1
|
Qiu W, Chen J, Hua Y, Yang Y, Lin S. Method development, multi-residue determination, and dietary exposure risk assessment of plant growth regulators in homologous materials of medicine and food. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1039. [PMID: 39384629 DOI: 10.1007/s10661-024-13204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Residues of plant growth regulators (PGRs) in homologous materials of medicine and food threaten public health. This study aimed to develop a rapid, sensitive, and high-throughput method for simultaneously determining 16 PGR residues in homologous materials of medicine and food. Furthermore, the established method was applied to actual samples to assess the potential exposure risk of multi-PGR residues. A modified high-throughput quick, easy, cheap, effective, rugged, and safe (QuEChERS) method coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated. The extraction solvent, type of extraction method, and subsequent purification techniques were investigated to achieve a better analysis of the target. Risk assessment was based on chronic dietary risk assessment. Ultrasonic extraction with 1% formic acid-acetonitrile was employed, and MgSO4 + NaAc was selected as the clean-up sorbent. The 16 PGRs showed a good linear relationship in the range of 1 ~ 200 μg/L (r ≥ 0.9960), with detection limits ranging from 0.3 to approximately 3 μg/kg. The recovery rate ranged from 65 to 109%, with RSD from 0.01 to 10% (n = 6). The total detection rate of 16 PGRs in the samples was 87%. The risk assessment indicated that the multi-residues of PGRs in homologous materials of medicine and food would not pose a potential risk to human health. This work provides a valuable reference for the monitoring of multiple PGRs. It has also improved our understanding of the possible exposure risk of PGR residues in homologous materials of medicine and food.
Collapse
Affiliation(s)
- Wenqian Qiu
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Jiali Chen
- School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Yan Yang
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China
| | - Shouer Lin
- Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention,Fujian Provincial Key Laboratory of Zoonosis Research, 386 Chongan Road, Fujian, Fuzhou, 350012, China.
| |
Collapse
|
2
|
Imran S, Sarker P, Mahamud MA, Paul NC, Chakrobortty J, Harine IJ, Rahman MA, Rahimi M. Copper mitigates salinity stress by regulating water status, photosynthetic pigments and ion homeostasis and increases the yield of Eggplant (Solanum melongena). BMC PLANT BIOLOGY 2024; 24:927. [PMID: 39367326 PMCID: PMC11453016 DOI: 10.1186/s12870-024-05625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Eggplant (Solanum melongena) is moderately sensitive to salinity. Seed priming and exogenous supplementation are technique that enhances germination, growth, and crop yield by overcoming salt stress. Therefore, this study was designed to understand the role of seed priming and copper (Cu) supplementation in modulating salt tolerance in eggplant. When exposed to salt stress, eggplant seedlings showed significantly higher Na+ content, an increased Na/K ratio, prolonged mean germination time, higher relative water loss, more days to flower bud initiation and first flowering, along with decreased germination rate, growth factors, water content, photosynthetic pigments, ionic contents (K+, Ca2+, Mg2+), and yield. The results demonstrated that the germination rate, final germination percentage, germination index, germination energy, and seed vigor index significantly improved, while the mean germination time decreased in Cu-primed seeds. The results also revealed that Cu supplementations increased seedling traits, leaf water content, photosynthetic pigment contents, ionic contents (K+, Ca2+, and Mg2+), and yield while decreasing the contents of Na+, and Na/K ratio, mean germination time, relative water loss, days to flower bud initiation, and days to 1st flowering under salt stress. Germination of seeds, seedlings growth traits, plant water status, plant pigments, yield, and ionic contents with the NaCl and Cu treatments were found to substantially interact with each other according to both hierarchical clustering and PCA. Overall, Cu seed priming and exogenous supplementation emerged as a promising strategy to enhance salt tolerance and promote germination, growth, and yield by regulating water status, photosynthetic pigments, and ion homeostasis in eggplant seedlings under NaCl stress. These findings provide valuable insights into the mechanisms of Cu-mediated stress alleviation in eggplant, with implications for sustainable crop production in saline environments.
Collapse
Affiliation(s)
- Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh.
| | - Prosenjit Sarker
- Department of Genetics and Plant Breeding, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Asif Mahamud
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Newton Chandra Paul
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Jotirmoy Chakrobortty
- Department of Soil Science, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Israt Jahan Harine
- Department of Soil Science, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Arifur Rahman
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
3
|
Dang K, Wang Y, Tian H, Bai J, Cheng X, Guo L, Zhang Q, Geng Y, Shao X. Impact of ZnO NPs on photosynthesis in rice leaves plants grown in saline-sodic soil. Sci Rep 2024; 14:16233. [PMID: 39004658 PMCID: PMC11247083 DOI: 10.1038/s41598-024-66935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Saline-sodic stress restricts the absorption of zinc by rice, consequently impacting the photosynthesis process of rice plants. In this experiment, Landrace 9 was selected as the test material and the potting method was employed to investigate the influence of ZnO nanoparticles (ZnO NPs) on zinc absorption and chlorophyll fluorescence in rice grown in saline-sodic land. The research findings demonstrate that the application of ZnO NPs proves to be more advantageous for the growth of rice in saline-sodic soil. Notably, the application of ZnO NPs significantly decreases the levels of Na+ and MDA in rice leaves in saline-sodic soil, while increasing the levels of K+ and Zn2+. Additionally, ZnO NPs enhances the content of chloroplast pigments, specific energy flux, quantum yield, and the performance of active PSII reaction center (PIABS) in rice leaves under saline-sodic stress. Furthermore, the relative variable fluorescence (WK and VJ) and quantum energy dissipation rate (φDo) of rice are also reduced. Therefore, the addition of ZnO NPs enhances the transfer of electrons and energy within the rice photosystem when subjected to saline-sodic stress. This promotes photosynthesis in rice plants growing in saline-sodic land, increasing their resistance to saline-sodic stress and ultimately facilitating their growth and development.
