1
|
Schophaus S, Creasy KT, Koop PH, Clusmann J, Jaeger J, Punnuru V, Koch A, Trautwein C, Loomba R, Luedde T, Schneider KM, Schneider CV. Machine learning uncovers manganese as a key nutrient associated with reduced risk of steatotic liver disease. Liver Int 2024; 44:2807-2821. [PMID: 39082383 PMCID: PMC11464189 DOI: 10.1111/liv.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately 20%-30% of the general population and is linked to high-caloric western style diet. However, there are little data that specific nutrients might help to prevent steatosis. METHODS We analysed the UK Biobank (ID 71300) 24 h-nutritional assessments and investigated the association between nutrient intake calculated from food questionnaires and hepatic steatosis indicated by imaging or ICD10-coding. The effect of manganese (Mn) on subgroups with risk single nucleotide polymorphism carriage as well as the effect on metabolomics was investigated. All analyses are corrected for age, sex, body mass index, Townsend index for socioeconomic status, kcal, alcohol, protein intake, fat intake, carbohydrate intake, energy from beverages, diabetes, physical activity and for multiple testing. RESULTS We used a random forest classifier to analyse the feature importance of 63 nutrients and imaging-proven steatosis in a cohort of over 25 000 UK Biobank participants. Increased dietary Mn intake was associated with a lower likelihood of MRI-diagnosed steatosis. Subsequently, we conducted a cohort study in over 200 000 UK Biobank participants to explore the relationship between Mn intake and hepatic or cardiometabolic outcomes and found that higher Mn intake was associated with a lower risk of ICD-10 coded steatosis (OR = .889 [.838-.943], p < .001), independent of other potential confounders. CONCLUSION Our study provides evidence that higher Mn intake may be associated with lower odds of steatosis in a large population-based sample. These findings underline the potential role of Mn in the prevention of steatosis, but further research is needed to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Simon Schophaus
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul-Henry Koop
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Clusmann
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Julius Jaeger
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Varnitha Punnuru
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Koch
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, San Diego, CA, USA
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Markus Schneider
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin V. Schneider
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
3
|
Frileux S, Boltri M, Doré J, Leboyer M, Roux P. Cognition and gut microbiota in schizophrenia spectrum and mood disorders: A systematic review. Neurosci Biobehav Rev 2024; 162:105722. [PMID: 38754717 DOI: 10.1016/j.neubiorev.2024.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
FRILEUX, M., BOLTRI M. and al. Cognition and Gut microbiota in schizophrenia spectrum and mood disorders: a Systematic Review. NEUROSCI BIOBEHAV REV (1) 2024 Schizophrenia spectrum disorders and major mood disorders are associated with cognitive impairments. Recent studies suggest a link between gut microbiota composition and cognitive functioning. Here, we review the relationship between gut microbiota and cognition in these disorders. To do this, we conducted a systematic review, searching Cochrane Central Register of Controlled Trials, EBSCOhost, Embase, Pubmed, Scopus, and Web of Science. Studies were included if they investigated the relationship between gut microbiota composition and cognitive function through neuropsychological assessments in patients with bipolar, depressive, schizophrenia spectrum, and other psychotic disorders. Ten studies were identified. Findings underscore a link between gut dysbiosis and cognitive impairment. This relationship identified specific taxa (Haemophilus, Bacteroides, and Alistipes) as potential contributors to bolstered cognitive performance. Conversely, Candida albicans, Toxoplasma gondii, Streptococcus and Deinococcus were associated with diminished performance on cognitive assessments. Prebiotics and probiotics interventions were associated with cognitive enhancements, particularly executive functions. These results emphasize the role of gut microbiota in cognition, prompting further exploration of the underlying mechanisms paving the way toward precision psychiatry.
