1
|
Eigenfeld M, Schwaminger SP. Cellular variability as a driver for bioprocess innovation and optimization. Biotechnol Adv 2025; 79:108528. [PMID: 39914686 DOI: 10.1016/j.biotechadv.2025.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Cellular heterogeneity plays a crucial role in biotechnological processes, significantly influencing metabolic activity, product yield, and process consistency. This review explores the different dimensions of cellular heterogeneity, focusing on its manifestation at both single-cell and population levels. The study examines how factors such as asymmetric cell division, age, and environmental conditions contribute to functional diversity within cell populations, with an emphasis on microorganisms like yeast. Age-related cellular heterogeneity, in particular, is highlighted for its impact on metabolic pathways, mitochondrial function, and secondary metabolite production, which directly affect bioprocess outcomes. Furthermore, the review discusses advanced techniques for detecting and managing heterogeneity, including surface marker-based approaches, which utilize proteins, polysaccharides, and lipids, and label-free methods that leverage cellular volume and physical properties for separation. Understanding and controlling cellular heterogeneity is essential for optimizing industrial bioprocesses, improving yield, and ensuring product quality. The review also underscores the potential of emerging biotechnological tools, such as real-time single-cell analysis and microfluidic devices, in enhancing separation techniques and managing cellular diversity for better process efficiency and robustness.
Collapse
Affiliation(s)
- M Eigenfeld
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - S P Schwaminger
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
2
|
Wang W, Bunyatov M, Lopez-Barbosa N, DeLisa MP. Engineering affinity-matured variants of an anti-polysialic acid monoclonal antibody with superior cytotoxicity-mediating potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637914. [PMID: 40027839 PMCID: PMC11870402 DOI: 10.1101/2025.02.12.637914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Monoclonal antibodies (mAbs) that specifically recognize cell surface glycans associated with cancer and infectious disease hold tremendous value for both basic research and clinical applications. However, high-quality anti-glycan mAbs, especially those with sufficiently high affinity and specificity, remain scarce, highlighting the need for protein engineering approaches based on rational design or directed evolution that enable optimization of antigen-binding properties. To this end, we sought to enhance the affinity of a polysialic acid (polySia)-specific antibody called mAb735, which was raised by animal immunization and possesses only modest affinity, using a combination of rational design and directed evolution. The application of these approaches led to the discovery of affinity-matured IgG variants with up to ∼7-fold stronger affinity for polySia relative to the parental antibody. The higher affinity IgG variants were observed to opsonize polySia- positive cancer cells more avidly, which in turn resulted in significantly greater cytotoxicity as determined by both antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. Collectively, these results demonstrate the effective application of both rational and random molecular evolution techniques to an important anti-glycan antibody, providing insights into its carbohydrate recognition while at the same time uncovering variants with greater therapeutic promise due to their enhanced affinity and potency.
Collapse
Affiliation(s)
- Weiyao Wang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Mehman Bunyatov
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, NY 14853 USA
| |
Collapse
|
3
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Ruiz-Pérez R, Newman-Portela AM, Ruiz-Fresneda MA. Emerging global trends in next-generation alternatives to classic antibiotics for combatting multidrug-resistant bacteria. JOURNAL OF CLEANER PRODUCTION 2024; 478:143895. [DOI: 10.1016/j.jclepro.2024.143895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Naik GARR, Roy AA, Mutalik S, Dhas N. Unleashing the power of polymeric nanoparticles - Creative triumph against antibiotic resistance: A review. Int J Biol Macromol 2024; 278:134977. [PMID: 39187099 DOI: 10.1016/j.ijbiomac.2024.134977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Antibiotic resistance (ABR) poses a universal concern owing to the widespread use of antibiotics in various sectors. Nanotechnology emerges as a promising solution to combat ABR, offering targeted drug delivery, enhanced bioavailability, reduced toxicity, and stability. This comprehensive review explores concepts of antibiotic resistance, its mechanisms, and multifaceted approaches to combat ABR. The review provides an in-depth exploration of polymeric nanoparticles as advanced drug delivery systems, focusing on strategies for targeting microbial infections and contributing to the fight against ABR. Nanoparticles revolutionize antimicrobial approaches, emphasizing passive and active targeting. The role of various molecules, including small molecules, antimicrobial peptides, proteins, carbohydrates, and stimuli-responsive systems, is being explored in recent research works. The complex comprehension mechanisms of ABR and strategic use of nanotechnology present a promising avenue for advancing antimicrobial tactics, ensuring treatment efficacy, minimizing toxic effects, and mitigating development of ABR. Polymeric nanoparticles, derived from natural or synthetic polymers, are crucial in overcoming ABR. Natural polymers like chitosan and alginate exhibit inherent antibacterial properties, while synthetic polymers such as polylactic acid (PLA), polyethylene glycol (PEG), and polycaprolactone (PCL) can be engineered for specific antibacterial effects. This comprehensive study provides a valuable source of information for researchers, healthcare professionals, and policymakers engaged in the urgent quest to overcome ABR.
