1
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
2
|
Naydenov NG, Marino-Melendez A, Campellone KG, Ivanov AI. Cytoskeletal mechanisms regulating attaching/effacing bacteria interactions with host cells: It takes a village to build the pedestal. Bioessays 2024; 46:e2400160. [PMID: 39301984 PMCID: PMC11502255 DOI: 10.1002/bies.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
The actin cytoskeleton is a key cellular structure subverted by pathogens to infect and survive in or on host cells. Several pathogenic strains of Escherichia coli, such as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), developed a unique mechanism to remodel the actin cytoskeleton that involves the assembly of actin filament-rich pedestals beneath the bacterial attachment sites. Actin pedestal assembly is driven by bacterial effectors injected into the host cells, and this structure is important for EPEC and EHEC colonization. While the interplay between bacterial effectors and the actin polymerization machinery of host cells is well-understood, how other mechanisms of actin filament remodelling regulate pedestal assembly and bacterial attachment are poorly investigated. This review discusses the gaps in our understanding of the complexity of the actin cytoskeletal remodelling during EPEC and EHEC infection. We describe possible roles of actin depolymerizing, crosslinking and motor proteins in pedestal dynamics, and bacterial interactions with the host cells. We also discuss the biological significance of pedestal assembly for bacterial infection.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Kenneth G. Campellone
- Department of Molecular & Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
3
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
4
|
Kaminska P, Tempes A, Scholz E, Malik AR. Cytokines on the way to secretion. Cytokine Growth Factor Rev 2024; 79:52-65. [PMID: 39227243 DOI: 10.1016/j.cytogfr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
The activation of immune cells by pro-inflammatory or immunosuppressive stimuli is followed by the secretion of immunoregulatory cytokines which serve as messengers to activate the immune response in target cells. Although the mechanisms that control the secretion of cytokines by immune cells are not yet fully understood, several key aspects of this process have recently emerged. This review focuses on cytokine release via exocytosis and highlights the routes of cytokine trafficking leading to constitutive and regulated secretion as well as the impact of sorting receptors on this process. We discuss the involvement of cytoskeletal rearrangements in vesicular transport, secretion, and formation of immunological synapses. Finally, we describe the non-classical pathways of cytokine release that are independent of vesicular ER-Golgi transport. Instead, these pathways are based on processing by inflammasome or autophagic mechanisms. Ultimately, understanding the molecular mechanisms behind cytokine release may help to identify potential therapeutic targets in diseases associated with altered immune responses.
Collapse
Affiliation(s)
- Paulina Kaminska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warsaw 02-093, Poland
| | - Aleksandra Tempes
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Ela Scholz
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Anna R Malik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
5
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
6
|
Zhong W, Neugebauer J, Pathak JL, Li X, Pals G, Zillikens MC, Eekhoff EMW, Bravenboer N, Zhang Q, Hammerschmidt M, Wirth B, Micha D. Functional Insights in PLS3-Mediated Osteogenic Regulation. Cells 2024; 13:1507. [PMID: 39273077 PMCID: PMC11394082 DOI: 10.3390/cells13171507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional compensation by actin-bundling proteins ACTN1, ACTN4, and FSCN1 was investigated in zebrafish following morpholino-mediated pls3 knockdown. Primary dermal fibroblasts from six patients with a PLS3 variant were also used to examine expression of these proteins during osteogenic differentiation. In addition, Pls3 knockdown in the murine MLO-Y4 cell line was employed to provide insights in global gene expression. Our results showed that ACTN1 and ACTN4 can rescue the skeletal deformities in zebrafish after pls3 knockdown, but this was inadequate for FSCN1. Patients' fibroblasts showed the same osteogenic transdifferentiation ability as healthy donors. RNA-seq results showed differential expression in Wnt1, Nos1ap, and Myh3 after Pls3 knockdown in MLO-Y4 cells, which were also associated with the Wnt and Th17 cell differentiation pathways. Moreover, WNT2 was significantly increased in patient osteoblast-like cells compared to healthy donors. Altogether, our findings in different bone cell types indicate that the mechanism of PLS3-related pathology extends beyond actin-bundling proteins, implicating broader pathways of bone metabolism.
