1
|
Wikar T, Rubinkiewicz M, Stygar D, Chełmecka E, Popiela U, Michał W, Tylec P, Maziarz B, Kukla M. Changes in Circulating Adipokine Levels in COVID-19 Patients. J Clin Med 2024; 13:4784. [PMID: 39200926 PMCID: PMC11355170 DOI: 10.3390/jcm13164784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Objective: The COVID-19 pandemic has posed significant global health challenges. Despite extensive research efforts, the inflammatory response triggered by SARS-CoV-2 remains to be further explored and understood. Our study aims to examine the changes in serum concentrations of pro-inflammatory adipokines-visfatin and leptin-in COVID-19 patients in relation to a healthy control group. Patients/Materials/Subjects and Methods: The study consisted of forty COVID-19 patients and twenty-four healthy patients in the control group. Two serum samples were collected: upon admission and on the seventh day of hospitalization. Concentrations of visfatin and leptin in the serum, alongside routine biochemical parameters, were measured using enzyme immunoassay or enzyme-linked immunosorbent assay kits. The Shapiro-Wilk test was used to assess normality. Differences between independent groups were compared using the Mann-Whitney U test and Kruskal-Wallis ANOVA. Correlations were evaluated with Spearman's rank correlation coefficient. Results: Our findings revealed significantly lower visfatin levels in COVID-19 patients compared to the control group upon admission (4.29 ng/mL, (3.0-6.88 ng/mL) vs. 37.16 ng/mL (24.74-50.12 ng/mL), p < 0.001 for visfatin 1 and 52.05 ng/mL, (31.2-69.66 ng/mL) vs. 37.16 ng/mL (24.74-50.12 ng/mL), p = 0.048 for visfatin 2). The visfatin level of COVID-19 patients returned to the normal levels, established in the control group. However, there was no significant difference in leptin levels between the two groups (p = 0.270 for leptin 1 and p = 0.129 for leptin 2). There was a positive correlation between BMI and leptin concentration (r = 0.66 and p = 0.00). Moreover, it was discovered that COVID-19 independently reduces visfatin levels during the first day of illness. Conclusions: The results of our research suggest that the onset of COVID-19 infection is correlated to visfatin levels. Association with leptin levels remains inconclusive. Further research is imperative to elucidate the intricate role of visfatin and leptin in SARS-CoV-2 infection and their potential as biomarkers for COVID-19 severity and prognosis.
Collapse
Affiliation(s)
- Tomasz Wikar
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-066 Kraków, Poland
- Department of Medical Education, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Mateusz Rubinkiewicz
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Elżbieta Chełmecka
- Department of Medical Statistic, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Sosnowiec, Poland
| | - Urszula Popiela
- 2nd Department of General Surgery, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Wysocki Michał
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, 31-826 Kraków, Poland
| | - Piotr Tylec
- Faculty of Medicine, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Barbara Maziarz
- Department of Diagnostics, University Hospital, 30-688 Kraków, Poland
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Department of Endoscopy, University Hospital in Kraków, 30-688 Krakow, Poland
| |
Collapse
|
2
|
Santana A, Prestes GDS, da Silva MD, Girardi CS, Silva LDS, Moreira JCF, Gelain DP, Westphal GA, Kupek E, Walz R, Dal-Pizzol F, Ritter C. Identification of distinct phenotypes and improving prognosis using metabolic biomarkers in COVID-19 patients. CRITICAL CARE SCIENCE 2024; 36:e20240028en. [PMID: 39109758 PMCID: PMC11321718 DOI: 10.62675/2965-2774.20240028-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the relationship between the levels of adipokines and other endocrine biomarkers and patient outcomes in hospitalized patients with COVID-19. METHODS In a prospective study that included 213 subjects with COVID-19 admitted to the intensive care unit, we measured the levels of cortisol, C-peptide, glucagon-like peptide-1, insulin, peptide YY, ghrelin, leptin, and resistin.; their contributions to patient clustering, disease severity, and predicting in-hospital mortality were analyzed. RESULTS Cortisol, resistin, leptin, insulin, and ghrelin levels significantly differed between severity groups, as defined by the World Health Organization severity scale. Additionally, lower ghrelin and higher cortisol levels were associated with mortality. Adding biomarkers to the clinical predictors of mortality significantly improved accuracy in determining prognosis. Phenotyping of subjects based on plasma biomarker levels yielded two different phenotypes that were associated with disease severity, but not mortality. CONCLUSION As a single biomarker, only cortisol was independently associated with mortality; however, metabolic biomarkers could improve mortality prediction when added to clinical parameters. Metabolic biomarker phenotypes were differentially distributed according to COVID-19 severity but were not associated with mortality.
