1
|
Moreno NC, Korchak EJ, Latancia MT, D’Orlando DA, Adegbenro T, Bezsonova I, Woodgate R, Ashton NW. DNA polymerase η is regulated by mutually exclusive mono-ubiquitination and mono-NEDDylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618026. [PMID: 39416117 PMCID: PMC11482926 DOI: 10.1101/2024.10.12.618026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA polymerase eta (Pol η) is a Y-family translesion polymerase responsible for synthesizing new DNA across UV-damaged templates. It is recruited to replication forks following mono-ubiquitination of the PCNA DNA clamp. This interaction is mediated by PCNA-interacting protein (PIP) motifs within Pol η, as well as by its C-terminal ubiquitin-binding zinc finger (UBZ) domain. Previous work has suggested that Pol η itself is mono-ubiquitinated at four C-terminal lysine residues, which is dependent on prior ubiquitin-binding by its UBZ domain. Here, we show that Pol η can be modified at the same lysine residues by the ubiquitin-like protein, NEDD8. Like ubiquitination, this modification is driven by non-covalent interactions between NEDD8 and the UBZ domain. While only a small proportion of Pol η is mono-NEDDylated under normal conditions, these levels rapidly increase by inhibiting the COP9 signalosome, suggesting that mono-NEDDylation is maintained under strong negative regulation. Finally, we provide data to support that mono-ubiquitination is important for Pol η foci formation and suggest that NEDDylation disrupts this process. These results reveal a new mechanism of Pol η regulation by ubiquitin-like proteins.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Emilie J. Korchak
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Marcela Teatin Latancia
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Dana A. D’Orlando
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Temidayo Adegbenro
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Nicholas W. Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| |
Collapse
|
2
|
Gil-Pitarch C, Serrano-Maciá M, Simon J, Mosca L, Conter C, Rejano-Gordillo CM, Zapata-Pavas LE, Peña-Sanfélix P, Azkargorta M, Rodríguez-Agudo R, Lachiondo-Ortega S, Mercado-Gómez M, Delgado TC, Porcelli M, Aurrekoetxea I, Sutherland JD, Barrio R, Xirodimas D, Aspichueta P, Elortza F, Martínez-Cruz LA, Nogueiras R, Iruzubieta P, Crespo J, Masson S, McCain MV, Reeves HL, Andrade RJ, Lucena MI, Mayor U, Goikoetxea-Usandizaga N, González-Recio I, Martínez-Chantar ML. Neddylation inhibition prevents acetaminophen-induced liver damage by enhancing the anabolic cardiolipin pathway. Cell Rep Med 2024; 5:101653. [PMID: 39019009 PMCID: PMC11293357 DOI: 10.1016/j.xcrm.2024.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.
Collapse
Affiliation(s)
- Clàudia Gil-Pitarch
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Jorge Simon
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Laura Mosca
- Department of Life Sciences, Health and Health Professions, Link University, Via del Casale di San Pio V, 44 00165 Rome, Italy
| | - Carolina Conter
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRed-ISCIII, CIBERehd, Science and Technology Park of Bizkaia, 48160 Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Marina Porcelli
- Department of Life Sciences, Health and Health Professions, Link University, Via del Casale di San Pio V, 44 00165 Rome, Italy
| | - Igor Aurrekoetxea
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | | | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRed-ISCIII, CIBERehd, Science and Technology Park of Bizkaia, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain
| | - Rubén Nogueiras
- Department of Physiology, School of Medicine-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; Department of Physiology, CIMUS, 15782 University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39011 Santander, Spain
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 7DN Newcastle upon Tyne, UK; Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Misti Vanette McCain
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Helen L Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 7DN Newcastle upon Tyne, UK; Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29590 Málaga, Spain
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, 29590 Málaga, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Irene González-Recio
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain.
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Derio 48160 Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
4
|
Sharma S, Sarkar O, Ghosh R. Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy. Curr Protein Pept Sci 2024; 25:780-796. [PMID: 38910429 DOI: 10.2174/0113892037274615240528113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.