Collapse
Affiliation(s)
- Wenchao Zhong
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China
| | - Janine Neugebauer
- Institute of Human Genetics University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janak L Pathak
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China
| | - Xingyang Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China
| | - Gerard Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Elisabeth M W Eekhoff
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands
- Department Internal Medicine, Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Rare Bone Disease Center, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China
| | - Matthias Hammerschmidt
- Developmental Biology Unit, Institute of Zoology, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hernandez RA, Hearn JI, Bhoopalan V, Hamzeh AR, Kwong K, Diamand K, Davies A, Li FJ, Padmanabhan H, Milne R, Ballard F, Spensberger D, Gardiner EE, Miraghazadeh B, Enders A, Cook MC. L-plastin associated syndrome of immune deficiency and hematologic cytopenia. J Allergy Clin Immunol 2024; 154:767-777. [PMID: 38710235 DOI: 10.1016/j.jaci.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematologic and immune defects. OBJECTIVE This study aimed to determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS We performed genetic, protein, and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect resulted in at least 2 aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshift deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T-cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunologic analysis revealed defective actin organization in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12; impaired germinal center B-cell expansion after immunization; and reduced cytokinesis during T cell proliferation. CONCLUSIONS We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes, and platelets arising from partial LCP1 deficiency.
Collapse
Affiliation(s)
- Raquel A Hernandez
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - James I Hearn
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Vijay Bhoopalan
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Kristy Kwong
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Koula Diamand
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ainsley Davies
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Fei-Ju Li
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Harish Padmanabhan
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Rachel Milne
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Fiona Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Dominik Spensberger
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Bahar Miraghazadeh
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Matthew C Cook
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia; Canberra Clinical Genomics, Canberra, Australia; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Bharadwaj A, Kumar A, Padalumavunkal Mathew S, Mitra R, Bhattacharyya J, Jaganathan BG, Boruah BR. Advancing cellular insights: Super-resolution STORM imaging of cytoskeletal structures in human stem and cancer cells. Biochem Biophys Rep 2024; 39:101798. [PMID: 39161577 PMCID: PMC11332080 DOI: 10.1016/j.bbrep.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Fluorescence microscopy is an important tool for cell biology and cancer research. Present-day approach of implementing advanced optical microscopy methods combined with immunofluorescence labelling of specific proteins in cells is now able to deliver optical super-resolution up to ∼25 nm. Here we perform super-resolved imaging using standard immunostaining protocol combined with easy stochastic optical reconstruction microscopy (easySTORM) to observe structural differences of two cytoskeleton elements, actin and tubulin in three different cell types namely human bone marrow-derived mesenchymal stem cells (MSCs), human glioblastoma (U87MG) and breast cancer (MDAMB-231) cells. The average width of the actin bundle obtained from STORM images of stem cells is observed to be larger than the same for U87MG and MDAMB-231 cells. No significant difference is however noticed in the width of the tubulin within the same cells. We also study the functional effect on the 2D migration potential of MDAMB-231 cells silenced for NICD1 and β-catenin. Although similar migration speed is observed for cells with the above two conditions compared to their control cells, easySTORM images show that widths of the actin in MDAMB-231 cells in β-catenin silenced is significantly lower than the same in control cells. Such minute differences however are not observable in widefield images. The outcome of our easySTORM investigation should benefit the researchers carrying out detailed investigations of the cellular structure and potential therapeutic applications.
Collapse
Affiliation(s)
- Anupam Bharadwaj
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amalesh Kumar
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sam Padalumavunkal Mathew
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rumela Mitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jina Bhattacharyya
- Department of Haematology, Gauhati Medical College, Guwahati, 781032, Assam, India
| | - Bithiah Grace Jaganathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bosanta R. Boruah
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
9
|
Kim Y, Lee HK, Park KY, Ismail T, Lee H, Lee HS. Actin Depolymerizing Factor Destrin Regulates Cilia Development and Function during Vertebrate Embryogenesis. Dev Reprod 2024; 28:109-119. [PMID: 39444639 PMCID: PMC11495882 DOI: 10.12717/dr.2024.28.3.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024]
Abstract
The actin cytoskeleton plays fundamental roles in ciliogenesis and the actin depolymerizing factor destrin regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of destrin in ciliogenesis have not been fully elucidated. Here, we investigated the function of destrin in ciliogenesis using Xenopus laevis and human retinal pigmented epithelial (hRPE1) cells. We discovered the loss of destrin increased the number of multiciliated cells in the Xenopus epithelium and impeded cilia motility. Additionally, destrin depletion remarkably reduced the length of primary cilia in the Xenopus neural tube and hRPE1 cells by affecting actin dynamics. Immunofluorescence using markers of ciliary components indicated that destrin controls the directionality and polarity of basal bodies and axonemal elongation by modulating actin dynamics, independent of basal body docking. In conclusion, destrin plays a significant role during vertebrate ciliogenesis regulating both primary and multicilia development. Our data suggest new insights for understanding the roles of actin dynamics in cilia development.