Collapse
Affiliation(s)
- Andressa Santana
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
| | - Gabriele da Silveira Prestes
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
| | - Marinara Dagostin da Silva
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
| | - Carolina Saibro Girardi
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Lucas dos Santos Silva
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - José Cláudio Fonseca Moreira
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Daniel Pens Gelain
- Center for Oxidative Stress StudiesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilDepartment of Biochemistry, Center for Oxidative Stress Studies, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | | | - Emil Kupek
- Public Health DepartmentUniversidade Federal de Santa CatarinaFlorianópolisSCBrazilPublic Health Department, Universidade Federal de Santa Catarina - Florianópolis (SC), Brazil.
| | - Roger Walz
- Department of Clinical MedicineHospital UniversitárioUniversidade Federal de Santa CatarinaFlorianópolisSCBrazilCenter for Applied Neuroscience, Department of Clinical Medicine, Hospital Universitário, Universidade Federal de Santa Catarina - Florianópolis (SC), Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
- Intensive Care UnitHospital São JoséCriciúmaSCBrazilIntensive Care Unit, Hospital São José - Criciúma (SC), Brazil.
| | - Cristiane Ritter
- Laboratory of Experimental PathophysiologyPosgraduate Program in Health SciencesUniversidade do Extremo Sul CatarinenseCriciúmaSCBrazilLaboratory of Experimental Pathophysiology, Posgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - Criciúma (SC), Brazil.
- Intensive Care UnitHospital São JoséCriciúmaSCBrazilIntensive Care Unit, Hospital São José - Criciúma (SC), Brazil.
| |
Collapse
|
3
|
da Silva GB, Manica D, da Silva AP, Valcarenghi E, Donassolo SR, Kosvoski GC, Mingoti MED, Gavioli J, Cassol JV, Hanauer MC, Hellmann MB, Marafon F, Bertollo AG, de Medeiros J, Cortez AD, Réus GZ, de Oliveira GG, Ignácio ZM, Bagatini MD. Peripheral biomarkers as a predictor of poor prognosis in severe cases of COVID-19. Am J Med Sci 2024; 368:122-135. [PMID: 38636654 DOI: 10.1016/j.amjms.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/29/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
We evaluated glycemia and triglyceride, hepatic, muscular, and renal damage markers, redox profile, and leptin and ghrelin hormone levels in COVID-19 patients. We also conducted statistical analysis to verify the potential of biomarkers to predict poor prognosis and the correlation between them in severe cases. We assessed glycemia and the levels of triglycerides, hepatic, muscular, and renal markers in automatized biochemical analyzer. The leptin and ghrelin hormones were assessed by the ELISA assay. Severe cases presented high glycemia and triglyceride levels. Hepatic, muscular, and renal biomarkers were altered in severe patients. Oxidative stress status was found in severe COVID-19 patients. Severe cases also had increased levels of leptin. The ROC curves indicated many biomarkers as poor prognosis predictors in severe cases. The Spearman analysis showed that biomarkers correlate between themselves. Patients with COVID-19 showed significant dysregulation in the levels of several peripheral biomarkers. We bring to light that a robust panel of peripheral biomarkers and hormones predict poor prognosis in severe cases of COVID-19 and biomarkers correlate with each other. Early monitoring of these biomarkers may lead to appropriate clinical interventions in patients infected by SARS-CoV2.