Collapse
Affiliation(s)
- Sayan Sharma
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Oindrila Sarkar
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Rajgourab Ghosh
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Mamun MAA, Liu S, Zhao L, Zhao L, Li ZR, Shen D, Zheng Y, Zheng YC, Liu HM. Micafungin: A promising inhibitor of UBE2M in cancer cell growth suppression. Eur J Med Chem 2023; 260:115732. [PMID: 37651876 DOI: 10.1016/j.ejmech.2023.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Neddylation is a protein modification process similar to ubiquitination, carried out through a series of activating (E1), conjugating (E2), and ligating (E3) enzymes. This process has been found to be overactive in various cancers, leading to increased oncogenic activities. Ubiquitin-conjugating enzyme 2 M (UBE2M) is one of two neddylation enzymes that play a vital role in this pathway. Studies have shown that targeting UBE2M in cancer treatment is crucial, as it regulates many molecular mechanisms like DNA damage, apoptosis, and cell proliferation. However, developing small molecule inhibitors against UBE2M remains challenging due to the lack of suitable druggable pockets. We have discovered that Micafungin, an antifungal agent that inhibits the production of 1,3-β-D-glucan in fungal cell walls, acts as a neddylation inhibitor that targets UBE2M. Biochemical studies reveal that Micafungin obstructs neddylation and stabilizes UBE2M. In cellular experiments, the drug was found to interact with UBE2M, prevent neddylation, accumulate cullin ring ligases (CRLs) substrates, reduce cell survival and migration, and induce DNA damage in gastric cancer cells. This research uncovers a new anti-cancer mechanism for Micafungin, paving the way for the development of a novel class of neddylation inhibitors that target UBE2M.
Collapse
Affiliation(s)
- M A A Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Shuan Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Lijie Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Lijuan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Zhong-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Dandan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|
7
|
UFL1 promotes antiviral immune response by maintaining STING stability independent of UFMylation. Cell Death Differ 2023; 30:16-26. [PMID: 35871231 PMCID: PMC9883236 DOI: 10.1038/s41418-022-01041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
The precise regulation of STING homeostasis is essential for its antiviral function. Post-translational modification, especially ubiquitination, is important for the regulation of STING homeostasis. Previous studies have focused on how STING is degraded, but little is known about its maintenance. Here, we show that UFM1 specific ligase UFL1 promotes innate immune response by maintaining STING expression independent of UFMylation. Mechanistically, UFL1 inhibits TRIM29 to interact with STING, thereby reducing its ubiquitination at K338/K347/K370 and subsequent proteasomal degradation. DNA virus infection reduces the UFL1 expression, which may promote STING degradation and facilitate viral expansion. Our study identifies UFL1 as a crucial regulator for the maintenance of STING stability and antiviral function, and provides novel insights into the mechanistic explanation for the immunological escape of DNA virus.
Collapse
|
8
|
Wang D, Musazade E, Wang H, Liu J, Zhang C, Liu W, Liu Y, Guo L. Regulatory Mechanism of the Constitutive Photomorphogenesis 9 Signalosome Complex in Response to Abiotic Stress in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2777-2788. [PMID: 35199516 DOI: 10.1021/acs.jafc.1c07224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a highly conserved protein complex that regulates signaling pathways in plants under abiotic stress. We discuss the potential molecular mechanisms of CSN under abiotic stress, including oxidative stress with reactive oxygen species signaling, salt stress with jasmonic acid, gibberellic acid, and abscisic acid signaling, high-temperature stress with auxin signaling, and optical radiation with DNA damage and repair response. We conclude that CSN likely participates in affecting antioxidant biosynthesis and hormone signaling by targeting receptors, kinases, and transcription factors in response to abiotic stress, which potentially provides valuable information for engineering stress-tolerant crops.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
- School of Public Health, Jilin Medical University, Jilin, Jilin 132013, People's Republic of China
| | - Elshan Musazade
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Huan Wang
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Junmei Liu
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Chunyu Zhang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, Jilin 130033, People's Republic of China
| | - Wencong Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Yanxi Liu
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Liquan Guo
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| |
Collapse
|
9
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
10
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
11
|
Arenas V, Castaño JL, Domínguez-García JJ, Yáñez L, Pipaón C. A Different View for an Old Disease: NEDDylation and Other Ubiquitin-Like Post-Translational Modifications in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:729550. [PMID: 34631557 PMCID: PMC8495217 DOI: 10.3389/fonc.2021.729550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the enormous amount of molecular data obtained over the years, the molecular etiology of chronic lymphocytic leukemia (CLL) is still largely unknown. All that information has enabled the development of new therapeutic approaches that have improved life expectancy of the patients but are still not curative. We must increase our knowledge of the molecular alterations responsible for the characteristics common to all CLL patients. One of such characteristics is the poor correlation between mRNA and protein expression, that suggests a role of post-translational mechanisms in CLL physiopathology. Drugs targeting these processes have indeed demonstrated an effect either alone or in combination with other aimed at specific pathways. A recent article unveiled an increment in ubiquitin-like modifications in CLL, with many protein members of relevant pathways affected. Interestingly, the inhibition of the NEDD8-activating protein NAE reverted a substantial number of those modifications. The present review gets the scarce data published about the role of NEDDylation in CLL together and establishes connections to what is known from other neoplasias, thus providing a new perspective to the underlying mechanisms in CLL.
