1
|
Hassan M, Tutar L, Sari-Ak D, Rasul A, Basheer E, Tutar Y. Non-genetic heterogeneity and immune subtyping in breast cancer: Implications for immunotherapy and targeted therapeutics. Transl Oncol 2024; 47:102055. [PMID: 39002207 PMCID: PMC11299575 DOI: 10.1016/j.tranon.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Breast cancer (BC) is a complex and multifactorial disease, driven by genetic alterations that promote tumor growth and progression. However, recent research has highlighted the importance of non-genetic factors in shaping cancer evolution and influencing therapeutic outcomes. Non-genetic heterogeneity refers to diverse subpopulations of cancer cells within breast tumors, exhibiting distinct phenotypic and functional properties. These subpopulations can arise through various mechanisms, including clonal evolution, genetic changes, epigenetic changes, and reversible phenotypic transitions. Although genetic and epigenetic changes are important points of the pathology of breast cancer yet, the immune system also plays a crucial role in its progression. In clinical management, histologic and molecular classification of BC are used. Immunological subtyping of BC has gained attention in recent years as compared to traditional techniques. Intratumoral heterogeneity revealed by immunological microenvironment (IME) has opened novel opportunities for immunotherapy research. This systematic review is focused on non-genetic variability to identify and interlink immunological subgroups in breast cancer. This review provides a deep understanding of adaptive methods adopted by tumor cells to withstand changes in the tumor microenvironment and selective pressure imposed by medications. These adaptive methods include alterations in drug targets, immune system evasion, activation of survival pathways, and alterations in metabolism. Understanding non-genetic heterogeneity is essential for the development of targeted therapies.
Collapse
Affiliation(s)
- Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical, Sciences Government College University Faisalabad, Pakistan
| | - Yusuf Tutar
- Faculty of Medicine, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
2
|
Vahed SZ, Khatibi SMH, Saadat YR, Emdadi M, Khodaei B, Alishani MM, Boostani F, Dizaj SM, Pirmoradi S. Introducing effective genes in lymph node metastasis of breast cancer patients using SHAP values based on the mRNA expression data. PLoS One 2024; 19:e0308531. [PMID: 39150915 PMCID: PMC11329117 DOI: 10.1371/journal.pone.0308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
OBJECTIVE Breast cancer, a global concern predominantly impacting women, poses a significant threat when not identified early. While survival rates for breast cancer patients are typically favorable, the emergence of regional metastases markedly diminishes survival prospects. Detecting metastases and comprehending their molecular underpinnings are crucial for tailoring effective treatments and improving patient survival outcomes. METHODS Various artificial intelligence methods and techniques were employed in this study to achieve accurate outcomes. Initially, the data was organized and underwent hold-out cross-validation, data cleaning, and normalization. Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. Finally, the selected features were considered, and the SHAP algorithm was utilized to identify the most significant features for enhancing the decoding of dominant molecular mechanisms in lymph node metastases. RESULTS In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. The RF classifier utilized the candidate mRNAs to differentiate between negative and positive categories with an accuracy of 61% and an AUC of 0.6. During the SHAP process, intriguing relationships between the selected mRNAs and positive/negative lymph node status were discovered. The results indicate that GDF5, BAHCC1, LCN2, FGF14-AS2, and IDH2 are among the top five most impactful mRNAs based on their SHAP values. CONCLUSION The prominent identified mRNAs including GDF5, BAHCC1, LCN2, FGF14-AS2, and IDH2, are implicated in lymph node metastasis. This study holds promise in elucidating a thorough insight into key candidate genes that could significantly impact the early detection and tailored therapeutic strategies for lymph node metastasis in patients with breast cancer.
Collapse
Affiliation(s)
| | - Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Manijeh Emdadi
- Department of Computer Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
| | - Bahareh Khodaei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Matin Alishani
- Department of Computer Science, Faculty of Information Technology, University of Shahid Madani of Tabriz, Tabriz, Iran
| | - Farnaz Boostani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Pulat E, Topçul MR. Effects of combined use of ribociclib with PARP1 inhibitor on cell kinetics in breast cancer. Oncol Lett 2024; 27:243. [PMID: 38638847 PMCID: PMC11024784 DOI: 10.3892/ol.2024.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
In the present study, antiproliferative and anticancer effects of Valamor (VLM), which contains the active component ribociclib, and DPQ, a poly(ADP-ribose) polymerase 1 inhibitor, alone and in combination were evaluated in the MCF-7 and MDA-MB-231 breast cancer cell lines in vitro. VLM was applied at concentrations of 40, 80 and 160 µg/ml, and DPQ was used at concentrations of 3, 6 and 9 µg/ml. The proliferation rate, cell index obtained from the real-time cell analysis system, mitosis activity, bromodeoxyuridine cell proliferation and caspase activity parameters were determined. In conclusion, the results obtained from cell kinetics parameters demonstrated the anticancer and antiproliferative effects of the combination of VLM and DPQ on breast cancer cells.