Collapse
Affiliation(s)
- Gilnei B da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, SC, Brazil
| | - Alana P da Silva
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, SC, Brazil
| | - Eduarda Valcarenghi
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Sabine R Donassolo
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Greicy C Kosvoski
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli E D Mingoti
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Jullye Gavioli
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Joana V Cassol
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Marceli C Hanauer
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Mariélly B Hellmann
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda G Bertollo
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Jesiel de Medeiros
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Arthur D Cortez
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Gislaine Z Réus
- Postgraduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriela G de Oliveira
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide M Ignácio
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
4
|
Quaranta P, Scabia G, Storti B, Dattilo A, Quintino L, Perrera P, Di Primio C, Costa M, Pistello M, Bizzarri R, Maffei M. SARS-CoV-2 Infection Alters the Phenotype and Gene Expression of Adipocytes. Int J Mol Sci 2024; 25:2086. [PMID: 38396763 PMCID: PMC10889321 DOI: 10.3390/ijms25042086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Epidemiological evidence emphasizes that excess fat mass is associated with an increased risk of severe COVID-19 disease. Nevertheless, the intricate interplay between SARS-CoV-2 and adipocytes remains poorly understood. It is crucial to decipher the progression of COVID-19 both in the acute phase and on long-term outcomes. In this study, an in vitro model using the human SGBS cell line (Simpson-Golabi-Behmel syndrome) was developed to investigate the infectivity of SARS-CoV-2 in adipocytes, and the effects of virus exposure on adipocyte function. Our results show that SGBS adipocytes expressing ACE2 are susceptible to SARS-CoV-2 infection, as evidenced by the release of the viral genome into the medium, detection of the nucleocapsid in cell lysates, and positive immunostaining for the spike protein. Infected adipocytes show remarkable changes compared to uninfected controls: increased surface area of lipid droplets, upregulated expression of genes of inflammation (Haptoglobin, MCP-1, IL-6, PAI-1), increased oxidative stress (MnSOD), and a concomitant reduction of transcripts related to adipocyte function (leptin, fatty acid synthase, perilipin). Moreover, exogenous expression of spike protein in SGBS adipocytes also led to an increase in lipid droplet size. In conclusion using the human SGBS cell line, we detected SARS-CoV-2 infectivity in adipocytes, revealing substantial morphological and functional changes in infected cells.
Collapse
Affiliation(s)
- Paola Quaranta
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (P.Q.); (P.P.); (M.P.)
- National Research Council—Institute of Neuroscience, Via Moruzzi 1, 56124 Pisa, Italy; (C.D.P.); (M.C.)
| | - Gaia Scabia
- National Research Council—Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (G.S.); (L.Q.)
- Center for Obesity and Lipodystrophy, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy;
| | - Barbara Storti
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, National Research Council—Institute of Nanoscience, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Alessia Dattilo
- Center for Obesity and Lipodystrophy, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy;
| | - Lara Quintino
- National Research Council—Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (G.S.); (L.Q.)
| | - Paola Perrera
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (P.Q.); (P.P.); (M.P.)
| | - Cristina Di Primio
- National Research Council—Institute of Neuroscience, Via Moruzzi 1, 56124 Pisa, Italy; (C.D.P.); (M.C.)
| | - Mario Costa
- National Research Council—Institute of Neuroscience, Via Moruzzi 1, 56124 Pisa, Italy; (C.D.P.); (M.C.)
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (P.Q.); (P.P.); (M.P.)
- Virology Unit, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Ranieri Bizzarri
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, National Research Council—Institute of Nanoscience, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Margherita Maffei
- National Research Council—Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (G.S.); (L.Q.)