Collapse
Affiliation(s)
- Kun Dang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China
| | - Yuxin Wang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Tian
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Jingjing Bai
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Xiyuan Cheng
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
| | - Liying Guo
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China
| | - Qiang Zhang
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Germplasm Innovation and Physiological Ecology of Coldland Grain Crops, Ministry of Education, Harbin, 150000, China
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China
| | - Yanqiu Geng
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China.
| | - Xiwen Shao
- Agronomy College, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun, 130118, China.
| |
Collapse
|
4
|
Xu J, Wang T, Wang X, Yan H, Liu P, Hou X, Gao Y, Yang L, Zhang L. Exogenous Eugenol Alleviates Salt Stress in Tobacco Seedlings by Regulating the Antioxidant System and Hormone Signaling. Int J Mol Sci 2024; 25:6771. [PMID: 38928476 PMCID: PMC11203479 DOI: 10.3390/ijms25126771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Salt stress seriously affects crop growth, leading to a decline in crop quality and yield. Application of exogenous substances to improve the salt tolerance of crops and promote their growth under salt stress has become a widespread and effective means. Eugenol is a small molecule of plant origin with medicinal properties such as antibacterial, antiviral, and antioxidant properties. In this study, tobacco seedlings were placed in Hoagland's solution containing NaCl in the presence or absence of eugenol, and physiological indices related to stress tolerance were measured along with transcriptome sequencing. The results showed that eugenol improved the growth of tobacco seedlings under salt stress. It promoted carbon and nitrogen metabolism, increased the activities of nitrate reductase (NR), sucrose synthase (SS), and glutamine synthetase (GS) by 31.03, 5.80, and 51.06%. It also activated the enzymatic and non-enzymatic antioxidant systems, reduced the accumulation of reactive oxygen species in the tobacco seedlings, and increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) by 24.38%, 18.22%, 21.60%, and 28.8%, respectively. The content of glutathione (GSH) was increased by 29.49%, and the content of superoxide anion (O2-) and malondialdehyde (MDA) were reduced by 29.83 and 33.86%, respectively. Promoted osmoregulation, the content of Na+ decreased by 34.34, K+ increased by 41.25%, and starch and soluble sugar increased by 7.72% and 25.42%, respectively. It coordinated hormone signaling in seedlings; the content of abscisic acid (ABA) and gibberellic acid 3 (GA3) increased by 51.93% and 266.28%, respectively. The transcriptome data indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, the MAPK signaling pathway, and phytohormone signal transduction pathways. The results of this study revealed the novel role of eugenol in regulating plant resistance and provided a reference for the use of exogenous substances to alleviate salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China; (J.X.); (T.W.); (X.W.); (H.Y.); (P.L.); (X.H.); (Y.G.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China; (J.X.); (T.W.); (X.W.); (H.Y.); (P.L.); (X.H.); (Y.G.)
| |
Collapse
|
5
|
Li X, Lian T, Su B, Liu H, Wang Y, Wu X, He J, Wang Y, Xu Y, Yang S, Li Y. Construction of a physiologically based pharmacokinetic model of paclobutrazol and exposure estimation in the human body. Toxicology 2024; 505:153841. [PMID: 38796053 DOI: 10.1016/j.tox.2024.153841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Paclobutrazol (PBZ) is a plant growth regulator that can delay plant growth and improve plant resistance and yield. Although it has been widely used in the growth of medicinal plants, human beings may take it by taking traditional Chinese medicine. There are no published studies on PBZ exposure in humans or standardized limits for PBZ in medicinal plants. We measured the solubility, oil-water partition coefficient (logP), and pharmacokinetics of PBZ in rats and established a physiologically based pharmacokinetic (PBPK) model of PBZ in rats. This was followed by extrapolation to healthy Chinese adult males as a theoretical foundation for future risk assessment of PBZ. The results showed that PBZ had low solubility and high fat solubility. Pharmacokinetic experiments showed that PBZ was absorbed rapidly but eliminated slowly in rats. On this basis, the rat PBPK model was successfully constructed and extrapolated to healthy Chinese adult males to predict the plasma concentration-time curve and exposure of PBZ in humans. The construction of the PBPK model of PBZ in this study facilitates the determination of the standard formulation limits and risk assessment of PBZ residues in medicinal plants.
Collapse
Affiliation(s)
- Xiaomeng Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Tingting Lian
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Buda Su
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Xiaoyan Wu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yue Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| |
Collapse
|
6
|
Danish S, Sana S, Hussain MB, Dawar K, Almoallim HS, Ansari MJ, Hareem M, Datta R. Effect of methyl jasmonate and GA3 on canola (Brassica napus L.) growth, antioxidants activity, and nutrient concentration cultivated in salt-affected soils. BMC PLANT BIOLOGY 2024; 24:363. [PMID: 38724910 PMCID: PMC11080209 DOI: 10.1186/s12870-024-05074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.
Collapse
Affiliation(s)
- Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sundas Sana
- Department of Botany, The Islamia University of Bahawalpur, Sub-campus Rahim Yar Khan, Rahim Yar Khan, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture, Peshawar, Pakistan
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| |
Collapse
|
7
|
Qu M, Huang X, García-Caparrós P, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding the role of boron in plant adaptation to soil salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14358. [PMID: 38783511 DOI: 10.1111/ppl.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Soil salinity is a major environmental constraint affecting the sustainability and profitability of agricultural production systems. Salinity stress tolerance has been present in wild crop relatives but then lost, or significantly weakened, during their domestication. Given the genetic and physiological complexity of salinity tolerance traits, agronomical solutions may be a suitable alternative to crop breeding for improved salinity stress tolerance. One of them is optimizing fertilization practices to assist plants in dealing with elevated salt levels in the soil. In this review, we analyse the causal relationship between the availability of boron (an essential metalloid micronutrient) and plant's adaptive responses to salinity stress at the whole-plant, cellular, and molecular levels, and a possibility of using boron for salt stress mitigation. The topics covered include the impact of salinity and the role of boron in cell wall remodelling, plasma membrane integrity, hormonal signalling, and operation of various membrane transporters mediating plant ionic and water homeostasis. Of specific interest is the role of boron in the regulation of H+-ATPase activity whose operation is essential for the control of a broad range of voltage-gated ion channels. The complex relationship between boron availability and expression patterns and the operation of aquaporins is also discussed.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- School of Biological Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Chen X, Zhao C, Yun P, Yu M, Zhou M, Chen ZH, Shabala S. Climate-resilient crops: Lessons from xerophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1815-1835. [PMID: 37967090 DOI: 10.1111/tpj.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Developing climate-resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought-tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt-tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt-tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+ /H+ tonoplast exchangers (NHXs) and vacuolar H+ - pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance-like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non-fermenting 1 (SNF1)-related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought-tolerant and salt-resistant crops, securing agricultural yields in an era of climate unpredictability.