Collapse
Affiliation(s)
- S Frileux
- Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177, rue de Versailles, Le Chesnay-Rocquencourt 78157, France; Université Paris-Saclay, Université Versailles Saint-Quentin-En-Yvelines, DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif 94807, France.
| | - M Boltri
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, Italy
| | - J Doré
- Université Paris-Saclay, INRA, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas 78350, France
| | - M Leboyer
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory, AP-HP, DMU IMPACT, Fédération Hospitalo-Universitaire de médecine de précision en psychiatrie (FHU ADAPT), Paris Est Créteil University and Fondation FondaMental, Créteil 94010, France; Fondation Fondamental, Créteil 94010, France
| | - P Roux
- Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177, rue de Versailles, Le Chesnay-Rocquencourt 78157, France; Université Paris-Saclay, Université Versailles Saint-Quentin-En-Yvelines, DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif 94807, France
| |
Collapse
|
4
|
Porru S, Esplugues A, Llop S, Delgado-Saborit JM. The effects of heavy metal exposure on brain and gut microbiota: A systematic review of animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123732. [PMID: 38462196 DOI: 10.1016/j.envpol.2024.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The gut-brain axis is a crucial interface between the central nervous system and the gut microbiota. Recent evidence shows that exposure to environmental contaminants, such as heavy metals, can cause dysbiosis in gut microbiota, which may affect the gut-brain communication, impacting aspects of brain function and behavior. This systematic review of the literature aims to evaluate whether deleterious effects on brain function due to heavy metal exposure could be mediated by changes in the gut microbiota profile. Animal studies involving exposure to heavy metals and a comparison with a control group that evaluated neuropsychological outcomes and/or molecular outcomes along with the analysis of microbiota composition were reviewed. The authors independently assessed studies for inclusion, extracted data and assessed risk of bias using the protocol of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) for preclinical studies. A search in 3 databases yielded 16 eligible studies focused on lead (n = 10), cadmium (n = 1), mercury (n = 3), manganese (n = 1), and combined exposure of lead and manganese (n = 1). The animal species were rats (n = 7), mice (n = 4), zebrafish (n = 3), carp (n = 1) and fruit fly (n = 1). Heavy metals were found to adversely affect cognitive function, behavior, and neuronal morphology. Moreover, heavy metal exposure was associated with changes in the abundance of specific bacterial phyla, such as Firmicutes and Proteobacteria, which play crucial roles in gut health. In some studies, these alterations were correlated with learning and memory impairments and mood disorders. The interplay of heavy metals, gut microbiota, and brain suggests that heavy metals can induce direct brain alterations and indirect effects through the microbiota, contributing to neurotoxicity and the development of neuropsychological disorders. However, the small number of papers under review makes it difficult to draw definitive conclusions. Further research is warranted to unravel the underlying mechanisms and evaluate the translational implications for human health.
Collapse
Affiliation(s)
- Simona Porru
- Department of Medicine, Faculty of Health Sciences. Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Ana Esplugues
- Faculty of Nursing and Podiatry, Universitat de València, C/Menendez Pelayo S/n, 46010, València, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Juana María Delgado-Saborit
- Department of Medicine, Faculty of Health Sciences. Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain.