Collapse
Affiliation(s)
- Gaurisha Alias Resha Ramnath Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Udupi, Karnataka State 576104, India.
| |
Collapse
|
6
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
8
|
Rathore AS, Gardner PJ, Chhabra H, Raman R. Global outlook on affordability of biotherapeutic drugs. Ann N Y Acad Sci 2024; 1537:168-178. [PMID: 38872317 DOI: 10.1111/nyas.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Although biotherapeutic drugs have the potential of transforming the management of many life-threatening diseases, their affordability and accessibility remain an issue. This study offers an overview of the global affordability of biotherapeutic products. For this, prices for 10 representative biotherapeutic products were examined in 40 countries, including high-income countries (HICs), upper middle-income countries (UMICs), lower middle-income countries (LMICs), and low-income countries (LICs). The affordability of these biotherapeutics was calculated based on the World Health Organization/Health Action International (WHO/HAI) method. As expected, affordability was found to be better in HICs, followed by UMICs, LMICs, and finally, LICs. Furthermore, based on the trend of per capita income, we predict that in UMICs and LMICs, the affordability of high molecular weight biologics will worsen by 1.5× and 2× by 2030, respectively, and further by 4× and 6× by 2040. On the other hand, affordability will stay nearly the same for people living in HICs in the coming decades. Our analysis suggests that it is imperative that measures be taken to make this class of products more affordable and accessible. Governments can contribute by creating conducive policies. Global institutions like the WHO can play a significant role as well. Finally, manufacturers need to invest in and implement manufacturing innovations.
Collapse
Affiliation(s)
- Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | | | - Hemlata Chhabra
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Ruchir Raman
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
9
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
10
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
11
|
Erfanmanesh A, Beikzadeh B, Khanzadeh M, Alishahi M. Immuno-protective response of Asian seabass (Lates calcarifer) to inactivated vaccines against Streptococcus iniae and Vibrio harveyi. BMC Vet Res 2024; 20:89. [PMID: 38459562 PMCID: PMC10921715 DOI: 10.1186/s12917-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND In this study, the protective immunity and immunogenicity of the monovalent and bivalent Streptococcus iniae and Vibrio harveyi vaccine were evaluated in Asian seabass. To analyze immune responses, 1200 Asian seabass with an average weight of 132.6 ± 25.4 g were divided into eight treatments in triplicates (50 fish per tank) as follows: S. iniae immunized by injection (SI), V. harveyi immunized by injection (VI), bivalent S. iniae and V. harveyi (SVI) immunized by injection, S. iniae immunized by immersion (SIM), V. harveyi (VIM) immunized by immersion, bivalent S. iniae and V. harvei (SVIM) immunized by immersion, phosphate-buffered saline (PBS) by injection (PBSI) and control group without vaccine administration (CTRL). Blood and serum samples were taken at the end of the 30th and 60th days. Then the vaccinated groups were challenged with two bacteria (S. iniae) and (V. harveyi) separately and mortality was recorded for 14 days. RESULTS This study reveals that there is no significant difference in the hematological parameters on the 30th and 60th days of the experiment in the vaccine-immunized groups compared to the CTRL group (P > 0.05). Meanwhile, there was no significant difference in the amount of serum albumin level, respiratory burst activity, and serum bactericidal activity in the vaccine-immunized groups compared to the CTRL group on the 30th and 60th days of the experiment (P > 0.05). Total protein on the 60th day (in the VI and SVI groups), globulin on the 30th day (in the VI and SVI groups) and the 60th day (in the VI group) compared to the CTRL and PBSI groups had a significant increase (P < 0.05). Complement activity (in the VI and SVI groups) and lysozyme (in the SI and SVI groups) increased significantly compared to the control group (P < 0.05). Serum antibody titer against S. iniae had a significant increase in the SI, VI, SVI and SVIM groups compared to the CTRL and PBSI groups (P < 0.05). Serum antibody titer against V. harveyi had a significant increase in the groups immunized with the vaccine compared to the CTRL and PBSI groups (P < 0.05). A significant increase in the relative percentage survival (RPS) following challenge with S. iniae in the SVI (86.6%), SI (83.3%,) and VI (73.3%) groups were observed compared to the CTRL (43.3%) and PBSI (40%) groups (P < 0.05). Also, a significant increase in the RPS after challenge with V. harveyi in the SVI group, VI 86.6%, SVI 83.3%, VIM 80% and SVIM 76.6% were observed compared to the CTRL (46.6%) and PBSI (50%) groups (P < 0.05). CONCLUSION Overall, the results demonstrated that the bivalent vaccine of S. iniae and V. harveywas able to produce significant immunogenicity and RPS in Asian seabass.
