1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Hassanzadeh K, Morrone C, Akhtari K, Gerhardt E, Zaccagnini L, Outeiro TF, Feligioni M. Non-SUMOylated alternative spliced isoforms of alpha-synuclein are more aggregation-prone and toxic. Mech Ageing Dev 2023; 209:111759. [PMID: 36464085 DOI: 10.1016/j.mad.2022.111759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The exon skipping of α-Synuclein (α-Syn), the main constituent of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD), forms four isoforms. In contrast to the full length α-Syn (α-Syn 140), little is known about the splice isoforms' properties and functions. SUMOylation, a post-translational modification, regulates α-Syn function, aggregation, and degradation, but information about α-Syn isoforms and the effect of SUMOylation on them is unknown. Therefore, this study aims to characterize the SUMOylation of α-Syn isoforms and its impact on cell death and α-Syn aggregation. In a cellular model of PD induced by rotenone, cell toxicity, SUMOylation, and α-Syn aggregation with or without isoforms overexpression were evaluated. First, rotenone induced cell toxicity and α-Syn aggregation, with a significant reduction of SUMOylation and autophagy. Boosting SUMOylation prevented α-Syn aggregation, phosphorylation and recovery of autophagy. Moreover, α-Syn 140 and α-Syn 126 were SUMOylated while the other two isoforms, α-Syn 112 and 98 were not and their overexpression showed that were more toxic and induced more α-Syn aggregation. Rotenone increased their toxicity that was not affected by boosting SUMOylation. These results may indicate a role of SUMOylation in modulating α-Syn aggregation, inducing to understanding more about the behavior of α-Syn isoforms.
Collapse
Affiliation(s)
| | | | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Natural Sciences, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, NE2 4HH, United Kingdom; Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Marco Feligioni
- EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy.
| |
Collapse
|
3
|
Wang BZ, Luo L, Vunjak-Novakovic G. RNA and Protein Delivery by Cell-Secreted and Bioengineered Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2101557. [PMID: 34706168 PMCID: PMC8891029 DOI: 10.1002/adhm.202101557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are carriers of biological signals through export and delivery of RNAs and proteins. Of increasing interest is the use of EVs as a platform for delivery of biomolecules. Preclinical studies have effectively used EVs to treat a number of diseases. Uniquely, endogenous machinery within cells can be manipulated in order to produce desirable loading of cargo within secreted EVs. In order to inform the development of such approaches, an understanding of the cellular mechanisms by which cargo is sorted to EVs is required. Here, the current knowledge of cargo sorting within EVs is reviewed. Here is given an overview of recent bioengineering approaches that leverage these advances. Methods of externally manipulating EV cargo are also discussed. Finally, a perspective on the current challenges of EVs as a drug delivery platform is offered. It is proposed that standardized bioengineering methods for therapeutic EV preparation will be required to create a well-defined clinical product.
Collapse
Affiliation(s)
- Bryan Z. Wang
- Department of Biomedical Engineering, 622 West 168th Street VC12-234, 10032, U.S.A
- Department of Medicine, 622 West 168th Street VC12-234, 10032, U.S.A
| | - Lori Luo
- Department of Medicine, 622 West 168th Street VC12-234, 10032, U.S.A
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, 622 West 168th Street VC12-234, 10032, U.S.A
- Department of Medicine, 622 West 168th Street VC12-234, 10032, U.S.A
| |
Collapse
|
4
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
5
|
Liu S, Wang L, Jiang D, Wei W, Nasir MF, Khan MS, Yousafi Q, Liu X, Fu X, Li X, Li J. Sumoylation as an Emerging Target in Therapeutics against Cancer. Curr Pharm Des 2021; 26:4764-4776. [PMID: 32568016 DOI: 10.2174/1381612826666200622124134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Sumoylation is the Post-translational modification gaining most of the research interest recently. Sumoylation is involved in various crucial functions of the cell such as regulation of cell cycle, DNA damage repair, apoptosis, etc. Oncology is advancing in radiotherapy, targeted chemotherapy, various forms of immunotherapy and targeted gene therapy. Researches are being conducted to prove its connotation with a variety of cancers and inhibitors are being developed to obstruct the fatal effect caused by misbalance of the SUMO-catalytic cycle. It has been shown that up-regulation of certain enzymes of Sumoylation correlates with cancer incidence in most of the cases. However, in some cases, down-regulation also associates with cancer invasion such as underexpression of UBC9 in initial stage breast cancer. This can aid in future study, treatment, and diagnosis of a variety of cancers including breast cancer, prostate cancer, lung adenocarcinoma, melanoma, multiple myeloma, etc. Various mechanistic assays are being developed and used to identify potential inhibitors against the dysregulated proteins of Sumoylation. This review summarizes the normal roles of the enzymes involved in the SUMOcatalytic cycle, their misbalanced regulation leading to tumorigenesis and nearly all the potent inhibitors identified to date, while after detailed studied it was observed that ML-792 could be a promising inhibitor in treating cancers by inhibiting Sumoylation enzymes.