Collapse
Affiliation(s)
- Xi Chen
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Ping Yun
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7250, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
9
|
Kiremit MS, Öztürk E, Arslan H, Subrata BAG, Akay H, Bakirova A. Effects of melatonin, proline, and salicylic acid on seedling growth, photosynthetic activity, and leaf nutrients of sorghum under salt stress. PLANT DIRECT 2024; 8:e574. [PMID: 38481437 PMCID: PMC10933660 DOI: 10.1002/pld3.574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 11/02/2024]
Abstract
Soil salinization poses a significant challenge to the sustainability and productivity of agriculture worldwide. This issue continues to hinder plant growth, requiring innovative solutions to alleviate salt stress. Moreover, climate change accelerates soil salinization, which may soon spread to previously unaffected agricultural areas. Therefore, the present study evaluated the potential role of different seed priming agents (hydro (H), salicylic acid (SA), proline (P), and melatonin (MEL)) on seedlings and leaf macro and micronutrients of sorghum grown under four (.27, 2.5, 5.0, and 8.0 dS m-1) soil salinity conditions. Soil salinity drastically reduced all the growth parameters of sorghum seedlings, primarily the reduction in growth traits, which was remarkable after 2.5 dS m-1 soil salinity. In addition, plant height, shoot fresh weight, and stomata were reduced by 40.8%, 74.6%, and 36.5%, respectively, at 8.0 dS m-1 compared to .27 dS m-1. SA- and MEL-primed seeds mitigated the harmful effects of soil salinity by reducing Na+ accumulation in the leaves and increasing the K+/Na+ and Ca2+/Na+ ratios and photosynthetic activity under salt stress. However, the Zn2+, Mn2+, and Cu2+ contents of sorghum leaves increased with increasing soil salinity, and these nutrients also improved with seed priming by SA, MEL, and P. Considering all nutrients, MEL-primed sorghum seeds had better macro- and micro-nutrient uptake capacities than the H, SA, and P treatments under high soil salinity conditions. Finally, the present study showed that MEL-induced improvement in salt tolerance in sorghum seedlings was related to enhanced nutritional status, photosynthetic activity, and biomass production in salinized areas.
Collapse
Affiliation(s)
- Mehmet Sait Kiremit
- Department of Agricultural Structures and Irrigation, Faculty of AgricultureOndokuz Mayıs UniversitySamsunTurkey
| | - Elif Öztürk
- Department of Field Crops, Faculty of AgricultureOndokuz Mayıs UniversitySamsunTurkey
| | - Hakan Arslan
- Department of Agricultural Structures and Irrigation, Faculty of AgricultureOndokuz Mayıs UniversitySamsunTurkey
| | | | - Hasan Akay
- Department of Field Crops, Faculty of AgricultureOndokuz Mayıs UniversitySamsunTurkey
| | - Aigerim Bakirova
- Department of Agricultural Structures and Irrigation, Faculty of AgricultureOndokuz Mayıs UniversitySamsunTurkey
| |
Collapse
|
10
|
Li D, Yang J, Dai Z, Chen Y, Shao Z, Wang C, Jin X, Wang Y, Feng L. Prohexadione-calcium improves grape quality by regulating endogenous hormones, sugar and acid metabolism and related enzyme activities in grape berries. BMC PLANT BIOLOGY 2024; 24:122. [PMID: 38373883 PMCID: PMC10875774 DOI: 10.1186/s12870-024-04803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Prohexadione-Calcium (Pro-Ca) plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how Pro-Ca regulates the regulation of sugar and acid balance and its impact on the production of volatile aroma substances during fruit growth and development are poorly understood. In this study, the Pro-Ca solutions developed at concentrations of 200, 400, 600 and 800 mg·L-1 were sprayed on the entire "Chardonnay" grape tree 22, 42, 62 and 82 days after initial flowering. The values of endogenous hormones, sugar and acid content, enzyme activities and flavor content were then measured in grapes 45, 65, 85 and 105 days (ripeness stage) after the initial flowering. The results showed that Pro-Ca had significant effects on fruits during development, including reducing ABA content, increasing ZT, GA3 and IAA levels, promoting fruit ripening and enhancing enzymes, which are involved in sugar and acid synthesis. Consequently, these effects led to an increase in sugar and acid content in the berries. Particularly during the ripening phase, the application of 600 mg L-1 Pro-Ca resulted in an increase in soluble sugar content of 11.28% and a significant increase in citric acid and malic acid content of 97.80% and 68.86%, respectively. Additionally, Pro-Ca treatment enhanced both the variety and quantity of aroma compounds present in the berries, with the 600 mg·L-1 Pro-Ca treatment showcasing the most favorable impact on volatile aroma compounds in 'Chardonnay' grapes. The levels of aldehydes, esters, alcohols, phenols, acids, ketones, and terpenes were significantly higher under the 600 mg·L-1 Pro-Ca treatment compared to those of control with 51.46 - 423.85% increase. In conclusion, Pro-Ca can regulate the content of endogenous hormones and the activities of enzymes related to sugar and acid metabolism in fruit, thereby increasing the content of soluble sugar and organic acid in fruit and the diversity and concentration of fruit aroma substances. Among them, foliar spraying 600 mg · L-1 Pro-Ca has the best effect. In the future, we need to further understand the molecular mechanism of Pro-Ca in grape fruit to lay a solid foundation for quality improvement breeding.