Collapse
Affiliation(s)
- Ahmad Erfanmanesh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran
| | - Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Khanzadeh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran.
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Centre of Excellence for Warm Water Fish Health and Disease, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
12
|
Vacca F, Cardamone D, Andreano E, Medini D, Rappuoli R, Sala C. Deep-learning image analysis for high-throughput screening of opsono-phagocytosis-promoting monoclonal antibodies against Neisseria gonorrhoeae. Sci Rep 2024; 14:4807. [PMID: 38413727 PMCID: PMC10899611 DOI: 10.1038/s41598-024-55606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is nowadays a global health concern as bacterial pathogens are increasingly developing resistance to antibiotics. Monoclonal antibodies (mAbs) represent a powerful tool for addressing AMR thanks to their high specificity for pathogenic bacteria which allows sparing the microbiota, kill bacteria through complement deposition, enhance phagocytosis or inhibit bacterial adhesion to epithelial cells. Here we describe a visual opsono-phagocytosis assay which relies on confocal microscopy to measure the impact of mAbs on phagocytosis of the bacterium Neisseria gonorrhoeae by macrophages. With respect to traditional CFU-based assays, generated images can be automatically analysed by convolutional neural networks. Our results demonstrate that confocal microscopy and deep learning-based analysis allow screening for phagocytosis-promoting mAbs against N. gonorrhoeae, even when mAbs are not purified and are expressed at low concentration. Ultimately, the flexibility of the staining protocol and of the deep-learning approach make the assay suitable for other bacterial species and cell lines where mAb activity needs to be investigated.
Collapse
Affiliation(s)
- Fabiola Vacca
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Dario Cardamone
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
- University of Turin, Turin, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Duccio Medini
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
13
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
14
|
Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, Ghanei M, Mahboudi F, Rahimi-Jamnani F. Anti-Acinetobacter Baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol 2024; 24:55. [PMID: 38341536 PMCID: PMC10858608 DOI: 10.1186/s12866-023-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy and Pharmacoeconomics, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Nazari
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
16
|
Pulvirenti F, Garzi G, Milito C, Sculco E, Sciannamea M, Napoli A, Cinti L, Roberto P, Punziano A, Carrabba M, Piano Mortari E, Carsetti R, Antonelli G, Quinti I. SARS-CoV-2 pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) provides protection in inborn errors of immunity with antibody defects: a real-world experience. Front Immunol 2023; 14:1249462. [PMID: 37954618 PMCID: PMC10639167 DOI: 10.3389/fimmu.2023.1249462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background Preventive strategies against severe COVID-19 in Inborn Errors of Immunity (IEI) include bivalent vaccines, treatment with SARS-CoV-2 monoclonal antibodies (mAbs), early antiviral therapies, and pre-exposure prophylaxis (PrEP). Objective To assess the effectiveness of the PrEP with tixagevimab/cilgavimab (AZD7442) in IEI with primary antibody defects during the COVID-19 Omicron wave. Methods A six-month prospective study evaluated the SARS-CoV-2 infection rate and the COVID-19 severity in the AZD7442 group, in the no-AZD7442 group, and in a group of patients with a recent SARS-CoV-2 infection (< three months). Spike-specific IgG levels were measured at regular intervals. Results Six out of thirty-three patients (18%) and 54/170 patients (32%) became infected in the AZD7442 group and in the no-AZD7442 group, respectively. Within 90 days post-administration, the AZD7442 group was 85% less likely to be infected and 82% less likely to have a symptomatic disease than the no-AZD7442 group. This effect was lost thereafter. In the entire cohort, no mortality/hospitalisation was observed. The control group of 35 recently infected patients was 88% and 92% less likely to be infected than the AZD7442 and no-AZD7442 groups. Serum anti-Spike IgG reached the highest peak seven days post-AZD7442 PrEP then decreased, remaining over 1000 BAU/mL 180 days thereafter. Conclusion In patients with IEI and antibody defects, AZD7442 prophylaxis had a transient protective effect, possibly lost possibly because of the appearance of new variants. However, PrEP with newer mAbs might still represent a feasible preventive strategy in the future in this population.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Anna Napoli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Lilia Cinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Piergiorgio Roberto