Collapse
Affiliation(s)
- Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China,College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lichun Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Dongjun Jiang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China,Dental Hospital, Jilin University, Changchun 130021, China
| | - Mushyeda Fatima Nasir
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Xueqi Fu
- College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Jiang Li
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China,Dental Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Chen X, Zhang Y, Wang Q, Qin Y, Yang X, Xing Z, Shen Y, Wu H, Qi Y. The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J 2021; 35:e21510. [PMID: 33710677 DOI: 10.1096/fj.202002702r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
7
|
Verma DK, Ghosh A, Ruggiero L, Cartier E, Janezic E, Williams D, Jung EG, Moore M, Seo JB, Kim YH. The SUMO Conjugase Ubc9 Protects Dopaminergic Cells from Cytotoxicity and Enhances the Stability of α-Synuclein in Parkinson's Disease Models. eNeuro 2020; 7:ENEURO.0134-20.2020. [PMID: 32887693 PMCID: PMC7519168 DOI: 10.1523/eneuro.0134-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a widespread regulatory mechanism of post-translational modification (PTM) that induces rapid and reversible changes in protein function and stability. Using SUMO conjugase Ubc9-overexpressing or knock-down cells in Parkinson's disease (PD) models, we demonstrate that SUMOylation protects dopaminergic cells against MPP+ or preformed fibrils (PFFs) of α-synuclein (α-syn)-induced toxicities in cell viability and cytotoxicity assays. In the mechanism of protection, Ubc9 overexpression significantly suppressed the MPP+ or PFF-induced reactive oxygen species (ROS) generation, while Ubc9-RNAi enhanced the toxicity-induced ROS production. Further, PFF-mediated protein aggregation was exacerbated by Ubc9-RNAi in thioflavin T staining, compared with NC1 controls. In cycloheximide (Chx)-based protein stability assays, higher protein level of α-syn was identified in Ubc9-enhanced green fluorescent protein (EGFP) than in EGFP cells. Since there was no difference in endogenous mRNA levels of α-syn between Ubc9 and EGFP cells in quantitative real-time PCR (qRT-PCR), we assessed the mechanisms of SUMO-mediated delayed α-syn degradation via MG132, proteasomal inhibitor, and PMA, lysosomal degradation inducer. Ubc9-mediated SUMOylated α-syn avoided PMA-induced lysosomal degradation because of its high solubility. Our results suggest that Ubc9 enhances the levels of SUMO1 and ubiquitin on α-syn and interrupts SUMO1 removal from α-syn. In immunohistochemistry, dopaminergic axon tips in the striatum and cell bodies in the substantia nigra from Ubc9-overexpressing transgenic mice were protected from MPTP toxicities compared with wild-type (WT) siblings. Our results support that SUMOylation can be a regulatory target to protect dopaminergic neurons from oxidative stress and protein aggregation, with the implication that high levels of SUMOylation in dopaminergic neurons can prevent the pathologic progression of PD.
