1
|
Dimitriadis K, Theofilis P, Koutsopoulos G, Pyrpyris N, Beneki E, Tatakis F, Tsioufis P, Chrysohoou C, Fragkoulis C, Tsioufis K. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev 2025; 30:75-88. [PMID: 39358622 DOI: 10.1007/s10741-024-10445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an entity with complex pathophysiologic pathways, among which coronary microvascular dysfunction (CMD) is believed to be an important orchestrator. Research in the field of CMD has highlighted impaired vasoreactivity, capillary rarefaction, and inflammation as potential mediators of its development. CMD can be diagnosed via several noninvasive methods including transthoracic echocardiography, cardiac magnetic resonance, and positron emission tomography. Moreover, invasive methods such as coronary flow reserve and index of microcirculatory resistance are commonly employed in the assessment of CMD. As far as the association between CMD and HFpEF is concerned, numerous studies have highlighted the coexistence of CMD in the majority of HFpEF patients. Additionally, patients affected by both conditions may be facing an adverse prognosis. Finally, there is limited evidence suggesting a beneficial effect of renin-angiotensin-aldosterone system blockers, ranolazine, and sodium-glucose cotransporter-2 inhibitors in CMD, with further evidence being awaited regarding the impact of other pharmacotherapies such as anti-inflammatory agents.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece.
| | - Panagiotis Theofilis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Georgios Koutsopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| |
Collapse
|
2
|
D'Italia G, Schroen B, Cosemans JMEM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2024. [PMID: 39375979 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Gao C, Xiong Z, Liu Y, Wang M, Wang M, Liu T, Liu J, Ren S, Cao N, Yan H, Drucker DJ, Rau CD, Yokota T, Huang J, Wang Y. Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction. Circ Res 2024; 135:614-628. [PMID: 39011638 PMCID: PMC11325917 DOI: 10.1161/circresaha.124.324706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.
Collapse
MESH Headings
- Animals
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/drug therapy
- Heart Failure/etiology
- Stroke Volume/drug effects
- Mice, Inbred C57BL
- Mice
- Male
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Obese
- Ventricular Function, Left/drug effects
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/complications
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (Z.X.)
| | - Yunxia Liu
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Meng Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Tian Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Shuxun Ren
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Nancy Cao
- School of Medicine and Public Health, University of Wisconsin, Madison (N.C.)
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA (Y.H.)
| | - Daniel J. Drucker
- Department of Medicine, Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada (D.J.D.)
| | - Christoph Daniel Rau
- Computational Medicine Program and Department of Human Genetics, University of North Carolina at Chapel Hill (C.D.R.)
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, and the VA Greater Los Angeles Healthcare System (T.Y.)
| | - Jijun Huang
- Division of Endocrinology, Department of medicine, David Geffen School of Medicine, University of California, Los Angeles (J.H.)
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
- Department of Medicine, Duke University School of Medicine, Durham, NC (Y.W.)
| |
Collapse
|
4
|
Weerts J, Raafs AG, Sandhoefner B, van der Heide FCT, Mourmans SGJ, Wolff N, Finger RP, Falahat P, Wintergerst MWM, van Empel VPM, Heymans SRB. Retinal Vascular Changes in Heart Failure with Preserved Ejection Fraction Using Optical Coherence Tomography Angiography. J Clin Med 2024; 13:1892. [PMID: 38610657 PMCID: PMC11012357 DOI: 10.3390/jcm13071892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Systemic microvascular regression and dysfunction are considered important underlying mechanisms in heart failure with preserved ejection fraction (HFpEF), but retinal changes are unknown. Methods: This prospective study aimed to investigate whether retinal microvascular and structural parameters assessed using optical coherence tomography angiography (OCT-A) differ between patients with HFpEF and control individuals (i.e., capillary vessel density, thickness of retina layers). We also aimed to assess the associations of retinal parameters with clinical and echocardiographic parameters in HFpEF. HFpEF patients, but not controls, underwent echocardiography. Macula-centered 6 × 6 mm volume scans were computed of both eyes. Results: Twenty-two HFpEF patients and 24 controls without known HFpEF were evaluated, with an age of 74 [68-80] vs. 68 [58-77] years (p = 0.027), and 73% vs. 42% females (p = 0.034), respectively. HFpEF patients showed vascular degeneration compared to controls, depicted by lower macular vessel density (p < 0.001) and macular ganglion cell-inner plexiform layer thickness (p = 0.025), and a trend towards lower total retinal volume (p = 0.050) on OCT-A. In HFpEF, a lower total retinal volume was associated with markers of diastolic dysfunction (septal e', septal and average E/e': R2 = 0.38, 0.36, 0.25, respectively; all p < 0.05), even after adjustment for age, sex, diabetes mellitus, or atrial fibrillation. Conclusions: Patients with HFpEF showed clear levels of retinal vascular changes compared to control individuals, and retinal alterations appeared to be associated with markers of more severe diastolic dysfunction in HFpEF. OCT-A may therefore be a promising technique for monitoring systemic microvascular regression and cardiac diastolic dysfunction.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.G.R.); (S.G.J.M.); (V.P.M.v.E.)
