1
|
Li W, Yu L. Role and therapeutic perspectives of extracellular vesicles derived from liver and adipose tissue in metabolic dysfunction-associated steatotic liver disease. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:355-369. [PMID: 38833340 DOI: 10.1080/21691401.2024.2360008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The global epidemic of metabolic diseases has led to the emergence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), which pose a significant threat to human health. Despite recent advances in research on the pathogenesis and treatment of MASLD/MASH, there is still a lack of more effective and targeted therapies. Extracellular vesicles (EVs) discovered in a wide range of tissues and body fluids encapsulate different activated biomolecules and mediate intercellular communication. Recent studies have shown that EVs derived from the liver and adipose tissue (AT) play vital roles in MASLD/MASH pathogenesis and therapeutics, depending on their sources and intervention types. Besides, adipose-derived stem cell (ADSC)-derived EVs appear to be more effective in mitigating MASLD/MASH. This review presents an overview of the definition, extraction strategies, and characterisation of EVs, with a particular focus on the biogenesis and release of exosomes. It also reviews the effects and potential molecular mechanisms of liver- and AT-derived EVs on MASLD/MASH, and emphasises the contribution and clinical therapeutic potential of ADSC-derived EVs. Furthermore, the future perspective of EV therapy in a clinical setting is discussed.
Collapse
Affiliation(s)
- Wandi Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Endocrine Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Henan, P.R. China
| |
Collapse
|
2
|
Colaianni F, Zelli V, Compagnoni C, Miscione MS, Rossi M, Vecchiotti D, Di Padova M, Alesse E, Zazzeroni F, Tessitore A. Role of Circulating microRNAs in Liver Disease and HCC: Focus on miR-122. Genes (Basel) 2024; 15:1313. [PMID: 39457437 PMCID: PMC11507253 DOI: 10.3390/genes15101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
miR-122 is the most abundant microRNA (miRNA) in the liver; it regulates several genes mainly involved in cell metabolism and inflammation. Host factors, diet, metabolic disorders and viral infection promote the development of liver diseases, including hepatocellular carcinoma (HCC). The downregulation of miR-122 in tissue is a common feature of the progression of liver injury. In addition, the release of miR-122 in the bloodstream seems to be very promising for the early diagnosis of both viral and non-viral liver disease. Although controversial data are available on the role of circulating miR-122 as a single biomarker, high diagnostic accuracy has been observed using miR-122 in combination with other circulating miRNAs and/or proteins. This review is focused on comprehensively summarizing the most recent literature on the potential role of circulating miR-122, and related molecules, as biomarker(s) of metabolic liver diseases, hepatitis and HCC.
Collapse
Affiliation(s)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (F.C.); (C.C.); (M.S.M.); (M.R.); (D.V.); (M.D.P.); (E.A.); (F.Z.); (A.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li S, Cheng F, Zhang Z, Xu R, Shi H, Yan Y. The role of hepatocyte-derived extracellular vesicles in liver and extrahepatic diseases. Biomed Pharmacother 2024; 180:117502. [PMID: 39357327 DOI: 10.1016/j.biopha.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like bodies with a double membrane structure that are released from the cell membrane or secreted by cells into the extracellular environment. These include exosomes, microvesicles, and apoptotic bodies. There is growing evidence indicating that the composition of liver cell contents changes following injury. The quantity of EVs and the biologically active substances they carry vary depending on the condition of the liver cells. Hepatocytes utilize EVs to modulate the functions of different liver cells and transfer them to distant organs via the systemic circulation, thereby playing a crucial role in intercellular communication. This review provides a concise overview of the research on the effects and potential mechanisms of hepatocyte-derived EVs (Hep-EVs) on liver diseases and extrahepatic diseases under different physiological and pathological conditions. Common liver diseases discussed include non-alcoholic fatty liver disease (NAFLD), viral hepatitis, alcoholic liver disease, drug-induced liver damage, and liver cancer. Given that NAFLD is the most prevalent chronic liver disease globally, this review particularly highlights the use of hepatocyte-derived EVs in NAFLD for disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| |
Collapse
|
4
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2024:S0300-9084(24)00219-0. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
5
|
Useckaite Z. Extracellular vesicles: A potential new way to assess cholestasis. Obstet Med 2024; 17:179-183. [PMID: 39262910 PMCID: PMC11384818 DOI: 10.1177/1753495x241264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024] Open
Abstract
Extracellular vesicles (EVs) are small, nonreplicating, lipid-encapsulated nanoparticles that carry protein and nucleic acid cargo derived from their tissue of origin. Due to their capacity to provide comparable insights to solid organ biopsy through a minimally invasive collection procedure, EVs provide an attractive biomarker source. This review will provide an insight, how EVs in circulation may provide a novel way to assess cholestasis and will address the possibility of getting a better understanding of the mechanisms of cholestasis of pregnancy through the use of serial hepatic-specific EVs as a window.