Collapse
Affiliation(s)
- Dou Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangshan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zibo Dai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yajuan Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhang Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chunheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xin Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidan Feng
- Research and Development Center of Wine Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
11
|
Xu J, Wang T, Sun C, Liu P, Chen J, Hou X, Yu T, Gao Y, Liu Z, Yang L, Zhang L. Eugenol improves salt tolerance via enhancing antioxidant capacity and regulating ionic balance in tobacco seedlings. FRONTIERS IN PLANT SCIENCE 2024; 14:1284480. [PMID: 38293630 PMCID: PMC10825873 DOI: 10.3389/fpls.2023.1284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Salt stress inhibits plant growth by disturbing plant intrinsic physiology. The application of exogenous plant growth regulators to improve the plant tolerance against salt stress has become one of the promising approaches to promote plant growth in saline environment. Eugenol (4-allyl-2- methoxyphenol) is the main ingredient in clove oil and it is known for its strong antioxidant and anti-microbial activities. Eugenol also has the ability of inhibiting several plant pathogens, implying the potential use of eugenol as an environmental friendly agrichemical. However, little is known about the possible role of eugenol in the regulation of plant tolerance against abiotic stress. Therefore, here we investigated the effectiveness of phytochemical eugenol in promoting salt tolerance in tobacco seedlings through physiological, histochemical, and biochemical method. The seedling roots were exposed to NaCl solution in the presence or absence of eugenol. Salt stress inhibited seedling growth, but eugenol supplementation effectively attenuated its effects in a dose-dependent manner, with an optimal effect at 20 µM. ROS (reactive oxygen species) accumulation was found in seedlings upon salt stress which was further resulted in the amelioration of lipid peroxidation, loss of membrane integrity, and cell death in salt-treated seedlings. Addition of eugenol highly suppressed ROS accumulation and reduced lipid peroxidation generation. Both enzymatic and non-enzymatic antioxidative systems were activated by eugenol treatment. AsA/DHA and GSH/GSSG were also enhanced upon eugenol treatment, which helped maintain redox homeostasis upon salinity. Eugenol treatment resulted in an increase in the content of osmoprotectants (e.g. proline, soluble sugar and starch) in salt-treated seedlings. Na+ levels decreased significantly in seedlings upon eugenol exposure. This may result from the upregulation of the expression of two ionic transporter genes, SOS1 (salt-hypersensitive 1) and NHX1 (Na+/H+ anti-transporter 1). Hierarchical cluster combined correlation analysis uncovered that eugenol induced salt tolerance was mediated by redox homeostasis and maintaining ionic balance in tobacco seedlings. This work reveals that eugenol plays a crucial role in regulating plant resistant physiology. This may extend its biological function as a novel biostimulant and opens up new possibilities for improving crop productivity in the saline agricultural environment.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Changwei Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tao Yu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
12
|
Wang X, Hao W. Reproductive and developmental toxicity of plant growth regulators in humans and animals. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105640. [PMID: 37945238 DOI: 10.1016/j.pestbp.2023.105640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Plant growth regulators (PGRs) are currently one of the widely used pesticides, as being considered to have relatively low toxicity compared with other pesticides. However, widespread use may lead to overexposure from multiple sources. Exposure to PGRs is associated with different toxicity that affects many organs in our body, such as the toxicity to testis, ovaries, liver, kidneys and brain. In addition, some PGRs are considered potential endocrine disrupting chemicals. Evidence exists for development and reproductive toxicity associated with prenatal and postnatal exposure in both animals and humans. PGRs can affect the synthesis and secretion of sex hormones, destroy the structure and function of the reproductive system, and harm the growth and development of offspring, which may be related to germ cell cycle disorders, apoptosis and oxidative stress. This review summaries the reproductive and developmental toxicity data available about PGRs in mammals. In the future, conducting comprehensive epidemiological studies will be crucial for assessing the reproductive and developmental toxicity resulting from a mixture of various PGRs, with a particular emphasis on understanding the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
13
|
WU P, LIN R, HUANG L. [Determination of three plant growth regulators in Dendrobium officinale and Anoectochilus roxburghii by three-phase hollow fiber liquid phase microextraction- high performance liquid chromatography]. Se Pu 2023; 41:683-689. [PMID: 37534555 PMCID: PMC10398823 DOI: 10.3724/sp.j.1123.2023.03007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 08/04/2023] Open
Abstract