| | - Anne G. Raafs
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.G.R.); (S.G.J.M.); (V.P.M.v.E.)
| | - Birgit Sandhoefner
- Carl ZEISS Meditec Inc., 5300 Central Parkway, Dublin, CA 94568, USA (N.W.)
| | - Frank C. T. van der Heide
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), 6200 MD Maastricht, The Netherlands;
- University Eye Clinic Maastricht, Maastricht University Medical Centre+ (MUMC+), 6200 MD Maastricht, The Netherlands
- MHeNS, School for Mental Health and NeuroScience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Sanne G. J. Mourmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.G.R.); (S.G.J.M.); (V.P.M.v.E.)
| | - Nicolas Wolff
- Carl ZEISS Meditec Inc., 5300 Central Parkway, Dublin, CA 94568, USA (N.W.)
| | - Robert P. Finger
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (R.P.F.); (P.F.); (M.W.M.W.)
| | - Peyman Falahat
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (R.P.F.); (P.F.); (M.W.M.W.)
| | | | - Vanessa P. M. van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.G.R.); (S.G.J.M.); (V.P.M.v.E.)
| | - Stephane R. B. Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.G.R.); (S.G.J.M.); (V.P.M.v.E.)
- Department of Cardiovascular Research, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Marchini F, Pompei G, D'Aniello E, Marrone A, Caglioni S, Biscaglia S, Campo G, Tebaldi M. Shedding Light on Treatment Options for Coronary Vasomotor Disorders: A Systematic Review. Cardiovasc Drugs Ther 2024; 38:151-161. [PMID: 35678926 PMCID: PMC10876767 DOI: 10.1007/s10557-022-07351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Coronary vasomotor dysfunction embraces two specific clinical entities: coronary (micro)vascular spasm and microvascular dysfunction. The clinical manifestations of these entities are respectively called vasospastic angina (VSA) and microvascular angina (MVA). Over the years, these diseases have become more and more prominent and several studies aimed to investigate the best diagnostic and therapeutic strategies. Patients with coronary vasomotor disorders are often undertreated due to the absence of evidence-based guidelines. The purpose of this overview is to illustrate the various therapeutic options available for the optimized management of these patients. METHODS A Medline search of full-text articles published in English from 1980 to April 2022 was performed. The main analyzed aspects of vasomotor disorders were treatment options. We also performed research on "Clinicaltrial.gov" for ongoing trials. CONCLUSION Coronary (micro)vascular spasm and microvascular dysfunction are clinical entities characterized by high prevalence and clinical representation. Several therapeutic strategies, both innovative and established, are available to optimize treatment and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federico Marchini
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Graziella Pompei
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Emanuele D'Aniello
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Andrea Marrone
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Serena Caglioni
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Simone Biscaglia
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Matteo Tebaldi
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy.
