNA-CSIC, Campus de Anchieta, San Cristóbal de La Laguna, Spain
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| |
Collapse
|
30
|
Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Hydroponics is a viable alternative to open field cultivation for year-round vegetable production in urban areas. However, the total dependence on external chemical inputs (fertilizers) makes these systems often less environmentally sustainable. In this perspective, the use of biostimulants could represent a valuable and eco-friendly tool to limit the excessive use of fertilizers without a negative impact on the yield. To this end, our work aimed to evaluate the productive and physiological response of two cultivars of ‘Genovese’ basil (Eleonora and Italiano Classico) for the industrial production of “pesto” grown for 22 days in two nutrient solutions with different electrical conductivity (1 and 2 dS m−1) and the application of two doses of protein hydrolysates (0.15- and 0.30-mL L−1 of Trainer® in the nutrient solution). The mineral profile was evaluated by ion chromatography coupled with a conductivity detector, while pigments were evaluated by UV-Vis spectrophotometry. Generally, the nutrient solution concentration did not significantly affect the fresh yield of the two cultivars tested. On the contrary, the use of the maximum dose of biostimulant (BT2 = 0.30 mL L−1 of nutrient solution) increased fresh yield, leaf area, and ACO2 by 20.7, 27.5, and 17.6%, respectively, compared with the control. Using the lowest dose of biostimulant (BT1 = 0.15 mL L−1 of the nutrient solution) reduced nitrate by 6.6% compared with the control. The results obtained showed that basil cultivation in a floating raft system combined with biostimulant in the nutrient solution could be an excellent solution to improve productivity, reduce nitrate, and cut fertilizer costs.
Collapse
|
31
|
Shahrajabian MH, Cheng Q, Sun W. The Effects of Amino acids, Phenols and Protein Hydrolysates as Biostimulants on Sustainable Crop Production and Alleviate Stresses. Recent Pat Biotechnol 2022; 16:319-328. [PMID: 35418295 DOI: 10.2174/1872208316666220412133749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Biostimulants which contain substances or products including natural compounds, special formulation and microorganisms have gained a considerable attention as sustainable method for heavy metal detoxification, stimulate natural toxins, controlling diseases and pests, may increase both water and nutrient efficiency. Biostimulants are important products in modern agriculture which composed of different heterogenous classes of compounds with a broad spectrum of action to increase both qualitative and quantitative productions. Amino acids can be useful in stress defence, photosynthesis, increase nutrient uptake, pollination and fruit formation, precursors to hormones and growth parameters. Amino acids are considered as precursors and constituents of proteins, which are well-known for stimulation of cell growth. Because, they are the basic building blocks of proteins, amino acids are very important in plant growth, development and metabolite synthesis. One of the diverse, notable and the large group of secondary metabolites is phenolic compounds which have important function in regulation of the plants physiological activities, oxidation-reduction processes and photosynthesis. Protein hydrolysates contain amino acids and peptides which is one of the most important kinds of biostimulants. Protein hydrolysates have notable capability to increase crop performance, particularly under environmental stress conditions. This review article is aimed to introduce and found more about the roles of different types of biostimulants on plant growth and final yield production with considering sustainable agriculture.
Collapse
Affiliation(s)
| | - Qi Cheng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
32
|
Tyagi R, Pradhan S, Bhattacharjee A, Dubey S, Sharma S. Management of abiotic stresses by microbiome-based engineering of the rhizosphere. J Appl Microbiol 2022; 133:254-272. [PMID: 35352450 DOI: 10.1111/jam.15552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Abiotic stresses detrimentally affect both plant and soil health, threatening food security in an ever-increasing world population. Sustainable agriculture is necessary to augment crop yield with simultaneous management of stresses. Limitations of conventional bioinoculants has shifted the focus on more effective alternatives. With the realisation of the potential of rhizospheric microbiome engineering in enhancing plant's fitness under stresses, efforts have accelerated in this direction. Though still in its infancy, microbiome-based engineering has gained popularity because of its advantages over microbe-based approach. This review briefly presents major abiotic stresses afflicting arable land, followed by introduction to the conventional approach of microbe-based enhancement of plant attributes and stress mitigation with its inherent limitations. It then focusses on the significance of rhizospheric microbiome, and harnessing its potential by its strategic engineering for stress management. Further, success stories related to two major approaches of microbiome engineering (generation of synthetic microbial community/consortium, and host-mediated artificial selection) pertaining to stress management have been critically presented. Together with bringing forth the challenges associated with wide application of rhizospheric microbiome engineering in agriculture, the review proposes the adoption of combinatorial scheme for the same, bringing together ecological and reductionist approaches for improvised sustainable agricultural practices.