- Center for Obesity and Lipodystrophy, Pisa University-Hospital, Via Paradisa 2, 56124 Pisa, Italy;
- Italian National Institute for Nuclear Physics, Via Filippo Buonarroti 3, 56127 Pisa, Italy
| |
Collapse
|
5
|
Yang Y, Song Y, Hou D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab Syndr Obes 2023; 16:4147-4156. [PMID: 38145256 PMCID: PMC10749174 DOI: 10.2147/dmso.s441762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity is a principle causative factor of various metabolic dysfunctions, chronic inflammation, and multi-organ impairment. The global epidemic of obesity has constituted the greatest threat to global health. Emerging evidence has associated obesity with an increased risk of severe infection and poor outcomes from coronavirus disease 2019 (COVID-19). During current COVID-19 pandemic, the interaction between COVID-19 and obesity has exaggerated the disease burden of obesity more than ever before. Thus, there is an urgent need for consideration of universal measures to reduce the risk of complications and severe illness from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in obesity population. In this review, we first summarized the clinical evidence on the effect of obesity on susceptibility, severity, and prognosis of COVID-19. Then we discussed and the underlying mechanisms, including respiratory pathophysiology of obesity, dysregulated inflammation, upregulated angiotensin-converting enzyme 2 (ACE2) expression, hyperglycemia, and adipokines. Finally, we proposed recommendations on how to reduce the spread and pandemic of SARS-CoV-2 infection by prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yanping Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Respiratory Research Institute, Shanghai, People’s Republic of China
| | - Dongni Hou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Goncharov NV, Avdonin PP, Voitenko NG, Voronina PA, Popova PI, Novozhilov AV, Blinova MS, Popkova VS, Belinskaia DA, Avdonin PV. Searching for New Biomarkers to Assess COVID-19 Patients: A Pilot Study. Metabolites 2023; 13:1194. [PMID: 38132876 PMCID: PMC10745512 DOI: 10.3390/metabo13121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
During the initial diagnosis of urgent medical conditions, which include acute infectious diseases, it is important to assess the severity of the patient's clinical state as quickly as possible. Unlike individual biochemical or physiological indicators, derived indices make it possible to better characterize a complex syndrome as a set of symptoms, and therefore quickly take a set of adequate measures. Recently, we reported on novel diagnostic indices containing butyrylcholinesterase (BChE) activity, which is decreased in COVID-19 patients. Also, in these patients, the secretion of von Willebrand factor (vWF) increases, which leads to thrombosis in the microvascular bed. The objective of this study was the determination of the concentration and activity of vWF in patients with COVID-19, and the search for new diagnostic indices. One of the main objectives was to compare the prognostic values of some individual and newly derived indices. Patients with COVID-19 were retrospectively divided into two groups: survivors (n = 77) and deceased (n = 24). According to clinical symptoms and computed tomography (CT) results, the course of disease was predominantly moderate in severity. The first blood sample (first point) was taken upon admission to the hospital, the second sample (second point)-within 4-6 days after admission. Along with the standard spectrum of biochemical indicators, BChE activity (BChEa or BChEb for acetylthiocholin or butyrylthiocholin, respectively), malondialdehyde (MDA), and vWF analysis (its antigen level, AGFW, and its activity, ActWF) were determined and new diagnostic indices were derived. The pooled sensitivity, specificity, and area under the receiver operating curve (AUC), as well as Likelihood ratio (LR) and Odds ratio (OR) were calculated. The level of vWF antigen in the deceased group was 1.5-fold higher than the level in the group of survivors. Indices that include vWF antigen levels are superior to indices using vWF activity. It was found that the index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) had the best discriminatory power to predict COVID-19 mortality (AUC = 0.91 [0.83, 1.00], p < 0.0001; OR = 72.0 [7.5, 689], p = 0.0002). In addition, [Urea] × 1000/(BChEb × [ALB]) was a good predictor of mortality (AUC = 0.95 [0.89, 1.00], p < 0.0001; OR = 31.5 [3.4, 293], p = 0.0024). The index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) was the best predictor of mortality associated with COVID-19 infection, followed by [Urea] × 1000/(BChEb × [ALB]). After validation in a subsequent cohort, these two indices could be recommended for diagnostic laboratories.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | | | - Artemy V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Maria S. Blinova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Victoria S. Popkova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| |
Collapse
|
7
|
de Nooijer AH, Pickkers P, Netea MG, Kox M. Inflammatory biomarkers to predict the prognosis of acute bacterial and viral infections. J Crit Care 2023; 78:154360. [PMID: 37343422 DOI: 10.1016/j.jcrc.2023.154360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Mortality in acute infections is mostly associated with sepsis, defined as 'life-threatening organ dysfunction caused by a dysregulated host response to infection'. It remains challenging to identify the patients with increased mortality risk due to the high heterogeneity in the dysregulated host immune response and disease progression. Biomarkers reflecting different pathways involved in the inflammatory response might improve prediction of mortality risk (prognostic enrichment) among patients with acute infections by reducing heterogeneity of the host response, as well as suggest novel strategies for patient stratification and treatment (predictive enrichment) through precision medicine approaches. The predictive value of inflammatory biomarkers has been extensively investigated in bacterial infections and the recent COVID-19 pandemic caused an increased interest in inflammatory biomarkers in this viral infection. However, limited research investigated whether the prognostic potential of these biomarkers differs between bacterial and viral infections. In this narrative review, we provide an overview of the value of various inflammatory biomarkers for the prediction of mortality in bacterial and viral infections.