Dendrobium officinale (D. officinale) and Anoectochilus roxburghii (A. roxburghii) are precious raw materials for traditional Chinese medicine. The growing demand for D. officinale and A. roxburghii cannot be met by current production techniques. Hence, the widespread artificial cultivation of D. officinale and A. roxburghii using substantial amounts of plant growth regulators (PGRs) has emerged. The excessive use of PGRs not only affects the quality and efficacy of medicinal materials but also causes a series of safety issues. Therefore, expanding research on residual PGRs in valuable Chinese medicinal materials is important to avoid the health hazards caused by these substances. Unfortunately, the identification of PGRs is challenging because of their trace and complex matrices. High performance liquid chromatography (HPLC) has become one of the mainstream analytical methods for PGR determination. An important consideration in the application of this technique to the detection of trace acidic PGRs is how to improve its accuracy and sensitivity. Three-phase hollow fiber liquid phase microextraction (3P-HF-LPME) has the advantages of a high enrichment factor, complex sample purification ability, low reagent consumption, low cost, and easy integration with chromatographic systems. Thus, the 3P-HF-LPME method overcomes the many shortcomings of traditional sample pretreatment methods. In this study, a novel, simple, and effective analytical method based on 3P-HF-LPME combined with HPLC was developed to extract, purify, enrich, and detect three trace acidic PGRs (indole-3-acetic acid, naphthyl acetic acid and indolebutyric acid) in D. officinale and A. roxburghii. The chromatographic separation conditions and 3P-HF-LPME model parameters were systematically optimized for this purpose. First, the sample solution was prepared by ultrasonication and low-temperature standing, and then adjusted to pH 3.0 using dilute hydrochloric acid. The sample solution (10 mL) and NaCl (1.50 g) were stored in a 15 mL brown extraction bottle with a built-in magnetic stirrer. Next, 30 μL of NaOH solution (pH 11.0) as the inner phase solution was injected into the inner cavity of a hollow fiber tube, which was subsequently sealed at both ends. The hollow fiber tube was soaked in n-octanol for 5 min and dried naturally to remove excess extraction solvent from its surface. Finally, the fiber tube was placed in a brown extraction bottle and stirred using a thermostatic magnetic stirrer at 40 ℃ and 1600 r/min for 2 h. After extraction, the three target analytes were separated on a Welch Ultimate XB-C18 column (250 mm×4.6 mm, 5 μm) under isocratic elution conditions using acetic acid aqueous solution and methanol (45∶55, v/v) as the eluent. The results indicated that the three PGRs showed good linearity in the range of 0.5-100.0 μg/L (coefficients of determination (r2)=0.9999), with limits of detection (LODs) of 0.02-0.15 μg/L. The method recoveries were 88.5-102.2%, with relative standard deviations (RSDs) of less than 3.7% (n=3). The extraction efficiencies and enrichment factors of the three PGRs in 15 batches of fresh D. officinale and A. roxburghii products were found to be 42.0%-86.8% and 140-289. Full-scan mass spectrometry was used to further identify positive samples to avoid false-positive results and enhance the reliability of the experimental method. In summary, the proposed method is sensitive, accurate, reliable, environment friendly, and capable of high enrichment. It could be used to determine the residues of three acidic PGRs in D. officinale and A. roxburghii. Moreover, it can provide technical support for the residue detection of PGRs in other Chinese medicinal materials.
Collapse
|
14
|
Maslennikova D, Knyazeva I, Vershinina O, Titenkov A, Lastochkina O. Seed Treatment with Sodium Nitroprusside Ensures a Long-Term Physiological and Protective Effect on Wheat under Salinity. Life (Basel) 2023; 13:1499. [PMID: 37511874 PMCID: PMC10381903 DOI: 10.3390/life13071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Although salinity inhibits plant growth, the use of a nitric oxide (NO) gasotransmitter can reduce its negative effects. In this study, the influence of 200 μM sodium nitroprusside (SNP) (donor of NO) on wheat plants (Triticum aestivum L., cv. Salavat Yulaev) in conditions of salinization (100 mM NaCl) was analyzed in pot experiments. Seed priming regulated the level of endogenous NO in normal and salinity conditions throughout the entire experiment (30 and 60 days). Salinity led to the strong accumulation of NO and H2O2, which is negative for plants, and significantly reduced leaf area and photosynthetic pigments (chlorophyll a and b and carotenoids). In addition, stress caused a drop in the content of reduced glutathione (GSH) and ascorbic acid (ASA), an accumulation of oxidized glutathione (GSSG), and significantly activated glutathione reductase (GR), ascorbate peroxidase (APX), and lipid peroxidation (LPO) in wheat leaves. SNP treatment significantly attenuated the negative effects of salinity on leaf area and photosynthetic pigments. An important indicator of reducing the damaging effect of salinity on treated plants is the stabilization of the content of GSH and ASA throughout the experiment (60 days). This condition has been associated with long-term modulation of GR and APX activity. Such an effect of 200 μM SNP may be related to its ability to reduce stress-induced accumulation of NO. Additional accumulation of proline also mitigated the negative effect of salinity on plants, and this also evidenced decreased LPO and H2O2 in them. For the first time, in natural growing conditions (small-scale field experiments), it was found that pre-sowing seed treatment with 200 μM SNP led to an improvement in the main yield indicators and an increase in the content of essential amino acids in wheat grains. Thus, SNP treatment can be used as an effective approach for prolonged protection of wheat plants under salinity and to improve grain yield and its quality.