Collapse
Affiliation(s)
- Youni Kim
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hyun-Kyung Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Kyeong-Yeon Park
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Tayaba Ismail
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hongchan Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| |
Collapse
|
10
|
Jawahar A, Vermeil J, Heuvingh J, du Roure O, Piel M. The third dimension of the actin cortex. Curr Opin Cell Biol 2024; 89:102381. [PMID: 38905917 DOI: 10.1016/j.ceb.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.
Collapse
Affiliation(s)
- Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| |
Collapse
|
11
|
Wang H, Mu G, Cai X, Zhang X, Mao R, Jia H, Luo H, Liu J, Zhao C, Wang Z, Yang C. Glucopeptide Superstructure Hydrogel Promotes Surgical Wound Healing Following Neoadjuvant Radiotherapy by Producing NO and Anticellular Senescence. Adv Healthc Mater 2024; 13:e2400406. [PMID: 38683036 DOI: 10.1002/adhm.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Neoadjuvant radiotherapy, a preoperative intervention regimen for reducing the stage of primary tumors and surgical margins, has gained increasing attention in the past decade. However, radiation-induced skin damage during neoadjuvant radiotherapy exacerbates surgical injury, remarkably increasing the risk of refractory wounds and compromising the therapeutic effects. Radiation impedes wound healing by increasing the production of reactive oxygen species and inducing cell apoptosis and senescence. Here, a self-assembling peptide (R-peptide) and hyaluronic-acid (HA)-based and cordycepin-loaded superstructure hydrogel is prepared for surgical incision healing after neoadjuvant radiotherapy. Results show that i) R-peptide coassembles with HA to form biomimetic fiber bundle microstructure, in which R-peptide drives the assembly of single fiber through π-π stacking and other forces and HA, as a single fiber adhesive, facilitates bunching through electrostatic interactions. ii) The biomimetic superstructure contributes to the adhesion and proliferation of cells in the surgical wound. iii) Aldehyde-modified HA provides dynamic covalent binding sites for cordycepin to achieve responsive release, inhibiting radiation-induced cellular senescence. iv) Arginine in the peptides provides antioxidant capacity and a substrate for the endogenous production of nitric oxide to promote wound healing and angiogenesis of surgical wounds after neoadjuvant radiotherapy.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoyao Cai
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoguang Zhang
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300191, P. R. China
| | - Ruiqi Mao
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300191, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongjing Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuicui Zhao
- Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, P. R. China
| | - Zhongyan Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
12
|
Lechuga S, Marino-Melendez A, Davis A, Zalavadia A, Khan A, Longworth MS, Ivanov AI. Coactosin-like protein 1 regulates integrity and repair of model intestinal epithelial barriers via actin binding dependent and independent mechanisms. Front Cell Dev Biol 2024; 12:1405454. [PMID: 39040043 PMCID: PMC11260685 DOI: 10.3389/fcell.2024.1405454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The actin cytoskeleton regulates the integrity and repair of epithelial barriers by mediating the assembly of tight junctions (TJs), and adherens junctions (AJs), and driving epithelial wound healing. Actin filaments undergo a constant turnover guided by numerous actin-binding proteins, however, the roles of actin filament dynamics in regulating intestinal epithelial barrier integrity and repair remain poorly understood. Coactosin-like protein 1 (COTL1) is a member of the ADF/cofilin homology domain protein superfamily that binds and stabilizes actin filaments. COTL1 is essential for neuronal and cancer cell migration, however, its functions in epithelia remain unknown. The goal of this study is to investigate the roles of COTL1 in regulating the structure, permeability, and repair of the epithelial barrier in human intestinal epithelial cells (IEC). COTL1 was found to be enriched at apical junctions in polarized IEC monolayers in vitro. The knockdown of COTL1 in IEC significantly increased paracellular permeability, impaired the steady state TJ and AJ integrity, and attenuated junctional reassembly in a calcium-switch model. Consistently, downregulation of COTL1 expression in Drosophila melanogaster increased gut permeability. Loss of COTL1 attenuated collective IEC migration and decreased cell-matrix attachment. The observed junctional abnormalities in COTL1-depleted IEC were accompanied by the impaired assembly of the cortical actomyosin cytoskeleton. Overexpression of either wild-type COTL1 or its actin-binding deficient mutant tightened the paracellular barrier and activated junction-associated myosin II. Furthermore, the actin-uncoupled COTL1 mutant inhibited epithelial migration and matrix attachment. These findings highlight COTL1 as a novel regulator of the intestinal epithelial barrier integrity and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
13
|
He X, Brakebusch C. Regulation of Precise DNA Repair by Nuclear Actin Polymerization: A Chance for Improving Gene Therapy? Cells 2024; 13:1093. [PMID: 38994946 PMCID: PMC11240418 DOI: 10.3390/cells13131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.