Collapse
Affiliation(s)
- Ercan Pulat
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34134, Türkiye
| | - Mehmet R. Topçul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34134, Türkiye
| |
Collapse
|
4
|
Yang Q, Yang G, Wu Y, Zhang L, Song Z, Yang D. Bioinformatics analysis and validation of genes related to paclitaxel's anti-breast cancer effect through immunogenic cell death. Heliyon 2024; 10:e28409. [PMID: 38560098 PMCID: PMC10979210 DOI: 10.1016/j.heliyon.2024.e28409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through immunogenic modulation. However, the combination of PTX and ICD has not been extensively studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by overlapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and selection operator (LASSO) were performed to obtain biomarkers and build a risk model. Following observing the immune microenvironment in differential risk subgroups, single-gene gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified and a risk model was built. The model's performance was validated using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX-ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in predicting BRCA treatment outcomes.
Collapse
Affiliation(s)
- Qianmei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Guimei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Yi Wu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Lun Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Zhuoyang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Dan Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
5
|
Darvishvand R, Rezaeifard S, Kiani R, Tahmasebi S, Faghih Z, Erfani N. Natural killer cell subsets and their functional molecules in peripheral blood of the patients with breast cancer. Immun Inflamm Dis 2024; 12:e1255. [PMID: 38652012 PMCID: PMC11037257 DOI: 10.1002/iid3.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells, CD3- lymphocytes, are critical players in cancer immune surveillance. This study aimed to assess two types of CD3- NK cell classifications (subsets), that is, convectional subsets (based on CD56 and CD16 expression) and new subsets (based on CD56, CD27, and CD11b expression), and their functional molecules in the peripheral blood of patients with breast cancer (BC) in comparison with healthy donors (HDs). METHODS Thirty untreated females with BC and 20 age-matched healthy women were enrolled. Peripheral blood samples were collected and directly incubated with fluorochrome-conjugated antibodies against CD3, CD56, CD16, CD27, CD11b, CD96, NKG2C, NKG2D, NKp44, CXCR3, perforin, and granzyme B. Red blood cells were then lysed using lysing solution, and the stained cells were acquired on four-color flow cytometer. RESULT Our results indicated 15% of lymphocytes in peripheral blood of patients with BC and HDs had NK cells phenotype. However, the frequency of total NK cells (CD3-CD56+), and NK subsets (based on conventional and new classifications) was not significantly different between patients and HDs. We observed mean fluorescent intensity (MFI) of CXCR3 in total NK cells (p = .02) and the conventional cytotoxic (CD3-CD56dim CD16+) NK cells (p = .03) were significantly elevated in the patients with BC compared to HDs. Despite this, the MFI of granzyme B expression in conventional regulatory (CD3-CD56brightCD16- /+) NK cells and CD3-CD56-CD16+ NK cells (p = .03 and p = .004, respectively) in the patients was lower than healthy subjects. CONCLUSION The higher expression of chemokine receptor CXCR3 on total NK cells in patients with BC may be associated with increased chemotaxis-related NK cell infiltration. However, lower expression of granzyme B in conventional regulatory NK cells and CD3-CD56-CD16+ NK cells in the patients compared to HDs suggests reduced cytotoxic activity of the NK cells in BC. These results might demonstrate accumulating NK subsets with a dysfunctional phenotype in the peripheral blood of patients with BC.
Collapse
Affiliation(s)
- Reza Darvishvand
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Somayeh Rezaeifard
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Razie Kiani
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Sedigheh Tahmasebi
- Breast Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Nasrollah Erfani
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
7
|
Wu Q, Qu C, Xin L, Yang F, Xu L. SIK2-positive tumor epithelial cells in breast cancer maybe potential anti-cancer messengers: A systematic analysis from a single-cell perspective. ENVIRONMENTAL TOXICOLOGY 2024; 39:768-782. [PMID: 37772720 DOI: 10.1002/tox.23987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Breast cancer is the most common malignancy in the world and one of the leading causes of cancer death, which is a heterogeneous disease involving genetic and environmental factors. Breast cancer stem cells (BCSCs) are the main players in the aggressiveness of different tumors, at the same time, these cells are the main challenge for cancer treatment. There are multiple treatment options for breast cancer (BC) patients and the lack of understanding of prognostic and predictive biomarkers for breast cancer is a potential research direction for us to develop better treatments in the future. In this paper, we conducted a correlation analysis between SIK2 and clinical traits by searching numerous BRCA datasets in the GEO database. The model was constructed and validated by incorporating tumor samples from the TCGA-BRCA cohort. Surprisingly, we found differential expression of SIK2 gene in individual tumor samples from the UCSC database. Subsequently, we found significantly high expression of SIK2 in epithelial cells by comparing the differential expression of SIK2 in different cell subpopulations and performed subsequent immune infiltration and pathway correlation analysis. Differential genes in SIK2+ epithelial cells, which may be potential therapeutic targets for breast cancer. In conclusion, our results suggest that SIK2 may be a potential prognostic and predictive biomarker that could serve as an oncogenic messenger for breast cancer. This discovery of SIK2 may provide more valuable references for potential therapeutic tools for breast cancer.