Collapse
Affiliation(s)
- Aline H de Nooijer
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Esendagli D, Topcu D, Gul E, Alperen C, Sezer R, Erol C, Akcay S. Can adipokines predict clinical prognosis and post-COVID lung sequelae? Respir Investig 2023; 61:618-624. [PMID: 37433250 DOI: 10.1016/j.resinv.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Adipokines play an important role in the regulation of inflammatory responses toward infections, including COVID-19. This study aimed to investigate the role of chemerin, adiponectin, and leptin in prognosis and post-COVID lung sequelae in hospitalized patients with COVID-19. METHODS Serum levels of the three adipokines were measured upon admission of polymerase chain reaction-confirmed patients with COVID-19 who were followed up for 6 months for the clinical outcome and lung sequelae formation. RESULTS A total of 77 patients were included in the study. Of the 77 patients, 58.4% were males, and the median age was 63.2 ± 18.3 years. Fifty-one patients (66.2%) had a good prognosis. Among adipokines, only chemerin was significantly lower in the bad prognosis group (P < 0.05), and the serum levels showed a negative correlation with age (rho = -0.238; P < 0.05). Leptin levels were negatively correlated with gamma glutamyl transferase levels, which were significantly higher in the bad prognostic group (rho = -0.240; P < 0.05). Twenty-four patients had no lung sequelae, and 20 developed sequelae within 6 months after infection. Chemerin/adiponectin ratio with a cut-off value of 0.96 and an area under the curve 0.679 (P < 0.05) might predict the sequelae formation. CONCLUSIONS Chemerin levels are lower, especially in patients with a bad prognosis, and the chemerin/adiponectin ratio might predict the development of lung sequelae in patients with COVID-19.
Collapse
Affiliation(s)
- Dorina Esendagli
- Department of Chest Diseases, Baskent University, Faculty of Medicine, Ankara, Turkey.
| | - Deniz Topcu
- Department of Biochemistry, Baskent University, Faculty of Medicine, Ankara, Turkey
| | - Eylem Gul
- Institutional Big Data Management Coordination Office, Middle East Technical University, Ankara, Turkey
| | - Cansu Alperen
- Department of Internal Medicine, Baskent University, Faculty of Medicine, Ankara, Turkey
| | - Rahime Sezer
- Department of Radiology, Baskent University, Faculty of Medicine, Ankara, Turkey
| | - Cigdem Erol
- Department of Infection, Baskent University, Faculty of Medicine, Ankara, Turkey
| | - Sule Akcay
- Department of Chest Diseases, Baskent University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Boicean LC, Birlutiu RM, Birlutiu V. Correlations between serum leptin levels and classical biomarkers in SARS-CoV-2 infection, in critically ill patients. Microb Pathog 2023; 182:106238. [PMID: 37419217 DOI: 10.1016/j.micpath.2023.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Altered levels of some blood markers might be linked with the degree of severity and mortality of patients with SARS-CoV-2 infection. This study aimed to find out if there are correlations between serum leptin levels and classical biomarkers. MATERIALS AND METHODS We present a single-center observational cohort study on SARS-CoV-2 infected patients. The study was conducted at Infectious Diseases Clinic of Academic Emergency Hospital Sibiu, from May through November 2020. In this study, we retrospectively analyzed 54 patients, all with confirmed SARS-CoV-2 infection. RESULTS Our results revealed that there is a negative correlation between serum leptin and Interleukin-6 levels and a positive correlation between serum leptin and blood glucose levels. A positive correlation between ferritin and lactate dehydrogenase levels was also observed. No correlation was found between leptin and other biomarkers such as ferritin, neutrophil/lymphocyte ratio, lactate dehydrogenase, C-reactive protein, fibrinogen, erythrocyte sedimentation rate, or D-dimer. CONCLUSIONS Further studies need to be conducted to investigate the role of leptin in SARS-CoV-2 infection. The results of this research could contribute to the introduction of the determination of serum leptin levels in the routine evaluation of patients with critical illness.
Collapse
Affiliation(s)
- Loredana Camelia Boicean
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania.
| | | | - Victoria Birlutiu
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania
| |
Collapse
|
10
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
11
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Ambrosino P, Moretta P, Lanzillo A, Formisano R, Maniscalco M. Implementing Translational Research to Understand the Future of COVID-19 and Its Long-Term Consequences: A Degrowth Perspective or the Transformation of a Global Emergency? Biomedicines 2023; 11:117. [PMID: 36672625 PMCID: PMC9855765 DOI: 10.3390/biomedicines11010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
It has now been three years since the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first gave rise to a global health crisis [...].