Collapse
Affiliation(s)
- Víctor Arenas
- Laboratorio de Hematología Molecular, Servicio de Hematología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Jose Luis Castaño
- Laboratorio de Hematología Molecular, Servicio de Hematología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Juan José Domínguez-García
- Laboratorio de Hematología Molecular, Servicio de Hematología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Lucrecia Yáñez
- Laboratorio de Hematología Molecular, Servicio de Hematología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Carlos Pipaón
- Laboratorio de Hematología Molecular, Servicio de Hematología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
12
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
13
|
Huber RJ, Kim WD, Mathavarajah S. Inhibiting Neddylation with MLN4924 Suppresses Growth and Delays Multicellular Development in Dictyostelium discoideum. Biomolecules 2021; 11:482. [PMID: 33807046 PMCID: PMC8005062 DOI: 10.3390/biom11030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target proteins, and has been studied extensively in various eukaryotes including fungi, plants, and metazoans. Here, we examine the biological processes influenced by neddylation in the social amoeba, Dictyostelium discoideum, using a well-established inhibitor of neddylation, MLN4924 (pevonedistat). NEDD8, and the target of MLN4924 inhibition, NEDD8-activating enzyme E1 (NAE1), are highly conserved in D. discoideum (Nedd8 and Nae1, respectively). Treatment of D. discoideum cells with MLN4924 increased the amount of free Nedd8, suggesting that MLN4924 inhibited neddylation. During growth, MLN4924 suppressed cell proliferation and folic acid-mediated chemotaxis. During multicellular development, MLN4924 inhibited cyclic adenosine monophosphate (cAMP)-mediated chemotaxis, delayed aggregation, and suppressed fruiting body formation. Together, these findings indicate that neddylation plays an important role in regulating cellular and developmental events during the D. discoideum life cycle and that this organism can be used as a model system to better understand the essential roles of neddylation in eukaryotes, and consequently, its involvement in human disease.
Collapse
Affiliation(s)
- Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
| | | |
Collapse
|
14
|
Wang J, Dubiel D, Wu Y, Cheng Y, Wolf DA, Dubiel W. CSN7B defines a variant COP9 signalosome complex with distinct function in DNA damage response. Cell Rep 2021; 34:108662. [PMID: 33503427 DOI: 10.1016/j.celrep.2020.108662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mammalian COP9 signalosome (CSN) exists as two variant complexes containing either CSN7A or CSN7B paralogs of unknown functional specialization. Constructing knockout cells, we found that CSN7A and CSN7B have overlapping functions in the deneddylation of cullin-RING ubiquitin ligases. Nevertheless, CSNCSN7B has a unique function in DNA double-strand break (DSB) sensing, being selectively required for ataxia telangiectasia mutated (ATM)-dependent formation of NBS1S343p and γH2AX as well as DNA-damage-induced apoptosis triggered by mitomycin C and ionizing radiation. Live-cell microscopy revealed rapid recruitment of CSN7B but not CSN7A to DSBs. Resistance of CSN7B knockout cells to DNA damage is explained by the failure to deneddylate an upstream DSB signaling component, causing a switch in DNA repair pathway choice with increased utilization of non-homologous end joining over homologous recombination. In mice, CSN7B knockout tumors are resistant to DNA-damage-inducing chemotherapy, thus providing an explanation for the poor prognosis of tumors with low CSN7B expression.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Yanmeng Wu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Yabin Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dieter A Wolf
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China.
| | - Wolfgang Dubiel
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China; Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
15
|
Wessel SR, Mohni KN, Luzwick JW, Dungrawala H, Cortez D. Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Rep 2020; 28:3497-3509.e4. [PMID: 31553917 PMCID: PMC6878991 DOI: 10.1016/j.celrep.2019.08.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.