Collapse
Affiliation(s)
- Zivile Useckaite
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Australia
| |
Collapse
|
6
|
Turner NP. Playing pin-the-tail-on-the-protein in extracellular vesicle (EV) proteomics. Proteomics 2024; 24:e2400074. [PMID: 38899939 DOI: 10.1002/pmic.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) are anucleate particles enclosed by a lipid bilayer that are released from cells via exocytosis or direct budding from the plasma membrane. They contain an array of important molecular cargo such as proteins, nucleic acids, and lipids, and can transfer these cargoes to recipient cells as a means of intercellular communication. One of the overarching paradigms in the field of EV research is that EV cargo should reflect the biological state of the cell of origin. The true relationship or extent of this correlation is confounded by many factors, including the numerous ways one can isolate or enrich EVs, overlap in the biophysical properties of different classes of EVs, and analytical limitations. This presents a challenge to research aimed at detecting low-abundant EV-encapsulated nucleic acids or proteins in biofluids for biomarker research and underpins technical obstacles in the confident assessment of the proteomic landscape of EVs that may be affected by sample-type specific or disease-associated proteoforms. Improving our understanding of EV biogenesis, cargo loading, and developments in top-down proteomics may guide us towards advanced approaches for selective EV and molecular cargo enrichment, which could aid EV diagnostics and therapeutics research.
Collapse
Affiliation(s)
- Natalie P Turner
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
7
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
8
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
9
|
Useckaite Z, Newman LA, Hopkins AM, Klebe S, Colella AD, Chegeni N, Williams R, Sorich MJ, Rodrigues AD, Chataway TK, Rowland A. Proteomic profiling of paired human liver homogenate and tissue derived extracellular vesicles. Proteomics 2024; 24:e2300025. [PMID: 38037300 DOI: 10.1002/pmic.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Advances in technologies to isolate extracellular vesicles (EVs) and detect/quantify their cargo underpin the novel potential of these circulating particles as a liquid biopsy to understand physiology and disease. One organ of particular interest in terms of utilizing EVs as a liquid biopsy is the liver. The extent to which EVs originating from the liver reflect the functional status of this organ remains unknown. This is an important knowledge gap that underpins the utility of circulating liver derived EVs as a liquid biopsy. The primary objective of this study was to characterize the proteomic profile of EVs isolated from the extracellular space of liver tissue (LEV) and compare this profile to that of paired tissue (LH). LCMS analyses detected 2892 proteins in LEV and 2673 in LH. Of the 2673 proteins detected in LH, 1547 (58%) were also detected in LEV. Bioinformatic analyses demonstrated comparable representation of proteins in terms of biological functions and cellular compartments. Although, enriched representation of membrane proteins and associated functions was observed in LEV, while representation of nuclear proteins and associated functions was depleted in LEV. These data support the potential use of circulating liver derived EVs as a liquid biopsy for this organ.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex D Colella
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Nusha Chegeni