Collapse
Affiliation(s)
- Rashi Tyagi
- Department of Biochemical Engineering and, Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi
| | - Salila Pradhan
- Department of Biochemical Engineering and, Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and, Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi
| | - Shubham Dubey
- Department of Biochemical Engineering and, Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi
| | - Shilpi Sharma
- Department of Biochemical Engineering and, Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi
| |
Collapse
|
33
|
Hamedeh H, Antoni S, Cocciaglia L, Ciccolini V. Molecular and Physiological Effects of Magnesium-Polyphenolic Compound as Biostimulant in Drought Stress Mitigation in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050586. [PMID: 35270054 PMCID: PMC8912442 DOI: 10.3390/plants11050586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 05/27/2023]
Abstract
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was evaluated for its effectiveness on tomato (Solanum lycopersicum Mill. cv. Rio Grande) plants subjected to water deficit conditions. The molecular effects were elucidated through transcriptomic RNA-seq and gene expression qPCR analysis and the physiological responses were evaluated through qualitative analysis of pigments and proline content, membrane stability, and lipid peroxidation. ALPAN® was shown to adjust the transcriptional response by upregulating genes involved in source to sink carbohydrate metabolism and translocation, stomatal closure, and cell homeostasis. ALPAN® was shown to mitigate the deteriorating effects of water deficit on the physiological status of the plants by stabilizing the levels of the photosynthetic pigments, regulating the accumulation of osmo-protectants, and preserving the cell wall lipid bilayer from oxidation. In conclusion, transcriptomic and physiological analysis provided insightful information on the biostimulant effects, indicating a positive role of ALPAN® foliar application in alleviating the negative costs of water deficit.
Collapse
|
34
|
Shahrajabian MH, Sun W, Cheng Q. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00210-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The most important advantages of foliar fertilization are to improve plant growth and crop quality, appropriately manage the nutritional status of plants, enhance disease resistance and regulate nutrient deficiencies.
Main body
The aim of this manuscript is to outline and emphasize the importance of foliar application of nutrients in order to increase both quality and yield of medicinal and aromatic plants. The searches focused on publications from 1980 to July 2021 using PubMed, Google Scholar, Science Direct and Scopus databases. The current manuscript presented many examples of potential of foliar application for medicinal and aromatic plants production systems. Foliar application of Fe and Zn on Anise; Se on Atractylodes; Zn sulfate on Basil, Costmary, Mint and Fenugreek; Se and Fe on Stevia; S and P on castor bean; Zn and Fe on Chamomile; Cu, Mg and ZnSO4 on Damask rose; N and P on Fennel; Se on water spinach and tea; K+ and Ca2+ on Thyme; Zn and K on Spearmint; Zn on Saffron, Ni on Pot marigold; Fe on peppermint, N and P on Mustard had positive and significant impacts.
Conclusion
Observed impacts of foliar fertilization consisted of significant increase of yield, enhanced resistance to insects, pests and diseases, improved drought tolerance and escalated crop quality.