Collapse
Affiliation(s)
- Sarah R Wessel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kareem N Mohni
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Jessica W Luzwick
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Selmansberger M, Michna A, Braselmann H, Höfig I, Schorpp K, Weber P, Anastasov N, Zitzelsberger H, Hess J, Unger K. Transcriptome network of the papillary thyroid carcinoma radiation marker CLIP2. Radiat Oncol 2020; 15:182. [PMID: 32727620 PMCID: PMC7392692 DOI: 10.1186/s13014-020-01620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Background We present a functional gene association network of the CLIP2 gene, generated by de-novo reconstruction from transcriptomic microarray data. CLIP2 was previously identified as a potential marker for radiation induced papillary thyroid carcinoma (PTC) of young patients in the aftermath of the Chernobyl reactor accident. Considering the rising thyroid cancer incidence rates in western societies, potentially related to medical radiation exposure, the functional characterization of CLIP2 is of relevance and contributes to the knowledge about radiation-induced thyroid malignancies. Methods We generated a transcriptomic mRNA expression data set from a CLIP2-perturbed thyroid cancer cell line (TPC-1) with induced CLIP2 mRNA overexpression and siRNA knockdown, respectively, followed by gene-association network reconstruction using the partial correlation-based approach GeneNet. Furthermore, we investigated different approaches for prioritizing differentially expressed genes for network reconstruction and compared the resulting networks with existing functional interaction networks from the Reactome, Biogrid and STRING databases. The derived CLIP2 interaction partners were validated on transcript and protein level. Results The best reconstructed network with regard to selection parameters contained a set of 20 genes in the 1st neighborhood of CLIP2 and suggests involvement of CLIP2 in the biological processes DNA repair/maintenance, chromosomal instability, promotion of proliferation and metastasis. Peptidylprolyl Isomerase Like 3 (PPIL3), previously identified as a potential direct interaction partner of CLIP2, was confirmed in this study by co-expression at the transcript and protein level. Conclusion In our study we present an optimized preselection approach for genes subjected to gene-association network reconstruction, which was applied to CLIP2 perturbation transcriptome data of a thyroid cancer cell culture model. Our data support the potential carcinogenic role of CLIP2 overexpression in radiation-induced PTC and further suggest potential interaction partners of the gene.
Collapse
Affiliation(s)
- Martin Selmansberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Agata Michna
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Herbert Braselmann
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Ines Höfig
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Kenji Schorpp
- Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Natasa Anastasov
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany. .,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.
| |
Collapse
|
17
|
The COP9 Signalosome: A Multi-DUB Complex. Biomolecules 2020; 10:biom10071082. [PMID: 32708147 PMCID: PMC7407660 DOI: 10.3390/biom10071082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. In addition, it is associated with deubiquitylating enzymes (DUBs) protecting CRLs from autoubiquitylation and rescuing ubiquitylated proteins from degradation. The coordination of ubiquitylation and deubiquitylation by the CSN is presumably important for fine-tuning the precise formation of defined ubiquitin chains. Considering its intrinsic DUB activity specific for deneddylation of CRLs and belonging to the JAMM family as well as its associated DUBs, the CSN represents a multi-DUB complex. Two CSN-associated DUBs, the ubiquitin-specific protease 15 (USP15) and USP48 are regulators in the NF-κB signaling pathway. USP15 protects CRL1β-TrCP responsible for IκBα ubiquitylation, whereas USP48 stabilizes the nuclear pool of the NF-κB transcription factor RelA upon TNF stimulation by counteracting CRL2SOCS1. Moreover, the CSN controls the neddylation status of cells by its intrinsic DUB activity and by destabilizing the associated deneddylation enzyme 1 (DEN1). Thus, the CSN is a master regulator at the intersection between ubiquitylation and neddylation.