| |
Collapse
|
5
|
Chen C, Xu JL, Gu ZC, Zhou SS, Wei GL, Gu JL, Ma HL, Feng YQ, Song ZW, Yan ZP, Deng S, Ding R, Li SL, Huo JG. Danggui Sini decoction alleviates oxaliplatin-induced peripheral neuropathy by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder. Chin Med 2024; 19:58. [PMID: 38584284 PMCID: PMC10999090 DOI: 10.1186/s13020-024-00929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Danggui Sini decoction (DSD), a traditional Chinese medicine formula, has the function of nourishing blood, warming meridians, and unblocking collaterals. Our clinical and animal studies had shown that DSD can effectively protect against oxaliplatin (OXA)-induced peripheral neuropathy (OIPN), but the detailed mechanisms remain uncertain. Multiple studies have confirmed that gut microbiota plays a crucial role in the development of OIPN. In this study, the potential mechanism of protective effect of DSD against OIPN by regulating gut microbiota was investigated. METHODS The neuroprotective effects of DSD against OIPN were examined on a rat model of OIPN by determining mechanical allodynia, biological features of dorsal root ganglia (DRG) as well as proinflammatory indicators. Gut microbiota dysbiosis was characterized using 16S rDNA gene sequencing and metabolism disorders were evaluated using untargeted and targeted metabolomics. Moreover the gut microbiota mediated mechanisms were validated by antibiotic intervention and fecal microbiota transplantation. RESULTS DSD treatment significantly alleviated OIPN symptoms by relieving mechanical allodynia, preserving DRG integrity and reducing proinflammatory indicators lipopolysaccharide (LPS), IL-6 and TNF-α. Besides, DSD restored OXA induced intestinal barrier disruption, gut microbiota dysbiosis as well as systemic metabolic disorders. Correlation analysis revealed that DSD increased bacterial genera such as Faecalibaculum, Allobaculum, Dubosiella and Rhodospirillales_unclassified were closely associated with neuroinflammation related metabolites, including positively with short-chain fatty acids (SCFAs) and sphingomyelin (d18:1/16:0), and negatively with pi-methylimidazoleacetic acid, L-glutamine and homovanillic acid. Meanwhile, antibiotic intervention apparently relieved OIPN symptoms. Furthermore, fecal microbiota transplantation further confirmed the mediated effects of gut microbiota. CONCLUSION DSD alleviates OIPN by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224001, Jiangsu, China
- Department of Oncology, Yancheng TCM Hospital, Yancheng, 224001, Jiangsu, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jian-Lin Xu
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224001, Jiangsu, China
- Department of Oncology, Yancheng TCM Hospital, Yancheng, 224001, Jiangsu, China
| | - Zhan-Cheng Gu
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, 215399, China
| | - Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Guo-Li Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211299, Jiangsu, China
| | - Jia-Lin Gu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hai-Long Ma
- Department of Paediatrics, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224001, Jiangsu, China
| | - Yan-Qi Feng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zi-Wei Song
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhan-Peng Yan
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Shan Deng
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Rong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Jie-Ge Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| |
Collapse
|
6
|
Skalny AV, Aschner M, Gritsenko VA, Martins AC, Tizabi Y, Korobeinikova TV, Paoliello MM, Tinkov AA. Modulation of gut microbiota with probiotics as a strategy to counteract endogenous and exogenous neurotoxicity. ADVANCES IN NEUROTOXICOLOGY 2024; 11:133-176. [PMID: 38741946 PMCID: PMC11090489 DOI: 10.1016/bs.ant.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The existing data demonstrate that probiotic supplementation affords protective effects against neurotoxicity of exogenous (e.g., metals, ethanol, propionic acid, aflatoxin B1, organic pollutants) and endogenous (e.g., LPS, glucose, Aβ, phospho-tau, α-synuclein) agents. Although the protective mechanisms of probiotic treatments differ between various neurotoxic agents, several key mechanisms at both the intestinal and brain levels seem inherent to all of them. Specifically, probiotic-induced improvement in gut microbiota diversity and taxonomic characteristics results in modulation of gut-derived metabolite production with increased secretion of SFCA. Moreover, modulation of gut microbiota results in inhibition of intestinal absorption of neurotoxic agents and their deposition in brain. Probiotics also maintain gut wall integrity and inhibit intestinal inflammation, thus reducing systemic levels of LPS. Centrally, probiotics ameliorate neurotoxin-induced neuroinflammation by decreasing LPS-induced TLR4/MyD88/NF-κB signaling and prevention of microglia activation. Neuroprotective mechanisms of probiotics also include inhibition of apoptosis and oxidative stress, at least partially by up-regulation of SIRT1 signaling. Moreover, probiotics reduce inhibitory effect of neurotoxic agents on BDNF expression, on neurogenesis, and on synaptic function. They can also reverse altered neurotransmitter metabolism and exert an antiamyloidogenic effect. The latter may be due to up-regulation of ADAM10 activity and down-regulation of presenilin 1 expression. Therefore, in view of the multiple mechanisms invoked for the neuroprotective effect of probiotics, as well as their high tolerance and safety, the use of probiotics should be considered as a therapeutic strategy for ameliorating adverse brain effects of various endogenous and exogenous agents.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Tatiana V. Korobeinikova