Collapse
Affiliation(s)
- Qian Wu
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Xin
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Fan Yang
- Breast Disease Center, Peking University First Hospital, Beijing, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Xu
- Breast Disease Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Rodríguez-Bejarano OH, Roa L, Vargas-Hernández G, Botero-Espinosa L, Parra-López C, Patarroyo MA. Strategies for studying immune and non-immune human and canine mammary gland cancer tumour infiltrate. Biochim Biophys Acta Rev Cancer 2024; 1879:189064. [PMID: 38158026 DOI: 10.1016/j.bbcan.2023.189064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The tumour microenvironment (TME) is usually defined as a cell environment associated with tumours or cancerous stem cells where conditions are established affecting tumour development and progression through malignant cell interaction with non-malignant cells. The TME is made up of endothelial, immune and non-immune cells, extracellular matrix (ECM) components and signalling molecules acting specifically on tumour and non-tumour cells. Breast cancer (BC) is the commonest malignant neoplasm worldwide and the main cause of mortality in women globally; advances regarding BC study and understanding it are relevant for acquiring novel, personalised therapeutic tools. Studying canine mammary gland tumours (CMGT) is one of the most relevant options for understanding BC using animal models as they share common epidemiological, clinical, pathological, biological, environmental, genetic and molecular characteristics with human BC. In-depth, detailed investigation regarding knowledge of human BC-related TME and in its canine model is considered extremely relevant for understanding changes in TME composition during tumour development. This review addresses important aspects concerned with different methods used for studying BC- and CMGT-related TME that are important for developing new and more effective therapeutic strategies for attacking a tumour during specific evolutionary stages.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Leonardo Roa
- Veterinary Clinic, Faculty of Agricultural Sciences, Universidad de La Salle, Carrera 7 #179-03, Bogotá 110141, Colombia
| | - Giovanni Vargas-Hernández
- Animal Health Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Lucía Botero-Espinosa
- Animal Health Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
9
|
Hassan AL-Saeedi R, Khalaj-Kondori M, Hosseinpour Feizi MA, Hajavi J. DOX-PLGA Nanoparticles Effectively Suppressed the Expression of Pro-Inflammatory Cytokines TNF-a, IL-6, iNOS, and IL-1β in MCF-7 Breast Cancer Cell Line. Rep Biochem Mol Biol 2024; 12:530-539. [PMID: 39086585 PMCID: PMC11288233 DOI: 10.61186/rbmb.12.4.530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/14/2024] [Indexed: 08/02/2024]
Abstract
Background Inflammation contributes to cancer pathobiology through different mechanisms. Higher levels of pro-inflammatory cytokines can lead to hyperinflammation and promote cancer development and metastasis. For cancer treatment, Doxorubicin (DOX) can be encapsulated into the poly-lactic-glycolic acid (PLGA) nanoparticles. This study aimed to investigate the impact of doxorubicin-loaded PLGA nanoparticles (DOX-PLGA NP) on the expression of pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β in the MCF-7 cells. Methods The DOX-PLGA NP was prepared by loading doxorubicin into PLGA and characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxic effect of the nanoparticles was determined by the MTT assay, and their impacts on the expression of pro-inflammatory genes were assessed by qRT-PCR. Results The encapsulation efficiency and loading capacity were 60±1.5 and 1.13±0.21 percent, respectively. The zeta potential and mean DOX-PLGA nanoparticle size were -18±0.550 mV and 172±55.6 nm, respectively. The 50% inhibitory concentration (IC50) of the DOX-PLGA NP on MCF-7 cell viability was 24.55 µg/mL after 72 hours of treatment. The qRT-PCR results revealed that the 20 µg/mL concentration of the DOX-PLGA NP significantly suppressed the expression of the pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β compared to DOX alone (20 µg/mL). Additionally, the suppression effect of DOX-PLGA NP on the expression of these pro-inflammatory genes was dose-dependent. Conclusions These results show that DOX-PLGA NP efficiently suppressed the expression of pro-inflammatory genes. Furthermore, encapsulation of DOX into PLGA nanoparticles significantly improved the effectiveness of DOX in suppressing pro-inflammatory genes in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Rawan Hassan AL-Saeedi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Jafar Hajavi
- Department of Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
10
|
Yao K, Xiaojun Z, Tingxiao Z, Shiyao L, Lichen J, Wei Z, Yanlei L, Jinlong T, Xiaoyan D, Jun Z, Qing B, Jun L. Multidimensional analysis to elucidate the possible mechanism of bone metastasis in breast cancer. BMC Cancer 2023; 23:1213. [PMID: 38066539 PMCID: PMC10704724 DOI: 10.1186/s12885-023-11588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Breast cancer (BC) patients tend to suffer from distant metastasis, especially bone metastasis. METHODS All the analysis based on open-accessed data was performed in R software, dependent on multiple algorithms and packages. The RNA levels of specific genes were detected using quantitative Real-time PCR as a method of detecting the RNA levels. To assess the ability of BC cells to proliferate, we utilized the CCK8 test, colony formation, and the 5-Ethynyl-20-deoxyuridine assay. BC cells were evaluated for invasion and migration by using Transwell assays and wound healing assays. RESULTS In our study, we identified the molecules involved in BC bone metastasis based on the data from multiple BC cohorts. Then, we comprehensively investigated the effect pattern and underlying biological role of these molecules. We found that in the identified molecules, the EMP1, ACKR3, ITGA10, MMP13, COL11A1, and THY1 were significantly correlated with patient prognosis and mainly expressed in CAFs. Therefore, we explored the CAFs in the BC microenvironment. Results showed that CAFs could activate multiple carcinogenic pathways and most of these pathways play an important role in cancer metastasis. Meanwhile, we noticed the interaction between CAFs and malignant, endothelial, and M2 macrophage cells. Moreover, we found that CAFs could induce the remodeling of the BC microenvironment and promote the malignant behavior of BC cells. Then, we identified MMP13 for further analysis. It was found that MMP13 can enhance the malignant phenotype of BC cells. Meanwhile, biological enrichment and immune infiltration analysis were conducted to present the effect pattern of MMP13 in BC. CONCLUSIONS Our result can improve the understanding of researchers on the underlying mechanisms of BC bone metastasis.