Collapse
Affiliation(s)
- Dilara Maslennikova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Inna Knyazeva
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia
| | - Oksana Vershinina
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia
| | - Andrey Titenkov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia
| | - Oksana Lastochkina
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
15
|
Zhang YH, Liu CS, Tian Y, Wang J, Xin S, Sheng X. An eco-friendly photo-responsive hyaluronic acid-based supramolecular polysaccharide hybrid hydrogels for plant growth regulation and heavy metal ions adsorption. Int J Biol Macromol 2023:125194. [PMID: 37270137 DOI: 10.1016/j.ijbiomac.2023.125194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Agrochemicals are widely used in agricultural production, but they may cause agrochemicals residues and environmental pollution. Polysaccharide-based materials have emerged as a promising biopolymer carrier for agrochemicals delivery. Herein, an eco-friendly, photo-responsive supramolecular polysaccharide hybrid hydrogels (HA-AAP-Guano-CD@LP) was constructed from arylazopyrazole-modified hyaluronic acid (HA-AAP), guanidinium functionalized β-cyclodextrin (Guano-CD), and laponite clay (LP) via synergistic host-guest and electrostatic interactions, which could realize the controlled release of plant growth regulators such as naphthalene acetic acid (NAA) and gibberellin (GA) and promote the growth of Chinese cabbage and alfalfa. More interestingly, after releasing the cargo, the hydrogels could be used to capture heavy metal ions via strong complexation between the ions and carboxyl groups. This polysaccharide-based supramolecular hybrid hydrogels may provide a new strategy to realize the precision agriculture by the controlled delivery of plant growth regulators and synergetic adsorption of pollutants.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Chen-Shuang Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ye Tian
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Jie Wang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Siqintana Xin
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China; College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| |
Collapse
|
16
|
Yang C, Liu C, Li S, Zhang Y, Zhang Y, Wang X, Xiang W. The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24098424. [PMID: 37176133 PMCID: PMC10178944 DOI: 10.3390/ijms24098424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Wensheng Xiang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| |
Collapse
|
17
|
Nagdalian AA, Blinov AV, Siddiqui SA, Gvozdenko AA, Golik AB, Maglakelidze DG, Rzhepakovsky IV, Kukharuk MY, Piskov SI, Rebezov MB, Shah MA. Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Sci Rep 2023; 13:6453. [PMID: 37081125 PMCID: PMC10119286 DOI: 10.1038/s41598-023-33581-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
The purpose of this work was to study the effect of selenium nanoparticles (Se NPs) on the biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.) We used seeds of Hordéum vulgáre L. with reduced morphofunctional characteristics. For the experiment, Se NPs were synthesized and stabilized with didecyldimethylammonium chloride. It was found that Se NPs have a spherical shape and a diameter of about 50 nm. According to dynamic light scattering data, the average hydrodynamic radius of the particles was 28 ± 8 nm. It is observed that the nanoparticles have a positive ζ-potential (+ 27.3 mV). For the experiment, we treated Hordéum vulgáre L. seeds with Se NPs (1, 5, 10 and 20 mg/L). The experiment showed that treatment of Hordéum vulgáre L. seeds with Se NPs has the best effect on the length of roots and sprout at concentration of 5 mg/L and on the number and thickness of roots at 10 mg/L. Germinability and germination energy of Hordéum vulgáre L. seeds were higher in group treated with 5 mg/L Se NPs. Analysis of macrophotographs of samples, histological sections of roots and 3D visualization of seeds by microcomputing tomography confirmed the best effect at 5 mg/L Se NPs. Moreover, no local destructions were detected at concentrations > 5 mg/L, which is most likely due to the inhibition of regulatory and catalytic processes in the germinating seeds. the treatment of Hordéum vulgáre L. seeds with > 5 mg/L Se NPs caused significant stress, coupled with intensive formation of reactive oxygen species, leading to a reorientation of root system growth towards thickening. Based on the results obtained, it was concluded that Se NPs at concentrations > 5 mg/L had a toxic effect. The treatment of barley seeds with 5% Se NPs showed maximum efficiency in the experiment, which allows us to further consider Se NPs as a stimulator for the growth and development of crop seeds under stress and reduced morphofunctional characteristics.
Collapse
Affiliation(s)
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.v.), Prof.-Von-Klitzing-Straße 7, 49610, Quakenbrück, Germany
| | | | | | | | | | | | | | - Maksim Borisovich Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Post Box 250, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India.
| |
Collapse
|
18
|
Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2023; 12:928. [PMID: 36840277 PMCID: PMC9963348 DOI: 10.3390/plants12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.
Collapse
|
19
|
Alhammad BA, Ahmad A, Seleiman MF, Tola E. Seed Priming with Nanoparticles and 24-Epibrassinolide Improved Seed Germination and Enzymatic Performance of Zea mays L. in Salt-Stressed Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040690. [PMID: 36840038 PMCID: PMC9963209 DOI: 10.3390/plants12040690] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 05/04/2023]
Abstract
Saline stress is one of the most critical abiotic stress factors that can lessen crops' productivity. However, emerging nanotechnology, nano-fertilizers, and developing knowledge of phytochromes can potentially mitigate the negative effects of saline stress on seed germination. Therefore, the aim of this study was to investigate the effects of seed priming either with zinc oxide nanoparticles (ZnO-NPs; 50 and 100 mg L-1) or 24-epibrassinolide (EBL; 0.2 and 0.4 μM) and their combinations on maize (Zea mays L.) grains sown in salt-stressed soil (50 and 100 mM NaCl). Saline stress treatments significantly affected all germination traits and chemical analysis of seeds as well as α-amylase activity. Compared to un-primed seeds, seed priming with ZnO-NPs or EBL and their combinations significantly increased the cumulative germination percentage, germination energy, imbibition rate, increase in grain weight, K+ content, and α-amylase activity, and significantly reduced germination time, days to 50% emergence, Na+ uptake, and Na+/K+ ratio of maize sown in salt-stressed-soil (50 or 100 mM NaCl). The combination of 100 mg ZnO-NPs L-1 + 0.2 μM EBL resulted in the highest improvements for most of the studied traits of maize seeds sown in salt-stressed soil in comparison to all other individual and combined treatments.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
- Correspondence: (B.A.A.); (M.F.S.); Tel.: +96-655-315-3351 (M.F.S.)
| | - Awais Ahmad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
- Correspondence: (B.A.A.); (M.F.S.); Tel.: +96-655-315-3351 (M.F.S.)
| | - ElKamil Tola
- Precision Agriculture Research Chair, Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
21
|
Uniyal S, Bhandari M, Singh P, Singh RK, Tiwari SP. Cytokinin biosynthesis in cyanobacteria: Insights for crop improvement. Front Genet 2022; 13:933226. [PMID: 36160007 PMCID: PMC9504062 DOI: 10.3389/fgene.2022.933226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinins, a type of phytohormones that induce division of cytoplasm, have considerable value in agriculture due to their influences on several physiological processes of plants such as morphogenesis, development of chloroplast, seed dormancy, leaf senescence, etc. Previously, it was assumed that plants obtain cytokinin from the soil produced by microbes as these hormones were first discovered in soil-inhabiting bacteria i.e., Agrobacterium tumefaciens. Later, the cytokinin biosynthesis gene, i.e., ipt gene, has been reported in plants too. Though plants synthesize cytokinins, several studies have reported that the exogenous application of cytokinins has numerous beneficial effects including the acceleration of plant growth and boosting economic yield. Cyanobacteria may be employed in the soil not only as the source of cytokinins but also as the source of other plant growth-promoting metabolites. These organisms biosynthesize the cytokinins using the enzyme isopentenyl transferases (IPTs) in a fashion similar to the plants; however, there are few differences in the biosynthesis mechanism of cytokinins in cyanobacteria and plants. Cytokinins are important for the establishment of interaction between plants and cyanobacteria as evidenced by gene knockout experiments. These hormones are also helpful in alleviating the adverse effects of abiotic stresses on plant development. Cyanobacterial supplements in the field result in the induction of adventitious roots and shoots on petiolar as well as internodal segments. The leaf, root, and stem explants of certain plants exhibited successful regeneration when treated with cyanobacterial extract/cell suspension. These successful regeneration practices mark the way of cyanobacterial deployment in the field as a great move toward the goal of sustainable agriculture.