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Piano Mortari
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Isabella Quinti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Lista F, Peragallo MS, Biselli R, De Santis R, Mariotti S, Nisini R, D'Amelio R. Have Diagnostics, Therapies, and Vaccines Made the Difference in the Pandemic Evolution of COVID-19 in Comparison with "Spanish Flu"? Pathogens 2023; 12:868. [PMID: 37513715 PMCID: PMC10384375 DOI: 10.3390/pathogens12070868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In 1918 many countries, but not Spain, were fighting World War I. Spanish press could report about the diffusion and severity of a new infection without censorship for the first-time, so that this pandemic is commonly defined as "Spanish flu", even though Spain was not its place of origin. "Spanish flu" was one of the deadliest pandemics in history and has been frequently compared with the coronavirus disease (COVID)-19 pandemic. These pandemics share similarities, being both caused by highly variable and transmissible respiratory RNA viruses, and diversity, represented by diagnostics, therapies, and especially vaccines, which were made rapidly available for COVID-19, but not for "Spanish flu". Most comparison studies have been carried out in the first period of COVID-19, when these resources were either not yet available or their use had not long started. Conversely, we wanted to analyze the role that the advanced diagnostics, anti-viral agents, including monoclonal antibodies, and innovative COVID-19 vaccines, may have had in the pandemic containment. Early diagnosis, therapies, and anti-COVID-19 vaccines have markedly reduced the pandemic severity and mortality, thus preventing the collapse of the public health services. However, their influence on the reduction of infections and re-infections, thus on the transition from pandemic to endemic condition, appears to be of minor relevance. The high viral variability of influenza and coronavirus may probably be contained by the development of universal vaccines, which are not easy to be obtained. The only effective weapon still remains the disease prevention, to be achieved with the reduction of promiscuity between the animal reservoirs of these zoonotic diseases and humans.
Collapse
Affiliation(s)
- Florigio Lista
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell'Esercito, 00184 Roma, Italy
| | - Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Riccardo De Santis
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza, Università di Roma, 00161 Roma, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Raffaele D'Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza, Università di Roma, 00198 Roma, Italy
| |
Collapse
|
18
|
Elbehiry A, Marzouk E, Abalkhail A, El-Garawany Y, Anagreyyah S, Alnafea Y, Almuzaini AM, Alwarhi W, Rawway M, Draz A. The Development of Technology to Prevent, Diagnose, and Manage Antimicrobial Resistance in Healthcare-Associated Infections. Vaccines (Basel) 2022; 10:2100. [PMID: 36560510 PMCID: PMC9780923 DOI: 10.3390/vaccines10122100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
There is a growing risk of antimicrobial resistance (AMR) having an adverse effect on the healthcare system, which results in higher healthcare costs, failed treatments and a higher death rate. A quick diagnostic test that can spot infections resistant to antibiotics is essential for antimicrobial stewardship so physicians and other healthcare professionals can begin treatment as soon as possible. Since the development of antibiotics in the last two decades, traditional, standard antimicrobial treatments have failed to treat healthcare-associated infections (HAIs). These results have led to the development of a variety of cutting-edge alternative methods to combat multidrug-resistant pathogens in healthcare settings. Here, we provide an overview of AMR as well as the technologies being developed to prevent, diagnose, and control healthcare-associated infections (HAIs). As a result of better cleaning and hygiene practices, resistance to bacteria can be reduced, and new, quick, and accurate instruments for diagnosing HAIs must be developed. In addition, we need to explore new therapeutic approaches to combat diseases caused by resistant bacteria. In conclusion, current infection control technologies will be crucial to managing multidrug-resistant infections effectively. As a result of vaccination, antibiotic usage will decrease and new resistance mechanisms will not develop.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Yasmine El-Garawany
- Clinical Pharmacy Program, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Yaser Alnafea
- Department of Statistics, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Alwarhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|