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - A David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Tim K Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Samy AM, Kandeil MA, Sabry D, Abdel-Ghany AA, Mahmoud MO. Exosomal miR-122, miR-128, miR-200, miR-298, and miR-342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR-4/FoxO3 pathway. Arch Pharm (Weinheim) 2024; 357:e2300631. [PMID: 38574101 DOI: 10.1002/ardp.202300631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 04/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disorder affecting a quarter of the global residents. Progression of NAFL into nonalcoholic steatohepatitis (NASH) may cause cirrhosis, liver cancer, and failure. Gut microbiota imbalance causes microbial components translocation into the circulation, triggering liver inflammation and NASH-related fibrosis. MicroRNAs (miRNAs) regulate gene expression via repressing target genes. Exosomal miRNAs are diagnostic and prognostic biomarkers for NAFL and NASH liver damage. Our work investigated the role of the gut microbiota in NAFLD pathogenesis via the lipopolysaccharide/toll-like receptor 4/Forkhead box protein O3 (LPS/TLR-4/FoxO3) pathway and certain miRNAs as noninvasive biomarkers for NAFL or its development to NASH. miRNA expression levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 50 NAFL patients, 50 NASH patients, and 50 normal controls. Plasma LPS, TLR-4, adiponectin, peroxisome proliferator-activated receptor γ (PPAR-γ), and FoxO3 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). In NAFL and NASH patients, miR-122, miR-128, FoxO3, TLR-4, LPS, and PPAR-γ were upregulated while miR-200, miR-298, miR-342, and adiponectin were downregulated compared with the normal control. The examined miRNAs might distinguish NAFL and NASH patients from the normal control using receiver operating characteristic analysis. Our study is the first to examine these miRNAs in NAFLD. Our findings imply that these are potentially promising biomarkers for noninvasive early NAFL diagnosis and NASH progression. Understanding the LPS/TLR-4/FoxO3 pathway involvement in NAFL/NASH pathogenesis may aid disease management.
Collapse
Affiliation(s)
- Ahmed M Samy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo, Egypt
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assuit branch, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
12
|
Wang Q, Tan X, Wang Y, Zhang D, Li X, Liu S. The role of extracellular vesicles in non-alcoholic steatohepatitis: Emerging mechanisms, potential therapeutics and biomarkers. J Adv Res 2024:S2090-1232(24)00110-3. [PMID: 38494073 DOI: 10.1016/j.jare.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an emerging global healthcare problem, has become the leading cause of liver transplantation in recent decades. No effective therapies in the clinic have been proven due to the incomplete understanding of the pathogenesis of NASH, and further studies are expected to continue to delve into the mechanisms of NASH. Extracellular vesicles (EVs), which are small lipid membrane vesicles carrying proteins, microRNAs and other molecules, have been identified to play a vital role in cell-to-cell communication and are involved in the development and progression of various diseases. In recent years, there has been increasing interest in the role of EVs in NASH. Many studies have revealed that EVs mediate important pathological processes in NASH, and the role of EVs in NASH is distinct and variable depending on their origin cells and target cells. This review outlines the emerging mechanisms of EVs in the development of NASH and the preclinical evidence related to stem cell-derived EVs as a potential therapeutic strategy for NASH. Moreover, possible strategies involving EVs as clinical diagnostic, staging and prognostic biomarkers for NASH are summarized.