| |
Collapse
|
6
|
Seecheran NA, Rafeeq S, Maharaj N, Swarath S, Seecheran V, Seecheran R, Seebalack V, Jagdeo CL, Seemongal-Dass R, Quert AYL, Giddings S, Ramlackhansingh A, Sandy S, Motilal S, Seemongal-Dass R. Correlation of RETINAL Artery Diameter with Coronary Artery Disease: The RETINA CAD Pilot Study-Are the Eyes the Windows to the Heart? Cardiol Ther 2023; 12:499-509. [PMID: 37318673 PMCID: PMC10423171 DOI: 10.1007/s40119-023-00320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION This study aimed to determine whether there was any correlation between coronary artery disease (CAD) and retinal artery diameter at an academic tertiary medical center in Trinidad and Tobago. METHODS This prospective study evaluated patients (n = 77) with recent invasive coronary angiography (CAG) and the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score who subsequently underwent optical coherence tomography-angiography (OCT-A) at the Eric Williams Medical Sciences Complex (EWMSC) from January 2021 to March 2021. Routine medical history and cardiovascular medications were also recorded. Spearman's rank correlation coefficient and Mann-Whitney U-tests were used to compare correlations and medians between groups. RESULTS The average patient age was 57.8 years old, with the majority being male [n = 55 (71.4%)] and of South Asian ethnicity [n = 53 (68.8%)]. Retinal artery diameter was negatively correlated with the SYNTAX score (-0.332 for the right eye, p = 0.003 and -0.237 for the left eye, p = 0.038). A statistically significant relationship was also demonstrated in females and diabetic patients. There were no serious adverse events (SAEs). CONCLUSION A significantly negative correlation was observed between retinal artery diameter and SYNTAX score. This study alludes to the practical use of optical coherence tomography-angiography (OCT-A) as a noninvasive diagnostic modality for patients with cardiovascular disease (CVD). Further large-scale, multicentric studies are required to confirm these exploratory findings. TRIAL REGISTRATION NUMBER NCT04233619.
Collapse
Affiliation(s)
- Naveen Anand Seecheran
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
- Faculty of Medical Sciences, The University of the West Indies, 2nd Floor, Building #67, Eric Williams Medical Sciences Complex, Mt. Hope, West Indies, Trinidad and Tobago.
| | - Salma Rafeeq
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Nicole Maharaj
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Steven Swarath
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Valmiki Seecheran
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Rajeev Seecheran
- Department of Medicine, Kansas University Medical Center, Wichita, KS, USA
| | - Victoria Seebalack
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Cathy-Lee Jagdeo
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Rajiv Seemongal-Dass
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | | | - Stanley Giddings
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Anil Ramlackhansingh
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sherry Sandy
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Shastri Motilal
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Robin Seemongal-Dass
- Department of Clinical Surgical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
7
|
Stencel J, Alai HR, Dhore-patil A, Urina-Jassir D, Le Jemtel TH. Obesity, Preserved Ejection Fraction Heart Failure, and Left Ventricular Remodeling. J Clin Med 2023; 12:3341. [PMID: 37176781 PMCID: PMC10179420 DOI: 10.3390/jcm12093341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Owing to the overwhelming obesity epidemic, preserved ejection fraction heart failure commonly ensues in patients with severe obesity and the obese phenotype of preserved ejection fraction heart failure is now commonplace in clinical practice. Severe obesity and preserved ejection fraction heart failure share congruent cardiovascular, immune, and renal derangements that make it difficult to ascertain whether the obese phenotype of preserved ejection fraction heart failure is the convergence of two highly prevalent conditions or severe obesity enables the development and progression of the syndrome of preserved ejection fraction heart failure. Nevertheless, the obese phenotype of preserved ejection fraction heart failure provides a unique opportunity to assess whether sustained and sizeable loss of excess body weight via metabolic bariatric surgery reverses the concentric left ventricular remodeling that patients with preserved ejection fraction heart failure commonly display.