Collapse
Affiliation(s)
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
| |
Collapse
|
14
|
Xu Y, Sun H, Chen J, Qin L, Wu M, Zhong Z, Zhang X. Loss of SIL1 Affects Actin Dynamics and Leads to Abnormal Neural Migration. Mol Neurobiol 2024:10.1007/s12035-024-04272-8. [PMID: 38850350 DOI: 10.1007/s12035-024-04272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
SIL1 is a nucleotide exchange factor for the molecular chaperone protein Bip in the endoplasmic reticulum that plays a crucial role in protein folding. The Sil1 gene is currently the only known causative gene of Marinesco-Sjögren syndrome (MSS). Intellectual developmental disability is the main symptom of MSS, and its mechanism has not been fully elucidated. Studies have shown that mutations in the Sil1 gene can delay neuronal migration during cortical development, but the underlying molecular mechanisms remain unclear. To further identify potential molecules involved in the regulation of central nervous system development by SIL1, we established a cortical neuron model with SIL1 protein deficiency and used proteomic analysis to screen for differentially expressed proteins after Sil1 silencing, followed by GO functional enrichment and protein‒protein interaction (PPI) network analysis. We identified 68 upregulated and 137 downregulated proteins in total, and among them, 10 upregulated and 3 downregulated proteins were mainly related to actin cytoskeleton dynamics. We further validated the differential changes in actin-related molecules using qRT‒PCR and Western blotting of a Sil1 gene knockout (Sil1-/-) mouse model. The results showed that the protein levels of ACTN1 and VIM decreased, while their mRNA levels increased as a compensatory response to protein deficiency. The mRNA and protein levels of IQGAP1 both showed a secondary increase. In conclusion, we identified ACTN1 and VIM as the key molecules regulated by SIL1 that are involved in neuronal migration during cortical development.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Hongji Sun
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Junyang Chen
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Liuting Qin
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Mengxue Wu
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoming Zhong
- Department of Medical Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xiaomin Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. Structure 2024; 32:725-738.e8. [PMID: 38518780 PMCID: PMC11162321 DOI: 10.1016/j.str.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024]
Abstract
Entry of Salmonella into host enterocytes relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a 1:2 stoichiometry with sub-nanomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the groove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved by a combination of fast association via the core and very slow dissociation dictated by the arm. Similar to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by actin depolymerizing factor (ADF)/cofilin, which correlated with increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Chikireddy J, Lengagne L, Le Borgne R, Durieu C, Wioland H, Romet-Lemonne G, Jégou A. Fascin-induced bundling protects actin filaments from disassembly by cofilin. J Cell Biol 2024; 223:e202312106. [PMID: 38497788 PMCID: PMC10949937 DOI: 10.1083/jcb.202312106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Actin filament turnover plays a central role in shaping actin networks, yet the feedback mechanism between network architecture and filament assembly dynamics remains unclear. The activity of ADF/cofilin, the main protein family responsible for filament disassembly, has been mainly studied at the single filament level. This study unveils that fascin, by crosslinking filaments into bundles, strongly slows down filament disassembly by cofilin. We show that this is due to a markedly slower initiation of the first cofilin clusters, which occurs up to 100-fold slower on large bundles compared with single filaments. In contrast, severing at cofilin cluster boundaries is unaffected by fascin bundling. After the formation of an initial cofilin cluster on a filament within a bundle, we observed the local removal of fascin. Notably, the formation of cofilin clusters on adjacent filaments is highly enhanced, locally. We propose that this interfilament cooperativity arises from the local propagation of the cofilin-induced change in helicity from one filament to the other filaments of the bundle. Overall, taking into account all the above reactions, we reveal that fascin crosslinking slows down the disassembly of actin filaments by cofilin. These findings highlight the important role played by crosslinkers in tuning actin network turnover by modulating the activity of other regulatory proteins.