Collapse
Affiliation(s)
- Kang Yao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhu Xiaojun
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- State Key laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liao Shiyao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji Lichen
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Wei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Yanlei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Jinlong
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Xiaoyan
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial People`s Hospital Bijie Hospital, Bijie, China.
| | - Bi Qing
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Wu JH, Cheng TC, Zhu B, Gao HY, Zheng L, Chen WX. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci Rep 2023; 13:18390. [PMID: 37884650 PMCID: PMC10603161 DOI: 10.1038/s41598-023-45761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Mounting evidence indicate that cuproptosis, a novel form of programmed cell death, contributes to cancer development and progression. However, a comprehensive analysis regarding the expressions, functions, and regulatory network of cuproptosis-related genes is still lacking. In the present work, cuproptosis-related genes, upstream miRNAs and lncRNAs, and clinical data of breast cancer from TCGA database were analyzed by R language including Cox regression analysis, correlation calculation, ROC curve construction, and survival evaluation, and were further verified by public-available databases. Chemosensitivity and immune infiltration were also evaluated by online tools. SLC31A1 was significantly increased in breast cancer samples than those in normal tissues. SLC31A1 was negatively related to a favorable outcome in breast cancer, and the AUC value increased with the prolongation of follow-up time. LINC01614 and miR-204-5p were potential upstream regulators of SLC31A1. Moreover, SLC31A1 was significantly positively correlated with different immune cells infiltration, immune cell biomarkers, and immune checkpoints in breast cancer. SLC31A1 was a potential cuproptosis-related gene in breast cancer, which was significantly upregulated and was able to predict diagnosis, prognosis, chemosensitivity, and immune infiltration. LINC01640/miR-204-5p/SLC31A1 might be a significant and promising axis during cuproptosis in breast cancer.
Collapse
Affiliation(s)
- Jia-Hao Wu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Tian-Cheng Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Bei Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Hai-Yan Gao
- Department of Breast Surgery, The Affiliated Changzhou Tumor Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Lin Zheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
- Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China.
| |
Collapse
|
12
|
Qi Y, Yao Q, Li X, Li X, Zhang W, Qu P. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci Rep 2023; 13:17790. [PMID: 37853210 PMCID: PMC10584849 DOI: 10.1038/s41598-023-44681-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Cuproptosis is a unique type of cell death that may influence tumour formation by targeting lipoylated tricarboxylic acid cycle proteins. Solute carrier family 31 member 1 (SLC31A1), an important copper transporter, influences dietary copper absorption in the cell membrane. However, various SLC31A1 properties in pan-cancer profiles remain unknown. This study investigated the role of SLC31A1 in human malignancies and analysed its prognostic value. Raw data were obtained from The Cancer Genome Atlas database and processed using numerous internet databases, including UALCAN, GEPIA, cBioPortal, TIMER2.0, and Human Protein Atlas. SLC31A1 expression was found to be elevated in cervical, endometrial, and breast cancers compared to that in normal tissues, but reduced in clear cell renal cell carcinoma, liver hepatocellular carcinoma, and lung adenocarcinoma. Furthermore, SLC31A1 expression was strongly associated with overall survival and disease-free survival in several cancers. SLC31A1 gene mutations and methylations were identified in 33 cancers. SLC31A1 expression was positively correlated with immune cells in immune infiltration data. Single-cell sequencing revealed that SLC31A1 may play key roles in DNA repair, DNA damage, and proliferation. These findings may lead to better understanding of SLC31A1 in pan-cancer profiles and suggest that SLC31A1 could be a viable predictive biomarker, particularly in gynaecological cancers.
Collapse
Affiliation(s)
- Yue Qi
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
| | - Qingqing Yao
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xuanyan Li
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xinyu Li
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China.
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China.
- Department of Gynecological Oncology, Tianjin Central Hospital Gynecology Obstetrics, No. 156, Nansanma Road, Nankai District, Tianjin, 300000, China.