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Pasquale Moretta
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Anna Lanzillo
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| |
Collapse
|
13
|
Flikweert AW, Kobold ACM, van der Sar-van der Brugge S, Heeringa P, Rodenhuis-Zybert IA, Bijzet J, Tami A, van der Gun BTF, Wold KI, Huckriede A, Franke H, Emmen JMA, Emous M, Grootenboers MJJH, van Meurs M, van der Voort PHJ, Moser J. Circulating adipokine levels and COVID-19 severity in hospitalized patients. Int J Obes (Lond) 2023; 47:126-137. [PMID: 36509969 PMCID: PMC9742670 DOI: 10.1038/s41366-022-01246-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a risk factor for adverse outcomes in COVID-19, potentially driven by chronic inflammatory state due to dysregulated secretion of adipokines and cytokines. We investigated the association between plasma adipokines and COVID-19 severity, systemic inflammation, clinical parameters, and outcome of COVID-19 patients. METHODS In this multi-centre prospective cross-sectional study, we collected blood samples and clinical data from COVID-19 patients. The severity of COVID-19 was classified as mild (no hospital admission), severe (ward admission), and critical (ICU admission). ICU non-COVID-19 patients were also included and plasma from healthy age, sex, and BMI-matched individuals obtained from Lifelines. Multi-analyte profiling of plasma adipokines (Leptin, Adiponectin, Resistin, Visfatin) and inflammatory markers (IL-6, TNFα, IL-10) were determined using Luminex multiplex assays. RESULTS Between March and December 2020, 260 SARS-CoV-2 infected individuals (age: 65 [56-74] BMI 27.0 [24.4-30.6]) were included: 30 mild, 159 severe, and 71 critical patients. Circulating leptin levels were reduced in critically ill patients with a high BMI yet this decrease was absent in patients that were administered dexamethasone. Visfatin levels were higher in critical COVID-19 patients compared to non-COVID-ICU, mild and severe patients (4.7 vs 3.4, 3.0, and 3.72 ng/mL respectively, p < 0.05). Lower Adiponectin levels, but higher Resistin levels were found in severe and critical patients, compared to those that did not require hospitalization (3.65, 2.7 vs 7.9 µg/mL, p < 0.001, and 18.2, 22.0 vs 11.0 ng/mL p < 0.001). CONCLUSION Circulating adipokine levels are associated with COVID-19 hospitalization, i.e., the need for oxygen support (general ward), or the need for mechanical ventilation and other organ support in the ICU, but not mortality.
Collapse
Affiliation(s)
- Antine W. Flikweert
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.413711.10000 0004 4687 1426Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
| | - Anneke C. Muller Kobold
- grid.4494.d0000 0000 9558 4598Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Peter Heeringa
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Bijzet
- grid.4494.d0000 0000 9558 4598Department of Rheumatology & Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriana Tami
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernardina T. F. van der Gun
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin I. Wold
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hildegard Franke
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. A. Emmen
- grid.413711.10000 0004 4687 1426Result Laboratory, Amphia Hospital, Breda, The Netherlands
| | - Marloes Emous
- grid.414846.b0000 0004 0419 3743Center Obesity Northern Netherlands (CON), Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | | | - Matijs van Meurs
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter H. J. van der Voort
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Ray A, Bonorden MJL, Pandit R, Nkhata KJ, Bishayee A. Infections and immunity: associations with obesity and related metabolic disorders. J Pathol Transl Med 2023; 57:28-42. [PMID: 36647284 PMCID: PMC9846011 DOI: 10.4132/jptm.2022.11.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2023] Open
Abstract
About one-fourth of the global population is either overweight or obese, both of which increase the risk of insulin resistance, cardiovascular diseases, and infections. In obesity, both immune cells and adipocytes produce an excess of pro-inflammatory cytokines that may play a significant role in disease progression. In the recent coronavirus disease 2019 (COVID-19) pandemic, important pathological characteristics such as involvement of the renin-angiotensin-aldosterone system, endothelial injury, and pro-inflammatory cytokine release have been shown to be connected with obesity and associated sequelae such as insulin resistance/type 2 diabetes and hypertension. This pathological connection may explain the severity of COVID-19 in patients with metabolic disorders. Many studies have also reported an association between type 2 diabetes and persistent viral infections. Similarly, diabetes favors the growth of various microorganisms including protozoal pathogens as well as opportunistic bacteria and fungi. Furthermore, diabetes is a risk factor for a number of prion-like diseases. There is also an interesting relationship between helminths and type 2 diabetes; helminthiasis may reduce the pro-inflammatory state, but is also associated with type 2 diabetes or even neoplastic processes. Several studies have also documented altered circulating levels of neutrophils, lymphocytes, and monocytes in obesity, which likely modifies vaccine effectiveness. Timely monitoring of inflammatory markers (e.g., C-reactive protein) and energy homeostasis markers (e.g., leptin) could be helpful in preventing many obesity-related diseases.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, Philippi, WV, USA,Corresponding Author: Amitabha Ray, MD, PhD, College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA Tel: +1-304-457-6587, Fax: +1-304-457-6308, E-mail:
| | | | - Rajashree Pandit
- Division of Medical & Behavioral Health, Pueblo Community College, Pueblo, CO, USA
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
15
|
Hindsberger B, Lindegaard B, Rabøl Andersen L, Bastrup Israelsen S, Pedersen L, Bela Szecsi P, Benfield T. Circulating Adiponectin Levels Are Inversely Associated with Mortality and Respiratory Failure in Patients Hospitalized with COVID-19. Int J Endocrinol 2023; 2023:4427873. [PMID: 36960389 PMCID: PMC10030212 DOI: 10.1155/2023/4427873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Chronic low-grade inflammation associated with a dysregulated adipose tissue might contribute to amplifying the inflammatory response in severe COVID-19. The aim of this study was to examine the association between levels of circulating leptin and adiponectin and the severity and mortality of COVID-19. METHODS Serum levels of leptin and adiponectin were determined at admission in 123 individuals with confirmed COVID-19 and their association with 90-day mortality and respiratory failure was analyzed by logistic regression analysis and expressed as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS The median values of circulating leptin and adiponectin were 7.2 ng/mL (IQR 3.8-13.4) and 9.0 μg/mL (IQR 5.7-14.6), respectively. After adjustment for age, sex, body mass index, hypertension, diabetes, chronic obstructive pulmonary disease, and oxygen saturation at admission, a doubling of circulating adiponectin was associated with a 38% reduction in odds of 90-day mortality (OR 0.62, CI 0.43-0.89) and a 40% reduction in odds of respiratory failure (OR 0.60, CI 0.42-0.86). The association tended to be strongest in individuals below the median age of 72 years. Circulating leptin was not associated with outcomes. CONCLUSIONS Circulating adiponectin at admission was inversely associated with mortality and respiratory failure in SARS-CoV-2 infection. Further studies are needed to elucidate how exactly adipokines, especially adiponectin, are linked to the progression and prognosis of COVID-19.
Collapse
Affiliation(s)
- Bettina Hindsberger
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Birgitte Lindegaard
- Department of Infectious Diseases, Copenhagen University Hospital–North Zealand, 3400 Hilleroed, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Liv Rabøl Andersen
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Simone Bastrup Israelsen
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Lise Pedersen
- Department of Clinical Biochemistry, Holbaek Hospital, 4300 Holbaek, Denmark
| | - Pal Bela Szecsi
- Department of Clinical Biochemistry, Holbaek Hospital, 4300 Holbaek, Denmark
| | - Thomas Benfield
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Larsson AO, Hultström M, Frithiof R, Lipcsey M, Eriksson MB. Shrunken Pore Syndrome Is Frequently Occurring in Severe COVID-19. Int J Mol Sci 2022; 23:ijms232415687. [PMID: 36555328 PMCID: PMC9779236 DOI: 10.3390/ijms232415687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
A selective decrease in the renal filtration of larger molecules is attributed to the shrinkage of glomerular pores, a condition termed Shrunken Pore Syndrome (SPS). SPS is associated with poor long-term prognosis. We studied SPS as a risk marker in a cohort of patients with COVID-19 treated in an intensive care unit. SPS was defined as a ratio < 0.7 when the estimated glomerular filtration rate (eGFR), determined by cystatin C, calculated by the Cystatin C Caucasian-Asian-Pediatric-Adult equation (CAPA), was divided by the eGFR determined by creatinine, calculated by the revised Lund−Malmö creatinine equation (LMR). Clinical data were prospectively collected. In total, SPS was present in 86 (24%) of 352 patients with COVID-19 on ICU admission. Patients with SPS had a higher BMI, Simplified Physiology Score (SAPS3), and had diabetes and/or hypertension more frequently than patients without SPS. Ninety-nine patients in the total cohort were women, 50 of whom had SPS. In dexamethasone-naïve patients, C-reactive protein (CRP ), TNF-alpha, and interleukin-6 did not differ between SPS and non-SPS patients. Demographic factors (gender, BMI) and illness severity (SAPS3) were independent predictors of SPS. Age and dexamethasone treatment did not affect the frequency of SPS after adjustments for age, sex, BMI, and acute severity. SPS is frequent in severely ill COVID-19 patients. Female gender was associated with a higher proportion of SPS. Demographic factors and illness severity were independent predictors of SPS.