Collapse
|
18
|
Interaction between NSMCE4A and GPS1 links the SMC5/6 complex to the COP9 signalosome. BMC Mol Cell Biol 2020; 21:36. [PMID: 32384871 PMCID: PMC7206739 DOI: 10.1186/s12860-020-00278-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Background The SMC5/6 complex, cohesin and condensin are the three mammalian members of the structural maintenance of chromosomes (SMC) family, large ring-like protein complexes that are essential for genome maintenance. The SMC5/6 complex is the least characterized complex in mammals; however, it is known to be involved in homologous recombination repair (HRR) and chromosome segregation. Results In this study, a yeast two-hybrid screen was used to help elucidate novel interactions of the kleisin subunit of the SMC5/6 complex, NSMCE4A. This approach discovered an interaction between NSMCE4A and GPS1, a COP9 signalosome (CSN) component, and this interaction was further confirmed by co-immunoprecipitation. Additionally, GPS1 and components of SMC5/6 complex colocalize during interphase and mitosis. CSN is a cullin deNEDDylase and is an important factor for HRR. Depletion of GPS1, which has been shown to negatively impact DNA end resection during HRR, caused an increase in SMC5/6 levels at sites of laser-induced DNA damage. Furthermore, inhibition of the dennedylation function of CSN increased SMC5/6 levels at sites of laser-induced DNA damage. Conclusion Taken together, these data demonstrate for the first time that the SMC5/6 and CSN complexes interact and provides evidence that the CSN complex influences SMC5/6 functions during cell cycle progression and response to DNA damage.
Collapse
|
19
|
Cornelius RJ, Yang CL, Ellison DH. Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding. Am J Physiol Renal Physiol 2019; 318:F204-F208. [PMID: 31813255 DOI: 10.1152/ajprenal.00497.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of new genetic mutations that cause hypertension has illuminated previously unrecognized physiological pathways. One such regulatory pathway was identified when mutations in with no lysine kinase (WNK)4, Kelch-like 3 (KLHL3), and cullin 3 (CUL3) were shown to cause the disease familial hyperkalemic hypertension (FHHt). Mutations in all three genes upregulate the NaCl cotransporter (NCC) due to an impaired ability to degrade WNK protein through the cullin-RING-ligase (CRL) ubiquitin-proteasome system. The CUL3 FHHt mutations cause the most severe phenotype, yet the precise mechanism by which these mutations cause the disease has not been established and current proposed models are controversial. New data have identified a possible novel mechanism involving dysregulation of CUL3 activity by the COP9 signalosome (CSN). The CSN interaction with mutant CUL3 is diminished, causing hyperneddylation of the CRL. Recent work has shown that direct renal CSN impairment mimics some aspects of the CUL3 mutation, including lower KLHL3 abundance and activation of the WNK-NCC pathway. Furthermore, in vitro and in vivo studies of CSN inhibition have shown selective degradation of CRL substrate adaptors via auto-ubiquitination, allowing substrate accumulation. In this review, we will focus on recent research that highlights the role of the CSN role in CUL3 mutations that cause FHHt. We will also highlight how these results inform other recent studies of CSN dysfunction.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
20
|
Are Inositol Polyphosphates the Missing Link in Dynamic Cullin RING Ligase Regulation by the COP9 Signalosome? Biomolecules 2019; 9:biom9080349. [PMID: 31394817 PMCID: PMC6722667 DOI: 10.3390/biom9080349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/26/2022] Open
Abstract
The E3 ligase activity of Cullin RING Ligases (CRLs) is controlled by cycles of neddylation/deneddylation and intimately regulated by the deneddylase COP9 Signalosome (CSN), one of the proteasome lid-CSN-initiation factor 3 (PCI) domain-containing “Zomes” complex. Besides catalyzing the removal of stimulatory Cullin neddylation, CSN also provides a docking platform for other proteins that might play a role in regulating CRLs, notably protein kinases and deubiquitinases. During the CRL activity cycle, CRL–CSN complexes are dynamically assembled and disassembled. Mechanisms underlying complex dynamics remain incompletely understood. Recently, the inositol polyphosphate metabolites (IP6, IP7) and their metabolic enzymes (IP5K, IP6K) have been discovered to participate in CRL–CSN complex formation as well as stimulus-dependent dissociation. Here we discuss these mechanistic insights in light of recent advances in elucidating structural basis of CRL–CSN complexes.