Collapse
Affiliation(s)
- Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiangning Tan
- Department of endocrinology, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Danyi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
13
|
Boonkaew B, Satthawiwat N, Pinjaroen N, Chuaypen N, Tangkijvanich P. Circulating Extracellular Vesicle-Derived microRNAs as Novel Diagnostic and Prognostic Biomarkers for Non-Viral-Related Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16043. [PMID: 38003232 PMCID: PMC10671272 DOI: 10.3390/ijms242216043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Extracellular vesicle-derived microRNAs (EV-miRNAs) are promising circulating biomarkers for chronic liver disease. In this study, we explored the potential significance of plasma EV-miRNAs in non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). We compared, using the NanoString method, plasma EV-miRNA profiles between NBNC-HCC and control groups including patients with non-alcoholic fatty liver disease (NAFLD) and healthy controls. The differentially expressed EV-miRNAs were validated in another set of plasma samples by qRT-PCR. A total of 66 significantly differentially expressed EV-miRNAs between the HCC and the control groups were identified in the discovery set. In the validation cohort, including plasma samples of 70 NBNC-HCC patients, 70 NAFLD patients, and 35 healthy controls, 5 plasma EV-miRNAs were significantly elevated in HCC, which included miR-19-3p, miR-16-5p, miR-223-3p, miR-30d-5p, and miR-451a. These miRNAs were found to participate in several cancer-related signaling pathways based on bioinformatic analysis. Among them, EV-miR-19-3p exhibited the best diagnostic performance and displayed a high sensitivity for detecting alpha-fetoprotein-negative HCC and early-stage HCC. In multivariate analysis, a high EV-miR-19-3p level was demonstrated as an independently unfavorable predictor of overall survival in patients with NBNC-HCC. In conclusion, our data have indicated, for the first time, that EV-miR-19-3p could serve as a novel circulating biomarker for the diagnosis and prognosis of NBNC-HCC.
Collapse
Affiliation(s)
- Bootsakorn Boonkaew
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Nantawat Satthawiwat
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| |
Collapse
|
14
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
15
|
Mitchell MI, Loudig O. Communicator Extraordinaire: Extracellular Vesicles in the Tumor Microenvironment Are Essential Local and Long-Distance Mediators of Cancer Metastasis. Biomedicines 2023; 11:2534. [PMID: 37760975 PMCID: PMC10526527 DOI: 10.3390/biomedicines11092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Human tumors are increasingly being described as a complex "ecosystem", that includes many different cell types, secreted growth factors, extracellular matrix (ECM) components, and microvessels, that altogether create the tumor microenvironment (TME). Within the TME, epithelial cancer cells control the function of surrounding stromal cells and the non-cellular ECM components in an intricate orchestra of signaling networks specifically designed for cancer cells to exploit surrounding cells for their own benefit. Tumor-derived extracellular vesicles (EVs) released into the tumor microenvironment are essential mediators in the reprogramming of surrounding stromal cells, which include cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), and tumor endothelial cells (TECs), which are responsible for the promotion of neo-angiogenesis, immune cell evasion, and invasion which are essential for cancer progression. Perhaps most importantly, tumor-derived EVs play critical roles in the metastatic dissemination of tumor cells through their two-fold role in initiating cancer cell invasion and the establishment of the pre-metastatic niche, both of which are vital for tumor cell migration, homing, and colonization at secondary tumor sites. This review discusses extracellular vesicle trafficking within the tumor microenvironment and pre-metastatic niche formation, focusing on the complex role that EVs play in orchestrating cancer-to-stromal cell communication in order to promote the metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
16
|
Xu Q, Feng M, Ren Y, Liu X, Gao H, Li Z, Su X, Wang Q, Wang Y. From NAFLD to HCC: Advances in noninvasive diagnosis. Biomed Pharmacother 2023; 165:115028. [PMID: 37331252 DOI: 10.1016/j.biopha.2023.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has gradually become one of the major liver health problems in the world. The dynamic course of the disease goes through steatosis, inflammation, fibrosis, and carcinoma. Before progressing to carcinoma, timely and effective intervention will make the condition better, which highlights the importance of early diagnosis. With the further study of the biological mechanism in the pathogenesis and progression of NAFLD, some potential biomarkers have been discovered, and the possibility of their clinical application is gradually being discussed. At the same time, the progress of imaging technology and the emergence of new materials and methods also provide more possibilities for the diagnosis of NAFLD. This article reviews the diagnostic markers and advanced diagnostic methods of NAFLD in recent years.