Collapse
Affiliation(s)
- Dinesh Kumar Verma
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Anurupa Ghosh
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Lindsey Ruggiero
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Etienne Cartier
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Eric Janezic
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Dionne Williams
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| | - Eui-Gil Jung
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE 19901
| | - Jong Bok Seo
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences/Neuroscience program, Delaware State University, Dover, DE 19901
| |
Collapse
|
8
|
Kaur A, Jaiswal N, Raj R, Kumar B, Kapur S, Kumar D, Gahlay GK, Mithu VS. Characterization of Cu2+ and Zn2+ binding sites in SUMO1 and its impact on protein stability. Int J Biol Macromol 2020; 151:204-211. [DOI: 10.1016/j.ijbiomac.2020.02.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
|
9
|
Lázaro DF, Outeiro TF. The Interplay Between Proteostasis Systems and Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:223-236. [DOI: 10.1007/978-3-030-38266-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 2019; 101:103416. [PMID: 31654699 DOI: 10.1016/j.mcn.2019.103416] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The accumulation of intracytoplasmic inclusion bodies (Lewy bodies) composed of aggregates of the alpha-synuclein (α-syn) protein is the principal pathological characteristic of Parkinson's disease (PD) and may lead to degeneration of dopaminergic neurons. To date there is no medication that can promote the efficient clearance of these pathological aggregates. In this study, the effect on α-syn aggregate clearance of ginkgolic acid (GA), a natural compound extracted from Ginkgo biloba leaves that inhibits SUMOylation amongst other pathways, was assessed in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Depolarization of SH-SY5Y neuroblastoma cells and rat primary cortical neurons with KCl was used to induce α-syn aggregate formation. Cells pre-treated with either GA or the related compound, anacardic acid, revealed a significant decrease in intracytoplasmic aggregates immunopositive for α-syn and SUMO-1. An increased frequency of autophagosomes was also detected with both compounds. GA post-treatment 24 h after depolarization also significantly diminished α-syn aggregate bearing cells, indicating the clearance of pre-formed aggregates. Autophagy inhibitors blocked GA-dependent clearance of α-syn aggregates, but not increased autophagosome frequency. Western analysis revealed that the reduction in α-syn aggregate frequency obtained with GA pre-treatment was accompanied by little change in the abundance of SUMO conjugates. The current findings show that GA can promote autophagy-dependent clearance of α-syn aggregates and may have potential in disease modifying therapy.
Collapse
|
11
|
Valdinocci D, Simões RF, Kovarova J, Cunha-Oliveira T, Neuzil J, Pountney DL. Intracellular and Intercellular Mitochondrial Dynamics in Parkinson's Disease. Front Neurosci 2019; 13:930. [PMID: 31619944 PMCID: PMC6760022 DOI: 10.3389/fnins.2019.00930] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
The appearance of alpha-synuclein-positive inclusion bodies (Lewy bodies) and the loss of catecholaminergic neurons are the primary pathological hallmarks of Parkinson's disease (PD). However, the dysfunction of mitochondria has long been recognized as a key component in the progression of the disease. Dysfunctional mitochondria can in turn lead to dysregulation of calcium homeostasis and, especially in dopaminergic neurons, raised mean intracellular calcium concentration. As calcium binding to alpha-synuclein is one of the important triggers of alpha-synuclein aggregation, mitochondrial dysfunction will promote inclusion body formation and disease progression. Increased reactive oxygen species (ROS) resulting from inefficiencies in the electron transport chain also contribute to the formation of alpha-synuclein aggregates and neuronal loss. Recent studies have also highlighted defects in mitochondrial clearance that lead to the accumulation of depolarized mitochondria. Transaxonal and intracytoplasmic translocation of mitochondria along the microtubule cytoskeleton may also be affected in diseased neurons. Furthermore, nanotube-mediated intercellular transfer of mitochondria has recently been reported between different cell types and may have relevance to the spread of PD pathology between adjacent brain regions. In the current review, the contributions of both intracellular and intercellular mitochondrial dynamics to the etiology of PD will be discussed.