Collapse
|
21
|
Chung D, Salsman J, Dellaire G. Inhibition of neddylation induces mitotic defects and alters MKLP1 accumulation at the midbody during cytokinesis. Cell Cycle 2019; 18:1135-1153. [PMID: 31057046 PMCID: PMC6592236 DOI: 10.1080/15384101.2019.1612696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cullin-RING E3 ubiquitin ligases (CRLs) play crucial roles in modulating the stability of proteins in the cell and are, in turn, regulated by post-translational modification by the ubiquitin-like (Ubl) protein NEDD8. This process, termed neddylation, is reversible through the action of the COP9 signalosome (CSN); a multi-subunit metalloprotease conserved among eukaryotes that plays direct or indirect roles in DNA repair, cell signaling and cell cycle regulation in part through modulating the activity of the CRLs. Previously, inhibition of CRL neddylation by MLN4924, a small molecule inhibitor of the NEDD8-activating enzyme 1 (NAE1), was shown to induce interphase cell cycle arrest and cell death. Using fixed and living cell microscopy, we re-evaluated the cell cycle effects of inhibition of neddylation by MLN4924 in both asynchronous and mitotic cell populations. Consistent with previous studies, treatment of asynchronous cells with MLN4924 increased CDT1 expression levels, induced G2 arrest and increased nuclear size. However, in synchronized cells treated in mitosis, mitotic defects were observed including lagging chromosomes and binucleated daughter cells. Consistent with neddylation and deneddylation playing a role in cytokinesis, NEDD8, as well as subunits of the CSN, could be localized at the midbody and cleavage furrow. Finally, treatment of mitotic cells with MLN4924 induced the premature accumulation of MKLP1 at the cleavage furrow, a key regulator of cytokinesis, which was concomitant with increased abscission delay and failure. Thus, these studies uncover an uncharacterized mitotic effect of MLN4924 on MKLP1 accumulation at the midbody and support a role for neddylation during cytokinesis. Abbreviations: CSN, COP9 Signalosome; MKLP1, mitotic kinesin-like protein 1; NEDD8, Neural precursor cell Expressed, Developmentally Down-regulated 8.
Collapse
Affiliation(s)
- Dudley Chung
- a Department of Pathology , Dalhousie University , Halifax , Canada
| | - Jayme Salsman
- a Department of Pathology , Dalhousie University , Halifax , Canada
| | - Graham Dellaire
- a Department of Pathology , Dalhousie University , Halifax , Canada.,b Department of Biochemistry & Molecular Biology , Dalhousie University , Halifax , Canada.,c Beatrice Hunter Cancer Research Institute , Halifax , Canada
| |
Collapse
|
22
|
Milo-Cochavi S, Pareek M, Delulio G, Almog Y, Anand G, Ma LJ, Covo S. The response to the DNA damaging agent methyl methanesulfonate in a fungal plant pathogen. Fungal Biol 2019; 123:408-422. [PMID: 31053330 DOI: 10.1016/j.funbio.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
DNA damage can cause mutations that in fungal plant pathogens lead to hypervirulence and resistance to pesticides. Almost nothing is known about the response of these fungi to DNA damage. We performed transcriptomic and phosphoproteomic analyses of Fusarium oxysporum exposed to methyl methanesulfonate (MMS). At the RNA level we observe massive induction of DNA repair pathways including the global genome nucleotide excision. Cul3, Cul4, several Ubiquitin-like ligases and components of the proteasome are significantly induced. In agreement, we observed drug synergism between a proteasome inhibitor and MMS. While our data suggest that Yap1 and Xbp1 networks are similarly activated in response to damage in yeast and F. oxysporum we were able to observe modules that were MMS-responsive in F. oxysporum and not in yeast. These include transcription/splicing modules that are upregulated and respiration that is down-regulated. In agreement, MMS treated cells are much more sensitive to a respiration inhibitor. At the phosphoproteomic level, Adenylate cyclase, which generates cAMP, is phosphorylated in response to MMS and forms a network of phosphorylated proteins that include cell cycle regulators and several MAPKs. Our analysis provides a starting point in understanding how genomic changes in response to DNA damage occur in Fusarium species.
Collapse
Affiliation(s)
- Shira Milo-Cochavi
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Manish Pareek
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gregory Delulio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yael Almog
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gautam Anand
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel.