Collapse
Affiliation(s)
| | - Léana Lengagne
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Catherine Durieu
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
17
|
Peterman E, Quitevis EJA, Goo CEA, Rasmussen JP. Rho-associated kinase regulates Langerhans cell morphology and responsiveness to tissue damage. Cell Rep 2024; 43:114208. [PMID: 38728139 DOI: 10.1016/j.celrep.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Skin damage requires efficient immune cell responses to restore organ function. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to surveil the skin microenvironment, which contains keratinocytes and peripheral axons. The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are poorly understood. Using skin explants from adult zebrafish, we show that Langerhans cells maintain normal surveillance following axonal degeneration and use their dendrites to engulf small axonal debris. By contrast, a ramified-to-rounded shape transition accommodates the engulfment of larger keratinocyte debris. We find that Langerhans cell dendrites are populated with actin and sensitive to a broad-spectrum actin inhibitor. We show that Rho-associated kinase (ROCK) inhibition leads to elongated dendrites, perturbed clearance of large debris, and reduced Langerhans cell migration to epidermal wounds. Our work describes the dynamics of Langerhans cells and involvement of the ROCK pathway in immune cell responses.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | | - Camille E A Goo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey P Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
18
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
19
|
Chand A, Le N, Kim K. CdSe/ZnS Quantum Dots' Impact on In Vitro Actin Dynamics. Int J Mol Sci 2024; 25:4179. [PMID: 38673765 PMCID: PMC11050122 DOI: 10.3390/ijms25084179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.
Collapse
Affiliation(s)
| | | | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (A.C.); (N.L.)
| |
Collapse
|
20
|
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM. Fascin structural plasticity mediates flexible actin bundle construction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574123. [PMID: 38260322 PMCID: PMC10802278 DOI: 10.1101/2024.01.03.574123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fascin crosslinks actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-electron microscopy, cryo-electron tomography coupled with custom denoising, and computational modeling to probe fascin's F-actin crosslinking mechanisms across spatial scales. Our fascin crossbridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis, and simulations show how structural plasticity enables fascin to bridge varied inter-filament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncovers geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable crosslinks that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Keith R. Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573373. [PMID: 38234808 PMCID: PMC10793455 DOI: 10.1101/2023.12.26.573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Entry of Salmonella into host enterocytes strictly relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a unique mode in a 1:2 stoichiometry with picomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the grove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved via a combination of fast association via the core and very slow dissociation dictated by the arm. Similarly to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by ADF/cofilin, which correlated with the increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Yin LM, Kudryashov DS, Zervas CG, Murk K. Editorial: Evolution, emerging functions and structure of actin-binding proteins, Volume II. Front Cell Dev Biol 2023; 11:1329219. [PMID: 38020892 PMCID: PMC10663335 DOI: 10.3389/fcell.2023.1329219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Lei-Miao Yin
- YueYang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Christos G. Zervas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Zhang X, He J, Ren D. Commentary on: The actin bundling activity of ITPKA mainly accounts for its migration-promoting effect in lung cancer cells. Biosci Rep 2023; 43:BSR20230057. [PMID: 37664985 PMCID: PMC10500224 DOI: 10.1042/bsr20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023] Open
Abstract
1,4,5-triphosphate 3-kinase A (ITPKA) was first described and characterized by Irvine et al. in 1986 and cloned by Takazawa et al. in 1990. It is one of the components of the Ca2+ and calmodulin signaling pathway and a substrate for cAMP-dependent kinase (PKA) and protein kinase C (PKC), and is mainly involved in the regulation of intracellular inositol polyphosphate signaling molecules. Through a series of studies, Sabine's team has found that ITPKA expression was up-regulated in a variety of cancer cells, and silencing ITPKA inhibited while overexpressing ITPKA promoted cancer cell migration in vitro and metastasis in vivo. The latest research from Sabine's team has demonstrated that in H1299 lung cancer cells, the mechanism by which ITPKA promoted migration and invasion was predominantly depending on the ability of binding to F-actin, which will induce cancer cells to form a tight flexible actin networks. Small molecule compounds targeting the IP3 kinase activity of ITPKA protein may only inhibit the migration and invasion of cancer cells caused by the enhanced ITPKA kinase activity under ATP stimulation, but not the cytoskeletal remodeling caused by the binding of ITPKA protein to F-actin and the driven migration and invasion of cancer cells. Therefore, targeted therapeutic strategy focusing on blocking the binding of ITPKA to F-actin is indispensable when designing the inhibitors targeting ITPKA protein.