Collapse
Affiliation(s)
- Dario Valdinocci
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Rui F. Simões
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, QLD, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
| | - Dean L. Pountney
- School of Medical Science, Griffith University, Southport, QLD, Australia
| |
Collapse
|
12
|
Princz A, Tavernarakis N. SUMOylation in Neurodegenerative Diseases. Gerontology 2019; 66:122-130. [PMID: 31505513 DOI: 10.1159/000502142] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
Posttranslational modifications are ubiquitous regulators of cellular processes. The regulatory role of SUMOylation, the attachment of a small ubiquitin-related modifier to a target protein, has been implicated in fundamental processes like cell division, DNA damage repair, mitochondrial homeostasis, and stress responses. Recently, it is gaining more attention in drug discovery as well. As life expectancy keeps rising, more individuals are at risk for developing age-associated diseases. This not only makes a person's life uncomfortable, but it also places an economic burden on society. Therefore, finding treatments for age-related diseases is an important issue. Understanding the basic mechanisms in the cell under normal and disease conditions is fundamental for drug discovery. There is an increasing number of reports showing that the ageing process could be influenced by SUMOylation. Similarly, SUMOylation is essential for proper neuronal function. In this review we summarize the latest results regarding the connection between SUMOylation and neurodegenerative diseases. We highlight the significance of specific SUMO target proteins and the importance of SUMO isoform specificity.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece, .,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece,
| |
Collapse
|
13
|
Coskuner O, Uversky VN. Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer's and Parkinson's diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:145-223. [PMID: 31521231 DOI: 10.1016/bs.pmbts.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid-β (Aβ) and α-synuclein (αS) are two intrinsically disordered proteins (IDPs) at the centers of the pathogenesis of Alzheimer's and Parkinson's diseases, respectively. Different hypotheses have been proposed for explanation of the molecular mechanisms of the pathogenesis of these two diseases, with these two IDPs being involved in many of these hypotheses. Currently, we do not know, which of these hypothesis is more accurate. Experiments face challenges due to the rapid conformational changes, fast aggregation processes, solvent and paramagnetic effects in studying these two IDPs in detail. Furthermore, pathological modifications impact their structures and energetics. Theoretical studies using computational chemistry and computational biology have been utilized to understand the structures and energetics of Aβ and αS. In this chapter, we introduce Aβ and αS in light of various hypotheses, and discuss different experimental and theoretical techniques that are used to study these two proteins along with their weaknesses and strengths. We suggest that a promising solution for studying Aβ and αS at the center of varying hypotheses could be provided by developing new techniques that link quantum mechanics, statistical mechanics, thermodynamics, bioinformatics to machine learning. Such new developments could also lead to development in experimental techniques.
Collapse
Affiliation(s)
- Orkid Coskuner
- Turkish-German University, Molecular Biotechnology, Istanbul, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
14
|
Kim T, Valera E, Desplats P. Alterations in Striatal microRNA-mRNA Networks Contribute to Neuroinflammation in Multiple System Atrophy. Mol Neurobiol 2019; 56:7003-7021. [PMID: 30968343 DOI: 10.1007/s12035-019-1577-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Multiple systems atrophy (MSA) is a rare neurodegenerative disorder characterized by the accumulation of α-synuclein in glial cells and neurodegeneration in the striatum, substantia nigra, and cerebellum. Aberrant miRNA regulation has been associated with neurodegeneration, including alterations of specific miRNAs in brain tissue, serum, and cerebrospinal fluid from MSA patients. Still, a causal link between deregulation of miRNA networks and pathological changes in the transcriptome remains elusive. We profiled ~ 800 miRNAs in the striatum of MSA patients in comparison to healthy individuals to identify specific miRNAs altered in MSA. In addition, we performed a parallel screening of 700 transcripts associated with neurodegeneration to determine the impact of miRNA deregulation on the transcriptome. We identified 60 miRNAs with abnormal levels in MSA brains that are involved in extracellular matrix receptor interactions, prion disease, inflammation, ubiquitin-mediated proteolysis, and addiction pathways. Using the correlation between miRNA expression and the abundance of their known targets, miR-124-3p, miR-19a-3p, miR-27b-3p, and miR-29c-3p were identified as key regulators altered in MSA, mainly contributing to neuroinflammation. Finally, our study also uncovered a potential link between Alzheimer's disease (AD) and MSA pathologies that involves miRNAs and deregulation of BACE1. Our results provide a comprehensive appraisal of miRNA alterations in MSA and their effect on the striatal transcriptome, supporting that aberrant miRNA expression is highly correlated with changes in gene transcription associated with MSA neuropathology, in particular those driving inflammation, disrupting myelination, and potentially impacting α-synuclein accumulation via deregulation of autophagy and prion mechanisms.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Elvira Valera
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Paula Desplats
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA. .,Department of Pathology, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
15
|
Chen H, Zhao YF, Chen YX, Li YM. Exploring the Roles of Post-Translational Modifications in the Pathogenesis of Parkinson's Disease Using Synthetic and Semisynthetic Modified α-Synuclein. ACS Chem Neurosci 2019; 10:910-921. [PMID: 30628768 DOI: 10.1021/acschemneuro.8b00447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alpha-synuclein (α-syn), a small soluble protein containing 140 amino acids, is associated with the recycling pool of synaptic vesicles in presynaptic terminals. The misfolding and aggregation of α-syn is closely related to a group of neurodegenerative diseases, including Parkinson's disease (PD), which is one of the most common progressive neurodegenerative diseases. Varieties of the post-translational modifications (PTMs) of α-syn, including phosphorylation, ubiquitination, and glycosylation, have been detected in soluble and aggregated α-syn in vivo. These PTMs can have either positive or negative effects on α-syn aggregation and toxicity, which may play critical roles in PD pathogenesis. Herein, we review the advances in synthetic and semisynthetic chemistry to generate homogeneous α-syn variants with site-specific modifications. Using these modified α-syn, we gain insight into the consequences of PTMs on α-syn aggregation and other biophysical properties, which can help elucidate the role of PTMs in the pathogenesis of PD and develop potential therapies to PD.