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Monica M.B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A. Tinkov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
7
|
Zhang H, Jiang X, Li A, Wang X. Causal Associations Between Gut Microbiota and Cerebrovascular Diseases. World Neurosurg 2024; 183:e587-e597. [PMID: 38191059 DOI: 10.1016/j.wneu.2023.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Numerous studies suggest that the gut microbiota closely linked to cerebrovascular diseases, such as Intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (aSAH). Nevertheless, the confirmation of a definitive causal connection between gut microbiota, IA, and aSAH is still pending. The aim of our research is to explore the potential bidirectional causality among them. METHODS This bidirectional Mendelian Randomization (MR) study used single nucleotide polymorphisms linked to gut microbiota, IA, and aSAH from Genome-Wide Association Studies. The Inverse Variance Weighted (IVW) method was used to explore causality. To assess the robustness of the result, sensitivity analyses were further performed, including weighted-median method, MR-Egger regression, Maximum-likelihood method, MR pleiotropy residual sum and outlier test and leave-one-out analysis. RESULTS In the IVW method, the family Porphyromonadaceae (odds ratio [OR] 0.63; 95% CI 0.47-0.85; P: 0.002) and genus Bilophila (OR 0.66; 95% CI 0.50-0.86; P: 0.002) showed a significant negative association with the risk of IA. Similarly, the genus Bilophila (OR: 0.68; 95% CI: 0.50-0.93; P: 0.017) and genus Ruminococcus1 (OR: 0.48; 95% CI: 0.30-0.78; P: 0.003) were linked to reduced risk of aSAH. The sensitivity analysis yielded similar outcomes in the IVW approach. Through the adoption of reverse MR analysis, a potential correlation between IA and decreased abundance of genus Ruminococcus1 was identified (OR 0.94; 95% CI 0.90-0.99; P 0.024). CONCLUSIONS This MR analysis investigated the causal associations between gut microbiota, IA, and aSAH risks. The findings expanded current knowledge of the microbiota-gut-brain axis and offered novel perspectives on preventing and managing these conditions.
Collapse
Affiliation(s)
- Hongyu Zhang
- Harbin Medical University, Harbin, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Aozhou Li
- Harbin Medical University, Harbin, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Wang
- Harbin Medical University, Harbin, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Tizabi Y, Getachew B, Aschner M. Butyrate Protects and Synergizes with Nicotine against Iron- and Manganese-induced Toxicities in Cell Culture. Neurotox Res 2023; 42:3. [PMID: 38095760 DOI: 10.1007/s12640-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023]
Abstract
Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Shevchenko A, Shalaginova I, Katserov D, Matskova L, Shiryaeva N, Dyuzhikova N. Post-stress changes in the gut microbiome composition in rats with different levels of nervous system excitability. PLoS One 2023; 18:e0295709. [PMID: 38079399 PMCID: PMC10712864 DOI: 10.1371/journal.pone.0295709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The gut-brain axis is a critical communication system influencing the interactions between the gastrointestinal tract (GI) and the central nervous system (CNS). The gut microbiota plays a significant role in this axis, affecting the development and function of the nervous system. Stress-induced psychopathologies, such as depression and anxiety, have been linked to the gut microbiota, but underlying mechanisms and genetic susceptibility remain unclear. In this study, we examined stress-induced changes in the gut microbiome composition in two rat strains with different levels of nervous system excitability: high threshold (HT strain) and low threshold (LT strain). Rats were exposed to long-term emotional and painful stress using the Hecht protocol, and fecal samples were collected at multiple time points before and after stress exposure. Using 16S rRNA amplicon sequencing, we assessed the qualitative and quantitative changes in the gut microbiota. Our results revealed distinct microbial diversity between the two rat strains, with the HT strain displaying higher diversity compared to the LT strain. Notably, under prolonged stress, the HT strain showed an increase in relative abundance of microorganisms from the genera Faecalibacterium and Prevotella in fecal samples. Additionally, both strains exhibited a decrease in Lactobacillus abundance following stress exposure. Our findings provide valuable insights into the impact of hereditary nervous system excitability on the gut microbiome composition under stress conditions. Understanding the gut-brain interactions in response to stress may open new avenues for comprehending stress-related psychopathologies and developing potential therapeutic interventions targeted at the gut microbiota. However, further research is needed to elucidate the exact mechanisms underlying these changes and their implications for stress-induced disorders. Overall, this study contributes to the growing body of knowledge on the gut-brain axis and its significance in stress-related neurobiology.