| |
Collapse
|
23
|
MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Curr Genet 2019; 65:1025-1040. [DOI: 10.1007/s00294-019-00957-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/23/2022]
|
24
|
Cornelius RJ, Si J, Cuevas CA, Nelson JW, Gratreak BDK, Pardi R, Yang CL, Ellison DH. Renal COP9 Signalosome Deficiency Alters CUL3-KLHL3-WNK Signaling Pathway. J Am Soc Nephrol 2018; 29:2627-2640. [PMID: 30301860 PMCID: PMC6218864 DOI: 10.1681/asn.2018030333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/07/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The familial hyperkalemic hypertension (FHHt) cullin 3 (CUL3) mutant does not degrade WNK kinases normally, thereby leading to thiazide-sensitive Na-Cl cotransporter (NCC) activation. CUL3 mutant (CUL3Δ9) does not bind normally to the COP9 signalosome (CSN), a deneddylase involved in regulating cullin-RING ligases. CUL3Δ9 also caused increased degradation of the CUL3-WNK substrate adaptor kelch-like 3 (KLHL3). Here, we sought to determine how defective CSN action contributes to the CUL3Δ9 phenotype. METHODS The Pax8/LC1 mouse system was used to generate mice in which the catalytically active CSN subunit, Jab1, was deleted only along the nephron, after full development (KS-Jab1-/-). RESULTS Western blot analysis demonstrated that Jab1 deletion increased the abundance of neddylated CUL3. Moreover, total CUL3 expression was reduced, suggesting decreased CUL3 stability. KLHL3 was almost completely absent in KS-Jab1-/- mice. Conversely, the protein abundances of WNK1, WNK4, and SPAK kinases were substantially higher. Activation of WNK4, SPAK, and OSR1 was indicated by higher phosphorylated protein levels and translocation of the proteins into puncta, as observed by immunofluorescence. The ratio of phosphorylated NCC to total NCC was also higher. Surprisingly, NCC protein abundance was low, likely contributing to hypokalemia and Na+ and K+ wasting. Additionally, long-term Jab1 deletion resulted in kidney damage. CONCLUSIONS Together, the results indicate that deficient CSN binding contributes importantly to the FHHt phenotype. Although defective CUL3Δ9-faciliated WNK4 degradation likely contributes, dominant effects on KLHL3 may be a second factor that is necessary for the phenotype.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jinge Si
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Catherina A Cuevas
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Brittany D K Gratreak
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Ruggero Pardi
- School of Medicine and Scientific Institute, San Raffaele University, Milan, Italy; and
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon;
- Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
25
|
Brough R, Gulati A, Haider S, Kumar R, Campbell J, Knudsen E, Pettitt SJ, Ryan CJ, Lord CJ. Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer. Oncogene 2018; 37:5701-5718. [PMID: 29915391 PMCID: PMC6202330 DOI: 10.1038/s41388-018-0368-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
Abstract
Although defects in the RB1 tumour suppressor are one of the more common driver alterations found in triple-negative breast cancer (TNBC), therapeutic approaches that exploit this have not been identified. By integrating molecular profiling data with data from multiple genetic perturbation screens, we identified candidate synthetic lethal (SL) interactions associated with RB1 defects in TNBC. We refined this analysis by identifying the highly penetrant effects, reasoning that these would be more robust in the face of molecular heterogeneity and would represent more promising therapeutic targets. A significant proportion of the highly penetrant RB1 SL effects involved proteins closely associated with RB1 function, suggesting that this might be a defining characteristic. These included nuclear pore complex components associated with the MAD2 spindle checkpoint protein, the kinase and bromodomain containing transcription factor TAF1, and multiple components of the SCFSKP Cullin F box containing complex. Small-molecule inhibition of SCFSKP elicited an increase in p27Kip levels, providing a mechanistic rationale for RB1 SL. Transcript expression of SKP2, a SCFSKP component, was elevated in RB1-defective TNBCs, suggesting that in these tumours, SKP2 activity might buffer the effects of RB1 dysfunction.
Collapse
Affiliation(s)
- Rachel Brough
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
| | - Rahul Kumar
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Erik Knudsen
- Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Stephen J Pettitt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.
- School of Computer Science, University College Dublin, Dublin, Ireland.
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK.