Collapse
Affiliation(s)
- Huai Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
- Beijing Institute
for Brain Disorders, Beijing 100069, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
16
|
Kim H, Calatayud C, Guha S, Fernández-Carasa I, Berkowitz L, Carballo-Carbajal I, Ezquerra M, Fernández-Santiago R, Kapahi P, Raya Á, Miranda-Vizuete A, Lizcano JM, Vila M, Caldwell KA, Caldwell GA, Consiglio A, Dalfo E. The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Mol Neurobiol 2018; 55:7533-7552. [PMID: 29429047 PMCID: PMC6096980 DOI: 10.1007/s12035-018-0881-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Parkinson's disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
| | - Laura Berkowitz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013, Sevilla, Spain
| | - Jose Miguel Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain.
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Spain.
| | - Esther Dalfo
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain.
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Can Baumann, 08500, Vic, Spain.
| |
Collapse
|
17
|
Zhu LN, Qiao HH, Chen L, Sun LP, Hui JL, Lian YL, Xie WB, Ding JY, Meng YL, Zhu BF, Qiu PM. SUMOylation of Alpha-Synuclein Influences on Alpha-Synuclein Aggregation Induced by Methamphetamine. Front Cell Neurosci 2018; 12:262. [PMID: 30197588 PMCID: PMC6117395 DOI: 10.3389/fncel.2018.00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH abusers are at high risk of neurodegenerative disorders, including Parkinson’s disease (PD). Previous studies have demonstrated that METH causes alpha-synuclein (α-syn) aggregation in the both laboratory animal and human. In this study, exposure to high METH doses increased the expression of α-syn and the small ubiquitin-related modifier 1 (SUMO-1). Therefore, we hypothesized that SUMOylation of α-syn is involved in high-dose METH-induced α-syn aggregation. We measured the levels of α-syn SUMOylation and these enzymes involved in the SUMOylation cycle in SH-SY5Y human neuroblastoma cells (SH-SY5Y cells), in cultures of C57 BL/6 primary mouse neurons and in brain tissues of mice exposure to METH. We also demonstrated the effect of α-syn SUMOylation on α-syn aggregation after METH exposure by overexpressing the key enzyme of the SUMOylation cycle or silencing SUMO-1 expression in vitro. Then, we make introduced mutations in the major SUMOylation acceptor sites of α-syn by transfecting a lentivirus containing the sequence of WT α-syn or K96/102R α-syn into SH-SY5Y cells and injecting an adenovirus containing the sequence of WT α-syn or K96/102R α-syn into the mouse striatum. Levels of the ubiquitin-proteasome system (UPS)-related makers ubiquitin (Ub) and UbE1, as well as the autophagy-lysosome pathway (ALP)-related markers LC3, P62 and lysosomal associated membrane protein 2A (LAMP2A), were also measured in SH-SY5Y cells transfected with lentivirus and mice injected with adenovirus. The results showed that METH exposure decreases the SUMOylation level of α-syn, although the expression of α-syn and SUMO-1 are increased. One possible cause is the reduction of UBC9 level. The increase in α-syn SUMOylation by UBC9 overexpression relieves METH-induced α-syn overexpression and aggregation, whereas the decrease in α-syn SUMOylation by SUMO-1 silencing exacerbates the same pathology. Furthermore, mutations in the major SUMOylation acceptor sites of α-syn also aggravate α-syn overexpression and aggregation by impairing degradation through the UPS and the ALP in vitro and in vivo. These results suggest that SUMOylation of α-syn plays a fundamental part in α-syn overexpression and aggregation induced by METH and could be a suitable target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin-Nan Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Hua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Le-Ping Sun
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Liang Hui
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yong-Ling Lian
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiu-Yang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Anatomy, Zunyi Medical College, Zunyi, China
| | - Yun-le Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bo-Feng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ping-Ming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci 2018; 75:1-19. [PMID: 29080091 PMCID: PMC11105655 DOI: 10.1007/s00018-017-2690-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are released by cells to the extracellular environment to mediate inter-cellular communication. Proteins, lipids, nucleic acids and metabolites shuttled in these vesicles modulate specific functions in recipient cells. The enrichment of selected sets of proteins in EVs compared with global cellular levels suggests the existence of specific sorting mechanisms to specify EV loading. Diverse post-translational modifications (PTMs) of proteins participate in the loading of specific elements into EVs. In this review, we offer a perspective on PTMs found in EVs and discuss the specific role of some PTMs, specifically Ubiquitin and Ubiquitin-like modifiers, in exosomal sorting of protein components. The understanding of these mechanisms will provide new strategies for biomedical applications. Examples include the presence of defined PTM marks on EVs as novel biomarkers for the diagnosis and prognosis of certain diseases, or the specific import of immunogenic components into EVs for vaccine generation.