Collapse
|
35
|
Shahrajabian MH, Sun W. Sustainable Approaches to Boost Yield and Chemical Constituents of Aromatic and Medicinal Plants by Application of Biostimulants. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:72-92. [PMID: 36200191 DOI: 10.2174/2772574x13666221004151822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Biostimulants consist of natural ingredients, metabolites of fermentation, micro-organisms, algae or plant extracts, bacteria, mushrooms, humus substances, amino acids, biomolecules, etc. Methods: In this study, all relevant English-language articles were collected. The literature was reviewed using the keywords of biostimulant, medicinal plant, aromatic plant, natural products, and pharmaceutical benefits from Google Scholar, Scopus, and PubMed databases. RESULTS The significant and promoting impact of biostimulants has been reported for different medicinal and aromatic plants, such as salicylic acid for ajuga, artichoke, ajwain, basil, common rue, common sage, common thyme, coneflower, coriander, dendrobium, desert Indian wheat, dragonhead, fennel, fenugreek, feverfew, ginger, groundnut, guava, henna, Iranian soda, lavender, lemon balm, lemongrass, Malabar spinach; seaweed extract on almond, bird,s eye chili; amino acids on artemisia, broccoli, chamomile, beneficial bacteria on ashwagandha; humic acid on black cumin, cannabis, chicory, garlic, gerbera, Hungarian vetch, Moldavian dragonhead, niger plant; chitosan on dragon fruit, marigold, milk thistle, etc. The suggested mechanisms include the stimulatory impacts on the activity of enzymes involved in different biosynthetic processes, the hormone-like activity of biostimulant compounds and the improvement of nutrient uptake of plants. CONCLUSION The current manuscript gives many examples of the potential of biostimulants for medicinal and aromatic plant production. However, further studies are needed to better understand the effectiveness of different biostimulants and foliar applications in sustainable agriculture.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
36
|
Impact of Salinity on the Growth and Chemical Composition of Two Underutilized Wild Edible Greens: Taraxacum officinale and Reichardia picroides. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soil salinization is one of the major environmental factors responsible for limited crop production throughout the world. Therefore, there is urgent need to find tolerant/resistant species to exploit in commercial cultivation systems. In this context, the valorization of wild edible greens for human consumption and/or medicinal purposes is gaining more and more interest. The aim of the present work was to study the effect of salinity, e.g., electrical conductivity: 2 mS cm−1 (nutrient solution EC), 6 mS cm−1 and 10 mS cm−1 on plant growth and chemical composition of Reichardia picroides and Taraxacum officinale plants grown in a floating hydroponic system. The results showed that R. picroides is a moderately salt-tolerant species, as the majority of plant growth parameters determined were not negatively affected under the treatment of 6 mS cm−1. On the other hand, the growth parameters of T. officinale plants were severely affected under the same conditions. Moreover, high salinity levels (EC at 10 mS cm−1) impaired the growth of both species. The content of leaves in chlorophylls (a, b and total), carotenoids+xanthophylls and total soluble solids was not significantly affected by the tested EC levels in both species, whereas the titratable acidity increased under the treatment of 10 mS cm−1. Moreover, R. picroides exhibited a more effective adaptation mechanism against saline conditions than T. officinale, as evidenced by the higher accumulation of osmolytes such as proline and the higher shoot K content, probably through a more efficient K/Na selectivity. In conclusion, both species were severely affected by high salinity; however, R. picroides showed promising results regarding its commercial cultivation under moderate salinity levels, especially in regions where resources of high-quality irrigation water are limited.
Collapse
|
37
|
Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13126869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biostimulants are a novel and eco-friendly agronomic tool with practical applications in alleviating negative effects of environmental stressors. The present work studied the effects of three biostimulant products (Nomoren (N), Twin-Antistress (TW), and X-Stress (XS)) under normal irrigation (W+) and water deficit irrigation conditions (W−) on the nutritional, chemical composition and bioactive properties of common bean fresh pods. A variable effect of biostimulants and water deficit irrigation was observed on nutritional value parameters, while fructose and sucrose were the main detected sugars, especially in NW+ and CW− treatments. Oxalic, malic, and citric acid were the main detected organic acids, while γ- and total tocopherol content was the highest in TWW+. (+)-Catechin and (−)-epicatechin were the most abundant phenolic compounds, especially in the NW− treatment. A variable antioxidant capacity was observed for the Thiobarbituric Acid Reactive Substances (TBARS) and Oxidative Haemolysis assays (OxHLIA), while TWW+ extracts showed the best overall results against the tested fungi. In conclusion, the tested biostimulants had a positive effect on chemical composition and bioactivities of purple bean depending on the irrigation regime.
Collapse
|