Collapse
Affiliation(s)
- Xin Zhang
- Postdoctoral Innovation Practice Base, Postdoctoral Research Center of Jiangmen Central Hospital, Southern Medical University, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Jiadi He
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Dong Ren
- Department of Pathology, University of California Irvine Medical Center, Orange, CA 92868, U.S.A
| |
Collapse
|
24
|
Rajan S, Yoon J, Wu H, Srapyan S, Baskar R, Ahmed G, Yang T, Grintsevich EE, Reisler E, Terman JR. Disassembly of bundled F-actin and cellular remodeling via an interplay of Mical, cofilin, and F-actin crosslinkers. Proc Natl Acad Sci U S A 2023; 120:e2309955120. [PMID: 37725655 PMCID: PMC10523612 DOI: 10.1073/pnas.2309955120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Cellular form and function are controlled by the assembly and stability of actin cytoskeletal structures-but disassembling/pruning these structures is equally essential for the plasticity and remodeling that underlie behavioral adaptations. Importantly, the mechanisms of actin assembly have been well-defined-including that it is driven by actin's polymerization into filaments (F-actin) and then often bundling by crosslinking proteins into stable higher-order structures. In contrast, it remains less clear how these stable bundled F-actin structures are rapidly disassembled. We now uncover mechanisms that rapidly and extensively disassemble bundled F-actin. Using biochemical, structural, and imaging assays with purified proteins, we show that F-actin bundled with one of the most prominent crosslinkers, fascin, is extensively disassembled by Mical, the F-actin disassembly enzyme. Furthermore, the product of this Mical effect, Mical-oxidized actin, is poorly bundled by fascin, thereby further amplifying Mical's disassembly effects on bundled F-actin. Moreover, another critical F-actin regulator, cofilin, also affects fascin-bundled filaments, but we find herein that it synergizes with Mical to dramatically amplify its disassembly of bundled F-actin compared to the sum of their individual effects. Genetic and high-resolution cellular assays reveal that Mical also counteracts crosslinking proteins/bundled F-actin in vivo to control cellular extension, axon guidance, and Semaphorin/Plexin cell-cell repulsion. Yet, our results also support the idea that fascin-bundling serves to dampen Mical's F-actin disassembly in vitro and in vivo-and that physiologically relevant cellular remodeling requires a fine-tuned interplay between the factors that build bundled F-actin networks and those that disassemble them.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jimok Yoon
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Heng Wu
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Raju Baskar
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Taehong Yang
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Jonathan R. Terman
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
25
|
Peterman E, Quitevis EJ, Goo CE, Rasmussen JP. Rho-associated kinase regulates Langerhans cell morphology and responsiveness to tissue damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550974. [PMID: 37546841 PMCID: PMC10402157 DOI: 10.1101/2023.07.28.550974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Skin is often the first physical barrier to encounter invading pathogens and physical damage. Damage to the skin must be resolved quickly and efficiently to maintain organ homeostasis. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to dynamically surveil the skin microenvironment, which contains epithelial keratinocytes and somatosensory peripheral axons. The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are not well understood. Using skin explants from adult zebrafish, we show that Langerhans cells maintain normal surveillance activity following axonal degeneration and use their dynamic dendrites to engulf small axonal debris. By contrast, a ramified-to-rounded shape transition accommodates the engulfment of larger keratinocyte debris. We find that Langerhans cell dendrites are richly populated with actin and sensitive to a broad spectrum actin inhibitor. We further show that Rho-associated kinase (ROCK) inhibition leads to elongated dendrites, perturbed clearance of large debris, and reduced Langerhans cell migration to tissue-scale wounds. Altogether, our work describes the unique dynamics of Langerhans cells and involvement of the ROCK pathway in immune cell responses to damage of varying magnitude.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | | - Camille E.A. Goo
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jeffrey P. Rasmussen
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
26
|
Zhang Q, Wan M, Kudryashova E, Kudryashov DS, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. PLoS Pathog 2023; 19:e1011512. [PMID: 37463171 PMCID: PMC10381072 DOI: 10.1371/journal.ppat.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|