Collapse
Affiliation(s)
- Olga Moreno-Gonzalo
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Irene Fernandez-Delgado
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Sanchez-Madrid
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
19
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
20
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
21
|
Schorova L, Martin S. Sumoylation in Synaptic Function and Dysfunction. Front Synaptic Neurosci 2016; 8:9. [PMID: 27199730 PMCID: PMC4848311 DOI: 10.3389/fnsyn.2016.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| |
Collapse
|
22
|
Guerra de Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson's disease. J Neurochem 2016; 137:673-86. [PMID: 26932327 DOI: 10.1111/jnc.13599] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by cardinal motor signs such as rigidity, bradykinesia or rest tremor that arise from a significant death of dopaminergic neurons. Non-dopaminergic degeneration also occurs and it seems to induce the deficits in olfactory, emotional, and memory functions that precede the classical motor symptoms in PD. Despite the majority of PD cases being sporadic, several genes have previously been associated with the hereditary forms of the disease. The proteins encoded by some of these genes, including α-synuclein, DJ-1, and parkin, are modified by small ubiquitin-like modifier (SUMO), a post-translational modification that regulates a variety of cellular processes. Among the several pathogenic mechanisms proposed for PD is mitochondrial dysfunction. Recent studies suggest that SUMOylation can interfere with mitochondrial dynamics, which is essential for neuronal function, and may play a pivotal role in PD pathogenesis. Here, we present an overview of recent studies on mitochondrial disturbance in PD and the potential SUMO-modified proteins and pathways involved in this process. SUMOylation, a post-translational modification, interferes with mitochondrial dynamics, and may play a pivotal role in Parkinson's disease (PD). SUMOylation maintains α-synuclein (α-syn) in a soluble form and activates DJ-1, decreasing mitochondrial oxidative stress. SUMOylation may reduce the amount of parkin available for mitochondrial recruitment and decreases mitochondrial biogenesis through suppression of peroxisomal proliferator-activated receptor-γ co-activator 1 α (PGC-1α). Mitochondrial fission can be regulated by dynamin-related protein 1 SUMO-1- or SUMO-2/3-ylation. A fine balance for the SUMOylation/deSUMOylation of these proteins is required to ensure adequate mitochondrial function in PD.
Collapse
Affiliation(s)
- Ana Cristina Guerra de Souza
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| | - Helena Cimarosti
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| |
Collapse
|
23
|
Vieira BDM, Radford RA, Chung RS, Guillemin GJ, Pountney DL. Neuroinflammation in Multiple System Atrophy: Response to and Cause of α-Synuclein Aggregation. Front Cell Neurosci 2015; 9:437. [PMID: 26778958 PMCID: PMC4700780 DOI: 10.3389/fncel.2015.00437] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting with combinations of autonomic dysfunction, parkinsonism, cerebellar ataxia and/or pyramidal signs. Oligodendroglial cytoplasmic inclusions (GCIs) rich in α-synuclein (α-syn) constitute the disease hallmark, accompanied by neuronal loss and activation of glial cells which indicate neuroinflammation. Recent studies demonstrate that α-syn may be released from degenerating neurons to mediate formation of abnormal inclusion bodies and to induce neuroinflammation which, interestingly, might also favor the formation of intracellular α-syn aggregates as a consequence of cytokine release and the shift to a pro-inflammatory environment. Here, we critically review the relationships between α-syn and astrocytic and microglial activation in MSA to explore the potential of therapeutics which target neuroinflammation.
Collapse
Affiliation(s)
| | - Rowan A Radford
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Dean L Pountney
- Menzies Health Institute Queensland, Griffith University Gold Coast, QLD, Australia
| |
Collapse
|