Collapse
Affiliation(s)
- Jason Stencel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Hamid R. Alai
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
- Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA 70119, USA
| | - Aneesh Dhore-patil
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Daniela Urina-Jassir
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Thierry H. Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| |
Collapse
|
8
|
Kopeva K, Grakova E, Maltseva A, Mochula A, Gusakova A, Smorgon A, Zavadovsky K. Coronary Microvascular Dysfunction: Features and Prognostic Value. J Clin Med 2023; 12:2964. [PMID: 37109298 PMCID: PMC10144583 DOI: 10.3390/jcm12082964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: The results of the international studies support the assumption that coronary microvascular dysfunction (CMD) occurs significantly more often than previously identified and is associated with adverse outcomes. However, there is a lack of the accurate comprehension of its pathophysiology. The objectives of this study were to evaluate the clinical and instrumental features of CMD and to assess its prognostic value during 12 months of follow-up period. (2) Methods: A total of 118 patients with non-obstructive coronary artery disease (CAD) and preserved LV ejection fraction (62 [59; 64]%) were enrolled in the study. Serum levels of biomarkers were analyzed by enzyme-linked immunoassay. CMD was defined as the reduced myocardial flow reserve (MFR) ≤ 2 obtained by dynamic CZT-SPECT. Two-dimensional transthoracic echocardiography with evaluation of LV diastolic dysfunction was performed baseline. (3) Results: Patients were divided into groups depending on the presence of CMD: CMD+ group (MFR ≤ 2; n = 45), and CMD- group (MFR > 2; n = 73). In CMD+ group, the severity of diastolic dysfunction, the levels of biomarkers of fibrosis and inflammation were higher than in CMD- group. Multivariate regression analysis showed that the presence of diastolic dysfunction (OR 3.27; 95% CI 2.26-5.64; p < 0.001), the hyperexpression of NT-proBNP ≥ 760.5 pg/mL (OR 1.67; 95% CI 1.12-4.15; p = 0.021) and soluble ST2 ≥ 31.4 ng/mL (OR 1.37; 95% 1.08-2.98; p = 0.015) were independent factors associated with CMD. Kaplan-Meier analysis showed that a rate of the adverse outcomes was significantly (p < 0.001) higher in patients with CMD (45.2%, n = 19) than in patients without it (8.6%, n = 6). (4) Conclusions: Our data suggest that the presence of CMD was associated with the severe diastolic dysfunction and hyperexpression of the biomarkers of fibrosis and inflammation. Patients with CMD had higher rate of the adverse outcomes than those without it.
Collapse
Affiliation(s)
- Kristina Kopeva
- Department of Myocardial Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia;
| | - Elena Grakova
- Department of Myocardial Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia;
| | - Alina Maltseva
- Nuclear Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia; (A.M.); (A.M.)
| | - Andrew Mochula
- Nuclear Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia; (A.M.); (A.M.)
| | - Anna Gusakova
- Department of Laboratory and Functional Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia; (A.G.); (A.S.)
| | - Andrew Smorgon
- Department of Laboratory and Functional Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia; (A.G.); (A.S.)
| | - Konstantin Zavadovsky
- Nuclear Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia; (A.M.); (A.M.)
| |
Collapse
|
9
|
Ratchford SM, Bunsawat K, Alpenglow JK, Zhao J, Wright JB, Ryan JJ, Wray DW. Improved vascular function and functional capacity following l-citrulline administration in patients with heart failure with preserved ejection fraction: a single-arm, open-label, prospective pilot study. J Appl Physiol (1985) 2023; 134:328-338. [PMID: 36476159 PMCID: PMC9886346 DOI: 10.1152/japplphysiol.00445.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
There is accumulating evidence for both peripheral vascular dysfunction and impaired functional capacity in patients with heart failure with a preserved ejection fraction (HFpEF). Although derangements in the l-arginine-nitric oxide (l-Arg-NO) pathway are likely to contribute to these aspects of HFpEF pathophysiology, the impact of increased NO substrate on vascular health and physical capacity has not been evaluated in this patient population. Thus, using a single-arm study design, we evaluated the impact of enteral l-citrulline (l-Cit, 6 g/day for 7 days), a precursor for l-Arg biosynthesis, on vascular function [flow-mediated dilation (FMD), reactive hyperemia (RH), and passive limb movement (PLM)], functional capacity [6-min walk test (6MWT)], and biomarkers of l-Arg-NO signaling in 14 patients with HFpEF (n = 14, 4 M/10 F, 70 ± 10 yr, EF: 66 ± 7%). Compared with baseline (0d), 7 days of l-Cit administration improved FMD (0d: 2.5 ± 1.6%, 7d: 4.5 ± 2.9%), RH (0d: 468 ± 167 mL, 7d: 577 ± 199 mL), PLM blood flow area-under-the-curve (0d: 139 ± 130 mL, 7d: 198 ± 115 mL), and 6MWT distance (0d: 377 ± 27 m, 7d: 397 ± 27 m) (P < 0.05). An increase in plasma l-Cit (0d: 42 ± 11 µM/L, 7d: 369 ± 201 µM/L), l-Arg (0d: 65 ± 8 µM/L, 7d: 257 ± 25 µM/L), and the ratio of l-Arg to asymmetric dimethylarginine (ADMA) (0d: 136 ± 13 AU, 7d: 481 ± 49 AU) (P < 0.05) was also observed. Though preliminary in nature, these functional and biomarker assessments demonstrate a potential benefit of l-Cit administration in patients with HFpEF, findings that provide new insight into the mechanisms that govern vascular and physical dysfunction in this patient group.NEW & NOTEWORTHY The current investigation has demonstrated that l-Cit administration may improve brachial artery endothelium-dependent vasodilation, upper and lower limb microvascular function, and physical capacity in patients with HFpEF, highlighting the potential therapeutic potential of interventions targeting the l-Arg-NO signaling cascade to improve outcomes in this patient group.