Collapse
Affiliation(s)
- Alla Shevchenko
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Irina Shalaginova
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Dmitriy Katserov
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ludmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Shiryaeva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Natalia Dyuzhikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
10
|
Zhang M, Lou H, Ma J, Xiong K, Hou X. Network pharmacology and molecular docking approaches predict the mechanisms of Corididius chinensis in treating manganese-induced nervous system diseases: A review. Medicine (Baltimore) 2023; 102:e35669. [PMID: 37904435 PMCID: PMC10615487 DOI: 10.1097/md.0000000000035669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Neurotoxicity could be induced by long exposure to manganese (Mn). The traditional Chinese medicine, Corididius chinensis (Cc) has been proven to have a certain curative effect on Mn poisoning. Therefore, network pharmacology was performed to explore potential therapeutic targets and pharmacological mechanisms of Cc. We found ingredients by building our own database through literature, (which is the first to screen traditional Chinese medicine without traditional Chinese medicine systems pharmacology database and analysis platform databases and it is applicable whenever a Chinese medicine is not found in the traditional Chinese medicine systems pharmacology database and analysis platform database) and potential targets of Mn-induced nervous system diseases from the OMIM, GeneCards, and DrugBank database were identified. A protein-protein interaction network was constructed using Cytoscape. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis was performed for the treatment of Mn-induced nervous system disease, and molecular docking was carried out to verify the results of network pharmacology analysis. After screening disease-related genes, 12 intersecting genes overlapped between 284 target proteins of the active compound and 195 potential disease targets. The pathways of neurodegeneration_multiple diseases and Alzheimer disease pathway may be the most potential pathway of Cc treating Mn-induced nervous system diseases. CASP9 and PTGS2 in neurodegeneration_multiple diseases, NOS1, NOS2 in Alzheimer disease pathway were identified as core targets. Especially, molecule docking analysis unveil that aspongpyrazine A docking NOS2 is the most potential therapeutic drug and target, which primarily involved in the processes of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mei Zhang
- Zunyi Medical University, College of Basic Medicine, Zunyi, Guizhou, China
| | - Huixian Lou
- Zunyi Medical University, College of Basic Medicine, Zunyi, Guizhou, China
| | - Jing Ma
- Zunyi Medical University, College of Basic Medicine, Zunyi, Guizhou, China
| | - Keyi Xiong
- Zunyi Medical University, College of Basic Medicine, Zunyi, Guizhou, China
| | - Xiaohui Hou
- Zunyi Medical University, College of Basic Medicine, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Tizabi Y, Getachew B, Aschner M. Butyrate protects and synergizes with nicotine against iron- and manganese-induced toxicities in cell culture: Implications for neurodegenerative diseases. RESEARCH SQUARE 2023:rs.3.rs-3389904. [PMID: 37886507 PMCID: PMC10602090 DOI: 10.21203/rs.3.rs-3389904/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. The ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but indicate distinct mechanisms of action for each one. Furthermore, potential utility of the combination of butyrate and nicotine against heavy metal toxicities is suggested.