Collapse
Affiliation(s)
- Shashi Uniyal
- Department of Microbiology, School of Life Sciences, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Munni Bhandari
- Department of Microbiology, School of Life Sciences, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Preeti Singh
- Department of Microbiology, School of Life Sciences, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Shree Prakash Tiwari
- Department of Microbiology, V.B.S Purvanchal University, Jaunpur, Uttar Pradesh, India
| |
Collapse
|
22
|
Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU. Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:881032. [PMID: 35615133 PMCID: PMC9126561 DOI: 10.3389/fpls.2022.881032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 05/22/2023]
Abstract
Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc., and biotic stress such as a pathogenic attack, thus associated with survival strategy of plants. Stress responses of plants are vigorous and include multifaceted crosstalk between different levels of regulation, including regulation of metabolism and expression of genes for morphological and physiological adaptation. To date, many of these compounds and their biosynthetic pathways have been found in the plant kingdom. Metabolites like amino acids, phenolics, hormones, polyamines, compatible solutes, antioxidants, pathogen related proteins (PR proteins), etc. are crucial for growth, stress tolerance, and plant defense. This review focuses on promising metabolites involved in stress tolerance under severe conditions and events signaling the mediation of stress-induced metabolic changes are presented.
Collapse
Affiliation(s)
- Delai Chen
- College of Life Science and Technology, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ammarah Hasnain
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Shehzad Iqbal
- Faculty of Agriculture Sciences, Universidad de Talca, Talca, Chile
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, Bisha, Saudi Arabia
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ghulam Muhae Ud Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
23
|
Salem J, Hassanein A, El-Wakil DA, Loutfy N. Interaction between Growth Regulators Controls In Vitro Shoot Multiplication in Paulownia and Selection of NaCl-Tolerant Variants. PLANTS (BASEL, SWITZERLAND) 2022; 11:498. [PMID: 35214831 PMCID: PMC8878327 DOI: 10.3390/plants11040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The interaction between cytokinin, auxin and GA controlled in vitro shoot multiplication in paulownia was influenced by a medium water potential (Ψ) modulation, where it was modulated using different textures or strengths of MS medium, media of different types (MS, WPM, SH and B5) or NaCl incorporation. The interaction between 2 mg/L BAP and 0.1 mg/L NAA expressed the highest shoot number on each media type, but it was better with media of lower water potential (MS and WPM), and MS medium was the best. Ψ of full-strength semisolid MS medium expressed the highest shoot multiplication. The opposite was detected when Ψ of MS medium was changed using half- or double-strength MS. Ψ of full-strength MS medium in semisolid form resulted in a valuable interaction between 2 mg/L BAP, 0.1 mg/L NAA and 0.1 mg/L GA, leading to efficient shoot formation, and it was associated with an increase in internode length and decrease in stem diameter, which facilitated obtaining synseeds with a high ability to convert. High genetic variation was recorded under long-term culture (14 subcultures). Polymorphism using the ISSR technique was higher than that of RAPD. A further increase in polymorphism was detected when NaCl was used, where five salt-tolerant lines were selected. Some salt-tolerant-selected lines showed one or more amplification products of a specific molecular weight that did not appear in the control. For example, with OPA-07 and OPG-02 RAPD primers, all the salt-tolerant-selected lines showed the appearance of amplification fragments (610 bp and 300 bp, respectively) that were not detected in control.
Collapse
Affiliation(s)
- Jehan Salem
- Central Laboratory of Genetic Engineering, Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt;
| | - Ahmed Hassanein
- Central Laboratory of Genetic Engineering, Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt;
| | - Deiaa A. El-Wakil
- Biology Department, Faculty of Science, Jazan University, Jazan 82817, Saudi Arabia;
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Naglaa Loutfy
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
24
|
Quamruzzaman M, Manik SMN, Shabala S, Cao F, Zhou M. Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:709-721. [PMID: 34797396 DOI: 10.1007/s00122-021-03996-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity is a major threat to crop productivity and quality worldwide. In order to reduce the negative effects of salinity stress, it is important to understand the genetic basis of salinity tolerance. Identifying new salinity tolerance QTL or genes is crucial for breeders to pyramid different tolerance mechanisms to improve crop adaptability to salinity. Being one of the major cereal crops, wheat is known as a salt-sensitive glycophyte and subject to substantial yield losses when grown in the presence of salt. In this study, both pot and tank experiments were conducted to investigate the genotypic variation present in 328 wheat varieties in their salinity tolerance at the vegetative stage. A Genome-Wide Association Studies (GWAS) were carried out to identify QTL conferring salinity tolerance through a mixed linear model. Six, five and eight significant marker-trait associations (MTAs) were identified from pot experiments, tank experiments and average damage scores, respectively. These markers are located on the wheat chromosomes 1B, 2B, 2D, 3A, 4B, and 5A. These tolerance alleles were additive in their effects and, when combined, increased tolerance to salinity. Candidate genes identified in these QTL regions encoded a diverse class of proteins involved in salinity tolerance in plants. A Na+/H+ exchanger and a potassium transporter on chromosome 5A (IWB30519) will be of a potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection programs. Some useful genotypes, which showed consistent tolerance in different trials, can also be effectively used in breeding programs.