Collapse
Affiliation(s)
- Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Josephine B Wright
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Vanreusel I, Segers VF, Van Craenenbroeck E, Van Berendoncks A. Coronary Microvascular Dysfunction in Patients with Congenital Heart Disease. Curr Cardiol Rev 2023; 19:e190123212886. [PMID: 36658708 PMCID: PMC10494268 DOI: 10.2174/1573403x19666230119112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
Congenital heart diseases represent a wide range of cardiac malformations. Medical and surgical advances have dramatically increased the survival of patients with congenital heart disease, leading to a continuously growing number of children, adolescents, and adults with congenital heart disease. Nevertheless, congenital heart disease patients have a worse prognosis compared to healthy individuals of similar age. There is substantial overlap in the pathophysiology of congenital heart disease and heart failure induced by other etiologies. Among the pathophysiological changes in heart failure, coronary microvascular dysfunction has recently emerged as a crucial modulator of disease initiation and progression. Similarly, coronary microvascular dysfunction could be important in the pathophysiology of congenital heart diseases as well. For this systematic review, studies on maximal vasodilatory capacity in the coronary microvascular bed in patients with congenital heart disease were searched using the PubMed database. To date, coronary microvascular dysfunction in congenital heart disease patients is incompletely understood because studies on this topic are rare and heterogeneous. The prevalence, extent, and pathophysiological relevance of coronary microvascular dysfunction in congenital heart diseases remain to be elucidated. Herein, we discuss what is currently known about coronary microvascular dysfunction in congenital heart disease and future directions.
Collapse
Affiliation(s)
- Inne Vanreusel
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Vincent F.M. Segers
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Emeline Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| | - An Van Berendoncks
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem 2650, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Antwerp 2610, Belgium
| |
Collapse
|
11
|
Lin X, Wu G, Gao B, Wang S, Huang J. Bibliometric and visual analysis of coronary microvascular dysfunction. Front Cardiovasc Med 2022; 9:1021346. [PMID: 36457808 PMCID: PMC9705352 DOI: 10.3389/fcvm.2022.1021346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2023] Open
Abstract
Background Coronary microvascular dysfunction (CMD) may play an important role in various cardiovascular diseases, including HFpEF and both obstructive and non-obstructive coronary artery disease (CAD). To date, there has been no bibliometric analysis to summarize this field. Here, we aim to conduct a bibliometric analysis of CMD to determine the current status and frontiers in this field. Materials and methods Publications about CMD were taken from the Web of Science Core Collection database (WOSCC). WOSCC's literature analysis wire, the VOSviewer 1.6.16, and CiteSpace 5.1.3 were used to conduct the analysis. Results A total of 785 publications containing 206 reviews and 579 articles are included in the sample. The leading authors are Iacopo Olivotto, Paolo G. Camici, and Carl J. Pepine. The most productive institutions are the University of Florence, Cedars Sinai Medical Center, and Harvard University. The most productive countries are the USA, Italy, and England. There are a total of 237 journals that contribute to this field, and the leading journals in our study were the International Journal of Cardiology, the European Heart Journal and the JACC. From 2012 to 2021, the top three most-cited articles focused on the association between HFpEF and CMD. The important keywords are heart failure, hypertrophic cardiomyopathy, chest pain, women, coronary flow reserve (CFR), endothelial dysfunction and prognostic value. "Positron emission tomography" shows the strongest burst strength, followed by "blow flow" and "artery." The keywords that started to burst from 2015 are particularly