- Nankai University School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
Yang X, Smirnov A, Buonomo OC, Mauriello A, Shi Y, Bischof J, Woodsmith J, Melino G, Candi E, Bernassola F. A primary luminal/HER2 negative breast cancer patient with mismatch repair deficiency. Cell Death Discov 2023; 9:365. [PMID: 37783677 PMCID: PMC10545677 DOI: 10.1038/s41420-023-01650-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Here, we present the case of a 47-year-old woman diagnosed with luminal B breast cancer subtype and provide an in-depth analysis of her gene mutations, chromosomal alterations, mRNA and protein expression changes. We found a point mutation in the FGFR2 gene, which is potentially hyper-activating the receptor function, along with over-expression of its ligand FGF20 due to genomic amplification. The patient also harbors somatic and germline mutations in some mismatch repair (MMR) genes, with a strong MMR mutational signature. The patient displays high microsatellite instability (MSI) and tumor mutational burden (TMB) status and increased levels of CTLA-4 and PD-1 expression. Altogether, these data strongly implicate that aberrant FGFR signaling, and defective MMR system might be involved in the development of this breast tumor. In addition, high MSI and TMB in the context of CTLA-4 and PD-L1 positivity, suggest the potential benefit of immune checkpoint inhibitors. Accurate characterization of molecular subtypes, based on gene mutational and expression profiling analyses, will be certainly helpful for individualized treatment and targeted therapy of breast cancer patients, especially for those subtypes with adverse outcome.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, Germany Biochemistry Laboratory, 88 Building D, 20251, Hamburg, Germany
| | - Jonathan Woodsmith
- Indivumed GmbH, Falkenried, Germany Biochemistry Laboratory, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
14
|
Angelico G, Broggi G, Tinnirello G, Puzzo L, Vecchio GM, Salvatorelli L, Memeo L, Santoro A, Farina J, Mulé A, Magro G, Caltabiano R. Tumor Infiltrating Lymphocytes (TILS) and PD-L1 Expression in Breast Cancer: A Review of Current Evidence and Prognostic Implications from Pathologist's Perspective. Cancers (Basel) 2023; 15:4479. [PMID: 37760449 PMCID: PMC10526828 DOI: 10.3390/cancers15184479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
With the rise of novel immunotherapies able to stimulate the antitumor immune response, increasing literature concerning the immunogenicity of breast cancer has been published in recent years. Numerous clinical studies have been conducted in order to identify novel biomarkers that could reflect the immunogenicity of BC and predict response to immunotherapy. In this regard, TILs have emerged as an important immunological biomarker related to the antitumor immune response in BC. TILs are more frequently observed in triple-negative breast cancer and HER2+ subtypes, where increased TIL levels have been linked to a better response to neoadjuvant chemotherapy and improved survival. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in breast cancer is observed in about 10-30% of cases and is extremely variable based on tumor stage and molecular subtypes. Briefly, TNBC shows the highest percentage of PD-L1 positivity, followed by HER2+ tumors. On the other hand, PD-L1 is rarely expressed (0-10% of cases) in hormone-receptor-positive BC. The prognostic role of PD-L1 expression in BC is still controversial since different immunohistochemistry (IHC) clones, cut-off points, and scoring systems have been utilized across published studies. In the present paper, an extensive review of the current knowledge of the immune landscape of BC is provided. TILS and PD-L1 expression across different BC subtypes are discussed, providing a guide for their pathological assessment and reporting.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lidia Puzzo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giada Maria Vecchio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lucia Salvatorelli
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy;
| | - Angela Santoro
- Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Jessica Farina
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Antonino Mulé
- Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Gaetano Magro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
15
|
Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA. A network pharmacology-based investigation of brugine reveals its multi-target molecular mechanism against Breast Cancer. Med Oncol 2023; 40:202. [PMID: 37308611 DOI: 10.1007/s12032-023-02067-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Breast cancer represents the leading cause of mortality among women worldwide. Since the complexity of breast cancer as a disease resides in its heterogeneity as it consists of several subtypes such as hormone receptor-positive subtypes: Luminal A, Luminal B, Her2- overexpressed, basal-like and hormone receptor-negative subtype: TNBC. Among all the subtypes, triple negative breast cancer (TNBC) is the most lethal and complex subtype. Moreover, the available treatment options like surgery, radiation therapy, and chemotherapy are not sufficient because of the associated side effects and drug resistance development. Therefore, discovery of new effective natural compounds with anti-tumor activity is required. In this pursuit, marine organisms provide a plentiful supply of such chemicals compounds. A marine compound Brugine found in the bark and stem of mangrove species Bruguiera sexangula is a potential anti-cancer compound. It has shown its cytotoxic activity against sarcoma 180 and lewis lung cancer. The molecular processes, however, are currently unknown. So, in order to research the molecular pathways this compound utilizes, we sought to apply a network pharmacology approach. The network pharmacology strategy we used in this investigation to identify and evaluate possible molecular pathways involved in the treatment of breast cancer with brugine was supported by simulation and molecular docking experiments. The study was conducted using various databases such as the cancer genome atlas (TCGA) for the genetic profile study of breast cancer, Swiss ADME for studying the pharmacodynamic study of brugine, Gene cards for collection of information of genes, STRING was used to study the interaction among proteins, AutoDock vina was to study the binding efficacy of brugine with the best fit protein. The results showed that the compound and breast cancer target network shared 90 common targets. According to the functional enrichment analysis brugine exhibited its effects in breast cancer via modulating certain pathways such as cAMP signaling pathway, JAK/STAT pathway, HIF-1 signaling pathway PI3K-Akt pathway, calcium signaling pathway, and Necroptosis. Molecular docking investigations demonstrated that the investigated marine compound has a high affinity for the key target, protein kinase A (PKA). A stable protein-ligand combination was created by the best hit molecule, according to molecular dynamics modeling. The purpose of this research was to examine the importance of brugine as a potentially effective treatment for breast cancer and to obtain knowledge of the molecular mechanism used by this substance in breast cancer.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu and Kashmir, India
| | - Mustfa Alkhanani
- Department of Biology, College of Science, University of Hafr Al-Batin, Hafr Al Batin, 31991, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Albaha, 65511, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, CAMS, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu and Kashmir, India.