Collapse
|
12
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
13
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
14
|
Jin Z, Meng W, Xiao T, Deng J, Wang J, Wen J, Chen K, Wang L, Liu J, Li Q, He J, Wang Z, Liu W, Liu F. Vertical sleeve gastrectomy-derived gut metabolite licoricidin activates beige fat thermogenesis to combat obesity. Theranostics 2023; 13:3103-3116. [PMID: 37284437 PMCID: PMC10240825 DOI: 10.7150/thno.81893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Obesity is a chronic metabolic disease, affecting individuals throughout the world. Bariatric surgery such as vertical sleeve gastrectomy (VSG) provides sustained weight loss and improves glucose homeostasis in obese mice and humans. However, the precise underlying mechanisms remain elusive. In this study, we investigated the potential roles and the mechanisms of action of gut metabolites in VSG-induced anti-obesity effect and metabolic improvement. Methods: High-fat diet (HFD)-fed C57BL/6J mice were subjected to VSG. Energy dissipation in mice was monitored using metabolic cage experiments. The effects of VSG on gut microbiota and metabolites were determined by 16S rRNA sequencing and metabolomics, respectively. The metabolic beneficial effects of the identified gut metabolites were examined in mice by both oral administration and fat pad injection of the metabolites. Results: VSG in mice greatly increased thermogenic gene expression in beige fat, which was correlated with increased energy expenditure. VSG reshaped gut microbiota composition, resulting in elevated levels of gut metabolites including licoricidin. Licoricidin treatment promoted thermogenic gene expression in beige fat by activating the Adrb3-cAMP-PKA signaling pathway, leading to reduced body weight gain in HFD-fed mice. Conclusions: We identify licoricidin, which mediates the crosstalk between gut and adipose tissue in mice, as a VSG-provoked anti-obesity metabolite. Identification of anti-obesity small molecules should provide new insights into treatment options for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Zhangliu Jin
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wen Meng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ting Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of Hepatology, Hunan Children's Hospital, Changsha 410000, Hunan, China
| | - Jiangming Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jie Wen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Kai Chen
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Liwen Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Juanhong Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qingxin Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu He
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zheng Wang
- College of Bioscience & Biotechnology of Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Wei Liu
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
15
|
Adedara IA, Mohammed KA, Canzian J, Rosemberg DB, Aschner M, Farombi EO, Rocha JB. Nauphoeta cinerea as an emerging model in neurotoxicology. ADVANCES IN NEUROTOXICOLOGY 2023; 9:181-196. [PMID: 37389201 PMCID: PMC10310038 DOI: 10.1016/bs.ant.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao Batista Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
16
|
Hong D, Zhang C, Wu W, Lu X, Zhang L. Modulation of the gut-brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis. Front Neurol 2023; 14:1133546. [PMID: 37153665 PMCID: PMC10157060 DOI: 10.3389/fneur.2023.1133546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
There are trillions of different microorganisms in the human digestive system. These gut microbes are involved in the digestion of food and its conversion into the nutrients required by the body. In addition, the gut microbiota communicates with other parts of the body to maintain overall health. The connection between the gut microbiota and the brain is known as the gut-brain axis (GBA), and involves connections via the central nervous system (CNS), the enteric nervous system (ENS), and endocrine and immune pathways. The gut microbiota regulates the central nervous system bottom-up through the GBA, which has prompted researchers to pay considerable attention to the potential pathways by which the gut microbiota might play a role in the prevention and treatment of amyotrophic lateral sclerosis (ALS). Studies with animal models of ALS have shown that dysregulation of the gut ecology leads to dysregulation of brain-gut signaling. This, in turn, induces changes in the intestinal barrier, endotoxemia, and systemic inflammation, which contribute to the development of ALS. Through the use of antibiotics, probiotic supplementation, phage therapy, and other methods of inducing changes in the intestinal microbiota that can inhibit inflammation and delay neuronal degeneration, the clinical symptoms of ALS can be alleviated, and the progression of the disease can be delayed. Therefore, the gut microbiota may be a key target for effective management and treatment of ALS.