Collapse
Affiliation(s)
- Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | | | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Chancheng, China
| | - Fangbin Cao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia.
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
25
|
Rajabi Dehnavi A, Zahedi M, Ludwiczak A, Piernik A. Foliar Application of Salicylic Acid Improves Salt Tolerance of Sorghum ( Sorghum bicolor (L.) Moench). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030368. [PMID: 35161349 PMCID: PMC8839348 DOI: 10.3390/plants11030368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/31/2023]
Abstract
It has been reported that around the world, approximately 19.5% of all irrigated land and 2.1% of dry land is affected by salt stress, and these percentages continue to increase. Sorghum is the fifth most important cereal in the world and therefore research on its salt tolerance is of global importance. In our research, we focused on foliar application of salicylic acid (SA) on salt-stressed sorghum. We performed a pot experiment with two salt levels (0 and 100 mM sodium chloride NaCl) and five SA concentrations (0, 50, 100, 150 and 200 mg/L). Our results suggest that in saline conditions foliar application of SA induced an adaptive response to salinity by inducing proline accumulation as well as antioxidant enzymes activities and enhanced the protection of the photosynthetic machinery, maintained photosynthesis activities, and improved the growth of sorghum plants. These alleviation effects were depended on applied SA concentration. Under saline condition 150 mg/L, SA was the most effective for relieving the adverse effect of salt stress. Under non-saline conditions 100 mg/L SA was the best for improving sorghum growth and dry matter production. Our results demonstrated that foliar SA application is effective in improving sorghum growth under salinity.
Collapse
Affiliation(s)
- Ahmad Rajabi Dehnavi
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Morteza Zahedi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Agnieszka Ludwiczak
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| |
Collapse
|
26
|
Choudhary P, Pramitha L, Rana S, Verma S, Aggarwal PR, Muthamilarasan M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. PHYSIOLOGIA PLANTARUM 2021; 173:1587-1596. [PMID: 34537966 DOI: 10.1111/ppl.13558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Soil salinity is one of the major threats that pose challenges to global cereal productivity and food security. Cereals have evolved sophisticated mechanisms to circumvent stress at morpho-physiological, biochemical, and molecular levels. Salt stress cues are perceived by the roots, which trigger the underlying signaling pathways that involve phytohormones. Each phytohormone triggers a specific signaling pathway integrated in a complex manner to produce antagonistic, synergistic, and additive responses. Phytohormones induce salt-responsive signaling pathways to modulate various physiological and anatomical mechanisms, including cell wall repair, apoplastic pH regulation, ion homeostasis, root hair formation, chlorophyll content, and leaf morphology. Exogenous applications of phytohormones moderate the adverse effects of salinity and improve growth. Understanding the complex hormonal crosstalk in cereals under salt stress will advance the knowledge about cooperation or antagonistic mechanisms among hormones and their role in developing salt-tolerant cereals to enhance the productivity of saline agricultural land. In this context, the present review focuses on the mechanisms of hormonal crosstalk that mediate the salt stress response and adaptation in graminaceous crops.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
27
|
Yang J, Dai D, Cai Z, Liu YQ, Qin JC, Wang Y, Yang YW. MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation. Acta Biomater 2021; 134:664-673. [PMID: 34329784 DOI: 10.1016/j.actbio.2021.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Controllable and on-demand delivery of agrochemicals such as plant hormones is conducive to improving agrochemicals utilization, tackling water and environmental pollution, reducing soil acidification, and realizing the goals of precision agriculture. Herein, a smart plant hormone delivery system based on metal-organic frameworks (MOFs) and supramolecular nanovalves, namely gibberellin (GA)-loaded CLT6@PCN-Q, is constructed through supramolecular host-guest interaction to regulate the growth of dicotyledonous Chinese cabbage and monocotyledonous wheat. The porous nanoscale MOF (NMOF) with a uniform diameter of 97 nm modified by quaternary ammonium (Q) stalks is served as a cargo reservoir, followed by the decoration of carboxylated leaning tower[6]arene (CLT6) based nanovalves on NMOF surfaces through host-guest interactions to fabricate CLT6@PCN-Q with a diameter of ∼101 nm and a zeta potential value of -13.2 mV. Interestingly, the as-fabricated supramolecular nanoplatform exhibits efficient cargo loading and multi-stimuli-responsive release under various external stimuli including pH, temperature, and competitive agent spermine (SPM), which can realize the on-demand release of cargo. In addition, GA-loaded CLT6@PCN-Q is capable of effectively promoting the seeds germination of wheat and stem growth of dicotyledonous Chinese cabbage and monocotyledonous wheat (1.86 and 1.30 times of control groups, respectively). The smart supramolecular nanoplatform based on MOFs and supramolecular nanovalves paves a way for the controlled delivery of plant hormones and other agrochemicals for promoting plant growth, offering new insights and methods to realize precision agriculture. STATEMENT OF SIGNIFICANCE: To achieve controllable and sustainable release of cargos such as agrochemicals, a smart MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with supramolecular nanovalves was fabricated via the host-guest interaction between quaternary ammonium stalks-functionalized nanoMOFs and water-soluble leaning tower[6]arene. The as-prepared supramolecular nanoplatform with uniform diameter distribution demonstrated good cargo release in response to various external stimuli. The installation of synthetic macrocycles could effectively reduce cargo loss in the pre-treatment process. This type of supramolecular nanoplatform exhibited good promoting effect on seed germination and plant growth dicotyledonous Chinese cabbage and monocotyledonous wheat. As an eco-friendly, controlled, and efficient cargo delivery system, this supramolecular nanoplatform will be a promising candidate in precision agriculture and controlled drug release to attract the broad readership.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dihua Dai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Zhi Cai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yu-Qing Liu
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Jian-Chun Qin
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Yan Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
28
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|