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
26
|
Cornelius RJ, Zhang C, Erspamer KJ, Agbor LN, Sigmund CD, Singer JD, Yang CL, Ellison DH. Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Renal Physiol 2018; 315:F1006-F1018. [PMID: 29897280 PMCID: PMC6230741 DOI: 10.1152/ajprenal.00602.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/11/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Familial hyperkalemic hypertension is caused by mutations in with-no-lysine kinases (WNKs) or in proteins that mediate their degradation, kelch-like 3 (KLHL3) and cullin 3 (CUL3). Although the mechanisms by which WNK and KLHL3 mutations cause the disease are now clear, the effects of the disease-causing CUL3Δ403-459 mutation remain controversial. Possible mechanisms, including hyperneddylation, altered ubiquitin ligase activity, decreased association with the COP9 signalosome (CSN), and increased association with and degradation of KLHL3 have all been postulated. Here, we systematically evaluated the effects of Cul3Δ403-459 using cultured kidney cells. We first identified that the catalytically active CSN subunit jun activation domain-binding protein-1 (JAB1) does not associate with the deleted Cul3 4-helix bundle domain but instead with the adjacent α/β1 domain, suggesting that altered protein folding underlies the impaired binding. Inhibition of deneddylation with JAB1 siRNA increased Cul3 neddylation and decreased KLHL3 abundance, similar to the Cul3 mutant. We next determined that KLHL3 degradation has both ubiquitin ligase-dependent and -independent components. Proteasomal KLHL3 degradation was enhanced by Cul3Δ403-459; however, autophagic degradation was also upregulated by this Cul3 mutant. Finally, to evaluate whether deficient substrate adaptor was responsible for the disease, we restored KLHL3 to wild-type (WT) Cul3 levels. In the absence of WT Cul3, WNK4 was not degraded, demonstrating that Cul3Δ403-459 itself cannot degrade WNK4; conversely, when WT Cul3 was present, as in diseased humans, WNK4 degradation was restored. In conclusion, deletion of exon 9 from Cul3 generates a protein that is itself ubiquitin-ligase defective but also capable of enhanced autophagocytic KLHL3 degradation, thereby exerting dominant-negative effects on the WT allele.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - Larry N Agbor
- Department of Pharmacology, UIHC Center for Hypertension Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, UIHC Center for Hypertension Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jeffrey D Singer
- Department of Biology, Portland State University , Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
- Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
27
|
Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A. Integrating plant and animal biology for the search of novel DNA damage biomarkers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:21-38. [DOI: 10.1016/j.mrrev.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
28
|
Zhao J, Zhang B, Lai G, Xu R, Chu G, Zhao Y. 20-Hydroxyeicosatetraenoic acid regulates the expression of Nedd4-2 in kidney and liver through a neddylation modification pathway. Mol Med Rep 2017; 16:9671-9677. [DOI: 10.3892/mmr.2017.7803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/18/2017] [Indexed: 11/06/2022] Open
|
29
|
Wei Y, Xu X. UFMylation: A Unique & Fashionable Modification for Life. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:140-146. [PMID: 27212118 PMCID: PMC4936604 DOI: 10.1016/j.gpb.2016.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 10/28/2022]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is one of the newly-identified ubiquitin-like proteins. Similar to ubiquitin, UFM1 is conjugated to its target proteins by a three-step enzymatic reaction. The UFM1-activating enzyme, ubiquitin-like modifier-activating enzyme 5 (UBA5), serves as the E1 to activate UFM1; UFM1-conjugating enzyme 1 (UFC1) acts as the E2 to transfer the activated UFM1 to the active site of the E2; and the UFM1-specific ligase 1 (UFL1) acts as the E3 to recognize its substrate, transfer, and ligate the UFM1 from E2 to the substrate. This process is called ufmylation. UFM1 chains can be cleaved from its target proteins by UFM1-specific proteases (UfSPs), suggesting that the ufmylation modification is reversible. UFM1 cascade is conserved among nearly all of the eukaryotic organisms, but not in yeast, and associated with several cellular activities including the endoplasmic reticulum stress response and hematopoiesis. Furthermore, the UFM1 cascade is closely related to a series of human diseases. In this review, we summarize the molecular details of this reversible modification process, the recent progress of its functional studies, as well as its implication in tumorigenesis and potential therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ying Wei
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
30
|
Simões J, Bezerra AR, Moura GR, Araújo H, Gut I, Bayes M, Santos MAS. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons. Front Microbiol 2016; 7:401. [PMID: 27065968 PMCID: PMC4814463 DOI: 10.3389/fmicb.2016.00401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans.
Collapse
Affiliation(s)
- João Simões
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Ana R Bezerra
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Gabriela R Moura
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Hugo Araújo
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Ivo Gut
- Centro Nacional de Análises Genómico, Parc Científic Barcelona, Spain
| | - Mónica Bayes
- Centro Nacional de Análises Genómico, Parc Científic Barcelona, Spain
| | - Manuel A S Santos
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| |
Collapse
|