| |
Collapse
|
16
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
17
|
Insight into the Crosstalk between Photodynamic Therapy and Immunotherapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15051532. [PMID: 36900322 PMCID: PMC10000400 DOI: 10.3390/cancers15051532] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Breast cancer (BC) is the world's second most frequent malignancy and the leading cause of mortality among women. All in situ or invasive breast cancer derives from terminal tubulobular units; when the tumor is present only in the ducts or lobules in situ, it is called ductal carcinoma in situ (DCIS)/lobular carcinoma in situ (LCIS). The biggest risk factors are age, mutations in breast cancer genes 1 or 2 (BRCA1 or BRCA2), and dense breast tissue. Current treatments are associated with various side effects, recurrence, and poor quality of life. The critical role of the immune system in breast cancer progression/regression should always be considered. Several immunotherapy techniques for BC have been studied, including tumor-targeted antibodies (bispecific antibodies), adoptive T cell therapy, vaccinations, and immune checkpoint inhibition with anti-PD-1 antibodies. In the last decade, significant breakthroughs have been made in breast cancer immunotherapy. This advancement was principally prompted by cancer cells' escape of immune regulation and the tumor's subsequent resistance to traditional therapy. Photodynamic therapy (PDT) has shown potential as a cancer treatment. It is less intrusive, more focused, and less damaging to normal cells and tissues. It entails the employment of a photosensitizer (PS) and a specific wavelength of light to create reactive oxygen species. Recently, an increasing number of studies have shown that PDT combined with immunotherapy improves the effect of tumor drugs and reduces tumor immune escape, improving the prognosis of breast cancer patients. Therefore, we objectively evaluate strategies for their limitations and benefits, which are critical to improving outcomes for breast cancer patients. In conclusion, we offer many avenues for further study on tailored immunotherapy, such as oxygen-enhanced PDT and nanoparticles.
Collapse
|
18
|
Gogacz M, Peszke J, Natorska-Chomicka D, Ruszała M, Dos Santos Szewczyk K. Anticancer Effects of Propolis Extracts Obtained Using the Cold Separation Method on Breast Cancer Cell Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:884. [PMID: 36840233 PMCID: PMC9958691 DOI: 10.3390/plants12040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Propolis and its extracts show a wide spectrum of biological activity. Due to the necessity to use high temperatures and high polarity in the eluent, the obtained extracts are depleted of active compounds. The new, cold separation method allows obtaining a qualitatively better product containing a number of chemical compounds absent in extracts obtained using high-temperature methods. The purpose of our study was to evaluate the biological activity of propolis extracts produced with the cold separation method in four female breast cancer cell lines: MDA-MB-231, MDA-MB-468, MCF-7, and T-47D. The results of the breast cancer cell viability were obtained using the MTT test. Propolis extracts at 75 and 80% showed similar cytotoxicity against cancer cells, with the polyphenol fraction 75% being slightly more negative for cells. Propolis extracts at concentrations of 50, 75, and 100 µg/mL significantly reduced cell viability. With the exception of the MDA-MB-231 line, cell viability was also decreased after incubation with a concentration of 25 µg/mL. Our results suggest that propolis extracts obtained with the cold separation method may be considered as promising compounds for the production of health-promoting supplements.
Collapse
Affiliation(s)
- Marek Gogacz
- Chair and Department of Gynecology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jerzy Peszke
- Department of Experimental Biotechnology, Decont LLC, 08-500 Ryki, Poland
| | - Dorota Natorska-Chomicka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Monika Ruszała
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | |
Collapse
|
19
|
Novel roles of RNA-binding proteins in drug resistance of breast cancer: from molecular biology to targeting therapeutics. Cell Death Discov 2023; 9:52. [PMID: 36759501 PMCID: PMC9911762 DOI: 10.1038/s41420-023-01352-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Therapy resistance remains a huge challenge for current breast cancer treatments. Exploring molecular mechanisms of therapy resistance might provide therapeutic targets for patients with advanced breast cancer and improve their prognosis. RNA-binding proteins (RBPs) play an important role in regulating therapy resistance. Here we summarize the functions of RBPs, highlight their tremendously important roles in regulating therapy sensitivity and resistance and we also reveal current therapeutic approaches reversing abnormal functions of RBPs in breast cancer.