Collapse
Affiliation(s)
- Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
17
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
18
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. Scope of review There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. Major conclusions The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Goncalves BDS, Meadows A, Pereira DG, Puri R, Pillai SS. Insight into the Inter-Organ Crosstalk and Prognostic Role of Liver-Derived MicroRNAs in Metabolic Disease Progression. Biomedicines 2023; 11:1597. [PMID: 37371692 PMCID: PMC10295788 DOI: 10.3390/biomedicines11061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunctional hepatic metabolism has been linked to numerous diseases, including non-alcoholic fatty liver disease, the most common chronic liver disorder worldwide, which can progress to hepatic fibrosis, and is closely associated with insulin resistance and cardiovascular diseases. In addition, the liver secretes a wide array of metabolites, biomolecules, and microRNAs (miRNAs) and many of these secreted factors exert significant effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the involvement of liver-derived miRNAs in biological processes with an emphasis on delineating the communication between the liver and other tissues associated with metabolic disease progression. Furthermore, the review identifies the primary molecular targets by which miRNAs act. These consolidated findings from numerous studies provide insight into the underlying mechanism of various metabolic disease progression and suggest the possibility of using circulatory miRNAs as prognostic predictors and therapeutic targets for improving clinical intervention strategies.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Avery Meadows
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Duane G Pereira
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Raghav Puri
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sneha S Pillai
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
20
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
21
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
22
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
23
|
Li W, Wang J, Yin X, Shi H, Sun B, Ji M, Song H, Liu J, Dou Y, Xu C, Jiang X, Li J, Li L, Zhang CY, Zhang Y. Construction of a mouse model that can be used for tissue-specific EV screening and tracing in vivo. Front Cell Dev Biol 2022; 10:1015841. [DOI: 10.3389/fcell.2022.1015841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the communication between tissues and cells. However, it is difficult to screen and trace EVs secreted by specific tissues in vivo, which affects the functional study of EVs in certain tissues under pathophysiological conditions. In this study, a Cre-dependent CD63flag-EGFP co-expressed with mCherry protein system expressing mice was constructed, which can be used for the secretion, movement, and sorting of EVs from specific tissues in vivo. This mouse model is an ideal research tool for studying the secretion amount, target tissue, and functional molecule screening of EVs in specific tissues under different pathophysiological conditions. Moreover, it provides a new research method to clarify the mechanism of secreted EVs in the pathogenesis of the disease.
Collapse
|
24
|
Xu D, Di K, Fan B, Wu J, Gu X, Sun Y, Khan A, Li P, Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front Bioeng Biotechnol 2022; 10:948959. [PMID: 36324901 PMCID: PMC9618890 DOI: 10.3389/fbioe.2022.948959] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18–22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.
Collapse
Affiliation(s)
- Dongjie Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| |
Collapse
|
25
|
Newman LA, Useckaite Z, Rowland A. Addressing MISEV guidance using targeted LC-MS/MS: A method for the detection and quantification of extracellular vesicle-enriched and contaminant protein markers from blood. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e56. [PMID: 38938773 PMCID: PMC11080780 DOI: 10.1002/jex2.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanosized particles released by cells into bodily fluids containing an array of molecular cargo. Several characteristics, including stability and accessibility in biofluids such as blood and urine, make EVs and associated cargo attractive biomarkers and therapeutic tools. To promote robust characterisation of EV isolates, the minimal requirements for the study of extracellular vesicles (MISEV) guidelines recommend the analysis of proteins in EV samples, including positive EV-associated markers and negative contaminant markers based on commonly co-isolated components of the starting material. Western blot is conventionally used to address the guidelines; however, this approach is limited in terms of quantitation and throughput and requires larger volumes than typically available for patient samples. The increasing application of EVs as liquid biopsy in clinical contexts requires a high-throughput multiplexed approach for analysis of protein markers from small volumes of starting material. Here, we document the development and validation of a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantification of markers associated with EVs and non-vesicle contaminants from human blood samples. The assay was highly sensitive, requiring only a fraction of the sample consumed for immunoblots, fully quantitative and high throughput. Application of the assay to EVs isolated by size exclusion chromatography (SEC) and precipitation revealed differences in yield, purity and recovery of subpopulations.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth Australia
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth Australia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth Australia
| |
Collapse
|
26
|
MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022; 65:101581. [PMID: 36028120 PMCID: PMC9464960 DOI: 10.1016/j.molmet.2022.101581] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.