Collapse
Affiliation(s)
- Du Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenshuo Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Liping Zhang
| |
Collapse
|
17
|
Shi X, Xu W, Che X, Cui J, Shang X, Teng X, Jia Z. Effect of arsenic stress on the intestinal structural integrity and intestinal flora abundance of Cyprinus carpio. Front Microbiol 2023; 14:1179397. [PMID: 37168116 PMCID: PMC10165157 DOI: 10.3389/fmicb.2023.1179397] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Aquatic organisms such as fish can accumulate high concentrations of arsenic (As), which has toxic effects on fish. However, whether the intestinal flora are involved in As damage to fish intestinal tissues and the underlying process are unclear. Common carp (Cyprinus carpio) were exposed to As (2.83 mg/L) in water for 30 days, and blood, muscle, intestine, and intestine samples were collected. Intestinal pathological sections were observed, and the lipopolysaccharide (LPS) levels in serum and the levels of As accumulation and tight junction-related factors in intestinal tissues were measured. The gut microbiota was analysed by 16S rRNA sequencing. The results showed that As treatment decreased the abundance of microbiota, increased the number of harmful bacteria, and decreased the number of beneficial bacteria in the intestine. In our experiment, the top 30 harmful and beneficial bacteria with the highest relative abundance were identified. Among the top 30 harmful and beneficial bacteria, As treatment resulted in a significant (P < 0.05) increase in harmful bacteria (such as Fusobacteriota, Bacteroidota (LPS-producing bacteria), Verrucomicrobiota, Bacteroides, Aeromonas, and Stenotrophomonas) and a significant (P < 0.05) decrease in beneficial bacteria (such as Actinobacteriota, Planctomycetota, Firmicutes, Reyranella, Akkermansia, and Pseudorhodobacter), which further demonstrated that As affects the abundance of intestinal flora. In addition, As exposure increased the LPS level in serum and the abundance of Bacteroidota (LPS-producing bacteria) in the intestine. Bacteroidota exhibits the six highest relative abundance at the phylum level, which indicates that LPS produced by Bacteroidota can increase the LPS level in serum. Additionally, the protein and gene levels of the tight junction markers ZO-1 and occludin in the intestine were reduced by As treatment, which further indicated that As exposure impaired the structural integrity of the intestine. In conclusion, the results obtained in our study indicate that the intestinal flora, LPS, and tight junctions participate in the impairment of the structural integrity of the common carp intestine resulting from As exposure.
Collapse
Affiliation(s)
- Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiaohua Teng,
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- *Correspondence: Zhiying Jia,
| |
Collapse
|
18
|
Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:cancers14225577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
|
19
|
He Y, Liang T, Chen Z, Mo S, Liao Y, Gao Q, Huang K, Peng T, Zhou W, Han C. Recurrence of Early Hepatocellular Carcinoma after Surgery May Be Related to Intestinal Oxidative Stress and the Development of a Predictive Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7261786. [PMID: 36238647 PMCID: PMC9553367 DOI: 10.1155/2022/7261786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Background Early stage hepatocellular carcinoma (HCC) has a high recurrence rate after surgery and lacks reliable predictive tools. We explored the potential of combining enhanced CT with gut microbiome to develop a predictive model for recurrence after early HCC surgery. Methods A total of 112 patients with early HCC who underwent hepatectomy from September 2018 to December 2020 were included in this study, and the machine learning method was divided into a training group (N = 71) and a test group (N = 41) with the observed endpoint of recurrence-free survival (RFS). Features were extracted from the arterial and portal phases of enhanced computed tomography (CT) images and gut microbiome, and features with minimum absolute contraction and selection operator regression were created, and the extracted features were scored to create a preoperative prediction model by using the multivariate Cox regression analysis with risk stratification analysis. Results In the study cohort, the model constructed by combining radiological and gut flora features provided good predictive performance (C index, 0.811 (0.650-0.972)). The combined radiology and gut flora-based model constructed risk strata with high, intermediate, or low risk of recurrence and different characteristics of recurrent tumor imaging and gut flora. Recurrence of early stage hepatocellular carcinoma may be associated with oxidative stress in the intestinal flora. Conclusions This study successfully constructs a risk model integrating enhanced CT and gut microbiome characteristics that can be used for the risk of postoperative recurrence in patients with early HCC. In addition, intestinal flora associated with HCC recurrence may be involved in oxidative stress.