Collapse
Affiliation(s)
- Anders O. Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Epidemiology, McGill University, Montréal, QC H3A 0G4, Canada
- Lady Davis Institute of Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Robert Frithiof
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
| | - Miklos Lipcsey
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Mats B. Eriksson
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
- Correspondence: ; Tel.: +46-18-6110000
| |
Collapse
|
17
|
Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19. Biomedicines 2022; 10:biomedicines10112708. [DOI: 10.3390/biomedicines10112708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a systemic disease, frequently affecting kidney function. Dexamethasone is standard treatment in severe COVID-19 cases, and is considered to increase plasma levels of cystatin C. However, this has not been studied in COVID-19. Glomerular filtration rate (GFR) is a clinically important indicator of renal function, but often estimated using equations (eGFR) based on filtered metabolites. This study focuses on sources of bias for eGFRs (mL/min) using a creatinine-based equation (eGFRLMR) and a cystatin C-based equation (eGFRCAPA) in intensive-care-treated patients with COVID-19. This study was performed on 351 patients aged 18 years old or above with severe COVID-19 infections, admitted to the intensive care unit (ICU) in Uppsala University Hospital, a tertiary care hospital in Uppsala, Sweden, between 14 March 2020 and 10 March 2021. Dexamethasone treatment (6 mg for up to 10 days) was introduced 22 June 2020 (n = 232). Values are presented as medians (IQR). eGFRCAPA in dexamethasone-treated patients was 69 (37), and 74 (46) in patients not given dexamethasone (p = 0.01). eGFRLMR was not affected by dexamethasone. eGFRLMR in females was 94 (20), and 75 (38) in males (p = 0.00001). Age and maximal CRP correlated negatively to eGFRCAPA and eGFRLMR, whereas both eGFR equations correlated positively to BMI. In ICU patients with COVID-19, dexamethasone treatment was associated with reduced eGFRCAPA. This finding may be explained by corticosteroid-induced increases in plasma cystatin C. This observation is important from a clinical perspective since adequate interpretation of laboratory results is crucial.
Collapse
|
18
|
ter Ellen BM, Niewold J, Flikweert A, Muller Kobold AC, Heeringa P, van Meurs M, Smit JM, van der Voort PHJ, Rodenhuis-Zybert IA, Moser J. Mediators of Obesity Do Not Influence SARS-CoV-2 Infection or Activation of Primary Human Lung Microvascular Endothelial Cells In Vitro. Front Immunol 2022; 13:879033. [PMID: 35837388 PMCID: PMC9273911 DOI: 10.3389/fimmu.2022.879033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.
Collapse
Affiliation(s)
- Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Niewold
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Antine Flikweert
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pulmonary Medicine, Amphia Hospital, Breda, Netherlands
| | - Anneke C. Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter H. J. van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jill Moser,
| |
Collapse
|
19
|
Obesity and Leptin Resistance in the Regulation of the Type I Interferon Early Response and the Increased Risk for Severe COVID-19. Nutrients 2022; 14:nu14071388. [PMID: 35406000 PMCID: PMC9002648 DOI: 10.3390/nu14071388] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the “Suppressor Of Cytokine Signaling 1 and 3” (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the “typical western” conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.
Collapse
|