Collapse
|
27
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
28
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
29
|
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, Grieco GE, Bergantini L, Bini L, Landi C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022; 10:proteomes10020012. [PMID: 35645370 PMCID: PMC9149947 DOI: 10.3390/proteomes10020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.
Collapse
Affiliation(s)
- Enxhi Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Luca Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Claudia Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| |
Collapse
|
30
|
Pathological Contribution of Extracellular Vesicles and Their MicroRNAs to Progression of Chronic Liver Disease. BIOLOGY 2022; 11:biology11050637. [PMID: 35625364 PMCID: PMC9137620 DOI: 10.3390/biology11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane-enclosed vesicles secreted from most types of cells. EVs encapsulate many diverse bioactive cargoes, such as proteins and nucleic acid, of parental cells and delivers them to recipient cells. Upon injury, the contents altered by cellular stress are delivered into target cells and affect their physiological properties, spreading the disease microenvironment to exacerbate disease progression. Therefore, EVs are emerging as good resources for studying the pathophysiological mechanisms of diseases because they reflect the characteristics of donor cells and play a central role in intercellular communication. Chronic liver disease affects millions of people worldwide and has a high mortality rate. In chronic liver disease, the production and secretion of EVs are significantly elevated, and increased and altered cargoes are packed into EVs, enhancing inflammation, fibrosis, and angiogenesis. Herein, we review EVs released under specific chronic liver disease and explain how EVs are involved in intercellular communication to aggravate liver disease. Abstract Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released by the majority of cells into the extracellular space. Because EVs carry various cargo (protein, lipid, and nucleic acids), they transfer bioinformation that reflects the state of donor cells to recipient cells both in healthy and pathologic conditions, such as liver disease. Chronic liver disease (CLD) affects numerous people worldwide and has a high mortality rate. EVs released from damaged hepatic cells are involved in CLD progression by impacting intercellular communication between EV-producing and EV-receiving cells, thereby inducing a disease-favorable microenvironment. In patients with CLD, as well as in the animal models of CLD, the levels of released EVs are elevated. Furthermore, these EVs contain high levels of factors that accelerate disease progression. Therefore, it is important to understand the diverse roles of EVs and their cargoes to treat CLD. Herein, we briefly explain the biogenesis and types of EVs and summarize current findings presenting the role of EVs in the pathogenesis of CLD. As the role of microRNAs (miRNAs) within EVs in liver disease is well documented, the effects of miRNAs detected in EVs on CLD are reviewed. In addition, we discuss the therapeutic potential of EVs to treat CLD.
Collapse
|
31
|
Newman LA, Muller K, Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol Life Sci 2022; 79:232. [PMID: 35397694 PMCID: PMC8995281 DOI: 10.1007/s00018-022-04256-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
AbstractChronic liver diseases represent a burgeoning health problem affecting billions of people worldwide. The insufficient performance of current minimally invasive tools is recognised as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) have emerged as a rich source of circulating biomarkers closely linked to pathological processes in originating tissues. Here, we summarise the contribution of EVs to normal liver function and to chronic liver pathologies; and explore the use of circulating EV biomarkers, with a particular focus on techniques to isolate and analyse cell- or tissue-specific EVs. Such approaches present a novel strategy to inform disease status and monitor changes in response to treatment in a minimally invasive manner. Emerging technologies that support the selective isolation and analysis of circulating EVs derived only from hepatic cells, have driven recent advancements in EV-based biomarker platforms for chronic liver diseases and show promise to bring these techniques to clinical settings.
Collapse
Affiliation(s)
- Lauren A Newman
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, College of Medicine and Public Health, Flinders Medical Centre, Adelaide, SA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|