Collapse
Affiliation(s)
- Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijie Zhou
- Deputy Chief Technician of Laboratory, Baise People's Hospital, Baise, Guangxi Zhuang Autonomous Region, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
20
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
21
|
Aaseth JO. Toxic and Essential Metals in Human Health and Disease 2021. Biomolecules 2022; 12:biom12101375. [PMID: 36291583 PMCID: PMC9599252 DOI: 10.3390/biom12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway;
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, 2418 Elverum, Norway
| |
Collapse
|
22
|
Gu J, Zhu Y, Guo M, Yin X, Liang M, Lou X, Chen J, Zhou L, Fan D, Shi L, Hu G, Ji G. The potential mechanism of BPF-induced neurotoxicity in adult zebrafish: Correlation between untargeted metabolomics and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156221. [PMID: 35623532 DOI: 10.1016/j.scitotenv.2022.156221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol F (BPF) is becoming the main substitute for bisphenol A (BPA) in plastics for food and beverage applications. Previous studies have demonstrated the neurotoxicity of BPF; however, its lifecycle toxicity and the underlying mechanisms remain poorly understood. In the current study, zebrafish were continuously exposed to BPF for four months from the embryo to adult stages in order to assess its neurotoxicity. Locomotor behaviors significantly decreased after BPF exposure, which was accompanied by a decrease in body weight, length, and hatching rate. Additionally, BPF increased the expression of inflammatory genes in the brain and destroyed the zebrafishes' intestinal integrity. Meanwhile, the 16S rRNA gene sequence results showed a significantly decreased microbiota abundance and diversity following BPF treatment. Neurotransmitter metabolites were also altered by BPF. Notably, the correlation analysis between microbiota and neurotransmitter metabolism verified that gut microbiota dysbiosis was closely related to the disturbance of neurotransmitter metabolites. Therefore, the present study evaluated the neurotoxicity of lifecycle exposure to BPF and unraveled a novel mechanism involving disturbance of neurotransmitter metabolism and gut dysbiosis, which may provide potential targets for BPF-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Lou
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingrong Chen
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences,Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
23
|
Sun P, Zhang C, Huang Y, Yang J, Zhou F, Zeng J, Lin Y. Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed Pharmacother 2022; 150:112975. [PMID: 35453007 DOI: 10.1016/j.biopha.2022.112975] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common disease that has decreased bone strength as its main symptom after menopause. Effective treatment for PMOP remains lacking, but traditional Chinese medicine has some advantages in delaying bone loss. Jiangu granule is a traditional Chinese medicine prescription commonly used to treat PMOP. Previous studies have demonstrated its efficacy, but the mechanism of action remains uncharacterized. PURPOSE This study aims to observe and discuss the mechanism of Jiangu granule to ameliorate bone loss in OVX rats by regulating the gut microbiota (GM)-short-chain fatty acids (SCFAs)- Treg/Th17 axis. METHODS Female SD rats were divided into the sham operation (S), Jiangu granule (J), and model group (M). Bilateral ovaries were surgically removed from the rats in the J and M groups. After 6 and 12 weeks, rats were sacrificed, and femur, tibia, vertebrae, serum, spleen, colon, and feces samples were collected. We detected the strength of bones, gut microbiota structure, and SCFAs in feces, the Treg and Th17 cell levels in the spleen, and cytokine levels in the serum. RESULT Jiangu granule restored the abundance of gut microbiota, increased the content of SCFAs, reduced the permeability of colon epithelium, increased the proportion of Treg cells in the spleen, changed the osteoimmunomodulation-related cytokines, effectively prevented bone loss, and enhanced bone strength. CONCLUSION Jiangu granule can effectively improve bone loss in OVX rats, possibly by regulating the "GM-SCFAs-Treg/Th17″ axis.
Collapse
Affiliation(s)
- Pan Sun
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Longhua Hospital, Institute of Spine, Shanghai University of Traditional Chinese Medicine, Key Laboratory, Ministry of Education of China, Shanghai 200032, China
| | - Chutian Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Juan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Fen Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanping Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|