Collapse
|
20
|
Li L, Li L, Liu M, Li Y, Sun Q. Novel immune-related prognostic model and nomogram for breast cancer based on ssGSEA. Front Genet 2023; 13:957675. [PMID: 36704358 PMCID: PMC9871386 DOI: 10.3389/fgene.2022.957675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to construct an immune-related prognostic model and a nomogram to predict the 1-, 3-, and 5-year overall survival (OS) of breast cancer patients. We applied single-sample gene set enrichment analysis to classify 1,053 breast cancer samples from The Cancer Genome Atlas (TCGA) database into high and low immune cell infiltration clusters. In cluster construction and validation, the R packages "GSVA," "hclust," "ESTIMATE," and "CIBERSORT" and GSEA software were utilized. ImmPort, univariate Cox regression analysis, and Venn analysis were then used to identify 42 prognostic immune-related genes. Eventually, the genes TAPBPL, RAC2, IL27RA, ULBP2, PSMB8, SOCS3, NFKBIE, IGLV6-57, CXCL1, IGHD, AIMP1, and CXCL13 were chosen for model construction utilizing least absolute shrinkage and selection operator regression analysis. The Kaplan-Meier curves of both the training and validation sets indicated that the overall survival of patients in the low-risk group was superior to that of patients in the high-risk group (p < .05). The areas under curves (AUCs) of the model at 1, 3, and 5 years were, respectively, .697, .710, and .675 for the training set and .930, .688, and .712 for the validation set. Regarding clinicopathologic characteristics, breast cancer-related genes, and tumor mutational burden, effective differentiation was achieved between high-risk and low-risk groups. A nomogram integrating the risk model and clinicopathologic factors was constructed using the "rms" R software package. The nomogram's 1-, 3-, and 5-year AUCs were .828, .783, and .751, respectively. Overall, our study developed an immune-related model and a nomogram that could reliably predict OS for breast cancer patients, and offered insights into tumor immune and pathological mechanisms.
Collapse
Affiliation(s)
- Linrong Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Yan Li, ; Qiang Sun,
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Yan Li, ; Qiang Sun,
| |
Collapse
|
21
|
Provenzano L, Lobefaro R, Ligorio F, Zattarin E, Zambelli L, Sposetti C, Presti D, Montelatici G, Ficchì A, Martinetti A, Arata A, Del Vecchio M, Lauria Pantano C, Formisano B, Bianchi GV, Capri G, de Braud F, Vernieri C, Fucà G. The pan-immune-inflammation value is associated with clinical outcomes in patients with advanced TNBC treated with first-line, platinum-based chemotherapy: an institutional retrospective analysis. Ther Adv Med Oncol 2023; 15:17588359231165978. [PMID: 37063779 PMCID: PMC10102956 DOI: 10.1177/17588359231165978] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Background Advanced triple-negative breast cancer (aTNBC) has a poor prognosis; thus, there is a need to identify novel biomarkers to guide future research and improve clinical outcomes. Objectives We tested the prognostic ability of an emerging, complete blood count (CBC)-based inflammatory biomarker, the pan-immune-inflammation value (PIV), in patients with aTNBC treated with first-line, platinum-based chemotherapy. Design This was a retrospective, monocentric, observational study. Methods We included consecutive aTNBC patients treated with platinum-based, first-line chemotherapy at our Institution, and for whom baseline (C1) CBC data were available. We collected CBC data early on-treatment, when available. PIV was calculated as: (neutrophil count × platelet count × monocyte count)/lymphocyte count. Patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer (aBC) were included in a control, non-TNBC cohort. Results A total of 78 aTNBC patients were included. When evaluated as a continuous variable, PIV-C1 was associated with worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). On the other hand, when PIV-C1 was assessed on the basis of its quantile distribution, patients with 'high PIV-C1' experienced worse OS [adjusted hazard ratio (HR): 4.46, 95% confidence interval (CI): 2.22-8.99; adjusted p < 0.001] and PFS (adjusted HR: 2.03, 95% CI: 1.08-3.80; adjusted p = 0.027) when compared to patients with 'low PIV-C1'. Higher PIV-C1 was also associated with primary resistance to chemotherapy. Similarly, a higher PIV calculated from CBC at C2D1 (PIV-C2) was associated with worse survival outcomes. We also created a PIV-based score combining information about both PIV-C1 and PIV-C2 and allowing the stratification of patients at low, intermediate, and high risk of death. No association was observed between PIV-C1 and clinical outcomes of HR+/HER2- aBC patients. Conclusion PIV has a promising prognostic discrimination ability in aTNBC patients treated with first-line, platinum-based chemotherapy. Both baseline and early on-treatment PIV are associated with clinical outcomes and may be exploited for creating PIV-based risk classifiers if further validated.