emphasized, including "heart failure," "coronary flow reserve," and "management." Conclusion Studies about CMD are relatively limited, and the largest contribution comes from the USA, Italy and England. More studies are needed, and publications from other countries should be enhanced. The main research hotspots in the CMD field include CMD in patients with HFpEF, sex differences, the new methods of diagnosis for CMD, and the effective treatment of CMD. Attention should be given to CMD in patients with HFpEF, and untangling the association between CMD and HFpEF could be helpful in the development of physiology-stratified treatment for patients with CMD and HFpEF.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guomin Wu
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Department of Translation Medicine Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Sadowski J, Targonski R, Cyganski P, Nowek P, Starek-Stelmaszczyk M, Zajac K, Juranek J, Wojtkiewicz J, Rynkiewicz A. Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development—A Preliminary Study. J Clin Med 2022; 11:jcm11133721. [PMID: 35807006 PMCID: PMC9267807 DOI: 10.3390/jcm11133721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Current data indicate that heart failure (HF) is associated with inflammation and microvascular dysfunction and remodeling. These mechanisms could be involved in HF development and progression, especially in HF with preserved ejection fraction (HFpEF). We aimed to compare structural changes in retinal arterioles and carotid arteries between HF patients and patients without heart failure. This preliminary, retrospective, case-control study included 28 participants (14 patients with HFpEF and 14 age- and sex-matched healthy controls). Carotid intima-media thickness to lumen ratio (cIMTLR) was assessed using B-mode ultrasonography. Retinal arterioles wall- to-lumen ratio (rWLR) was assessed by adaptive optics camera rtx1. The HF patients had higher IMTLR (Dmedian [HFpEF–control group] 0.07, p = 0.01) and eWLR (Dmedian 0.03, p = 0.001) in comparison to patients without HF. In the whole study group, rWLR correlated significantly with IMTLR (r = 0.739, p = 0.001). Prevalence of arterial hypertension was similar in both groups, however, patients with HF had a significantly lower office, central and 24-hour ambulatory blood pressure (systolic Dmedian −21 to −18 mmHg; diastolic Dmedian −23 to −10 mmHg). Our data suggests gradual and simultaneous progression of vascular remodeling in both retinal arterioles and carotid arteries in HFpEF patients. This process could be a marker of HF development. Significantly lower blood pressure values in HF group may indicate that vascular remodeling could be independent of BP control. Nevertheless, further and larger prospective studies allowing to reduce the impact of confounding and address temporality are warranted.
Collapse
Affiliation(s)
- Janusz Sadowski
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
- Correspondence: (J.S.); (J.W.); (A.R.); Tel.: +48-89-532-62-86 (A.R.)
| | - Ryszard Targonski
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
| | - Piotr Cyganski
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
| | - Paulina Nowek
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
| | - Magdalena Starek-Stelmaszczyk
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
| | - Katarzyna Zajac
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Masuria, 10-900 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Masuria, 10-900 Olsztyn, Poland;
- Correspondence: (J.S.); (J.W.); (A.R.); Tel.: +48-89-532-62-86 (A.R.)
| | - Andrzej Rynkiewicz
- Department of Cardiology and Internal Medicine, School of Medicine, University of Warmia and Mazury, 10-045 Olsztyn, Poland; (R.T.); (P.C.); (P.N.); (M.S.-S.); (K.Z.)
- Correspondence: (J.S.); (J.W.); (A.R.); Tel.: +48-89-532-62-86 (A.R.)
| |
Collapse
|
13
|
Weerts J, Mourmans SG, Eringa E, van Empel VP. Improving insights into the heterogeneous HFpEF syndrome through microvascular research. J Mol Cell Cardiol 2022; 167:106-108. [DOI: 10.1016/j.yjmcc.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022]
|
14
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|