Collapse
Affiliation(s)
| | | | | | - Emma Zattarin
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Zambelli
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Presti
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Montelatici
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Ficchì
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonia Martinetti
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Arata
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Del Vecchio
- Unit of Pharmacy, Fondazione IRCCS Istituto
Nazionale dei Tumori, Milan, Italy
| | | | - Barbara Formisano
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Valeria Bianchi
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Capri
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | | | | |
Collapse
|
22
|
Chen H, Pu S, Mei N, Liu X, He J, Zhang H. Identification of prognostic biomarkers among ICAMs in the breast cancer microenvironment. Cancer Biomark 2022; 35:379-393. [PMID: 36373309 DOI: 10.3233/cbm-220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Intercellular adhesion molecules (ICAMs) in the tumor microenvironment are closely related to immunity and affect the prognosis of cancer patients. OBJECTIVE The aim of our study is to explore the correlation between ICAM expression, mutation, methylation and immunity and their prognostic value in breast cancer (BC) is not clear. METHODS Online databases and tools such as UALCAN, COSMIC, cBioPortal, MethSurv, PrognoScan, Kaplan-Meier Plotter, GSCA and TIMER were utilized in this study. RESULTS We found that the mRNA and protein expression levels of ICAM1 were upregulated in triple-negative breast cancer (TNBC) compared with normal tissues, and TNBC patients with high expression of ICAM1 had better overall survival (OS) and recurrence-free survival (RFS). The main types of ICAM1 gene variants were missense mutation and amplification, and ICAM1 showed a lower level of methylation in TNBC cancer tissues than in normal tissues, which was contrary to the high expression levels of ICAM1 mRNA and protein. Next, the function of ICAM1 was mainly related to the activation of apoptosis, epithelial-mesenchymal transition (EMT) and inhibition of the androgen receptor (AR) and estrogen receptor (ER) pathways. Meanwhile, functional pathway enrichment results showed that ICAM1 was also involved in the immune regulation process of BC. Furthermore, the expression of ICAM1 was positively associated with 6 types of tumor-infiltrating immune cells (CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages and dendritic cells) and was also positively related to the expression of programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA4). CONCLUSIONS Our research indicated that ICAM1 was likely to be a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Heyan Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shengyu Pu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Mei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoxu Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huimin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Tong Y, Huang J, Ren W, Yu J, Zhang X, Wang Z, Hong J, Gao W, Wu J, Ji M, Shen K, Chen X. Association of tumor immune microenvironment profiling and 21-gene recurrence assay in early breast cancer patients. Eur J Med Res 2022; 27:293. [PMID: 36528658 PMCID: PMC9758791 DOI: 10.1186/s40001-022-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Tumor immune microenvironment (TIME) plays a vital role in breast cancer development, treatment resistance, and prognosis. This study evaluates the association of TIME profiling and 21-gene recurrence score (RS) in early Luminal breast cancer patients. METHODS ER+ /HER2-, pN0 breast cancer patients with available RS results who received surgery between January 2009 and December 2013 were enrolled. TIME markers, including stromal tumor infiltrating lymphocytes (TILs), CD3, CD4, CD8, and tumor PD-L1 expression, were comprehensively analyzed. Association of TIME markers with RS, as well as their correlation with breast cancer-specific survival (BCSS) were tested. RESULTS Overall, 385 patients were included, of whom 341 (88.6%) had TILs ≤10%. TIME markers were positively but moderately correlated with each other (Spearman r 0.28-0.53, all P < 0.05). Continuous RS showed a weak correlation with continuous TILs, CD3, CD8, and PD-L1. Regarding single gene mRNA level in the 21-gene RS panel, higher expression of TIME markers was related to lower ER group genes expression, but higher proliferation and invasion group genes level. After a median follow-up of 91.67 (range 5.03-134.03) months, TILs (P = 0.049) and PD-L1 (P = 0.034) were inversely associated with BCSS. CONCLUSIONS Breast cancer TIME markers, including TILs, CD3, CD4, CD8, and PD-L1, were correlated with 21-gene RS score. Lower expression of ER group genes, as well as higher expression of proliferation and invasion group genes were associated with a higher level of these TIME markers, warranting further exploration.
Collapse
Affiliation(s)
- Yiwei Tong
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Jiahui Huang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Weili Ren
- Department of Breast Surgery, Shaoxing Shangyu People’s Hospital, Shaoxing, 312300 Zhejiang China
| | - Jing Yu
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Xu Zhang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Zheng Wang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Jin Hong
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Weiqi Gao
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Jiayi Wu
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Min Ji
- grid.452587.9Department of Breast, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030 China
| | - Kunwei Shen
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Xiaosong Chen
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| |
Collapse
|
24
|
Kafle U, Agrawal S, Dash AK. Injectable Nano Drug Delivery Systems for the Treatment of Breast Cancer. Pharmaceutics 2022; 14:2783. [PMID: 36559276 PMCID: PMC9785637 DOI: 10.3390/pharmaceutics14122783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most diagnosed type of cancer, with 2.26 million cases and 685,000 deaths recorded in 2020. If left untreated, this deadly disease can metastasize to distant organs, which is the reason behind its incurability and related deaths. Currently, conventional therapies are used to treat breast cancer, but they have numerous shortcomings such as low bioavailability, short circulation time, and off-target toxicity. To address these challenges, nanomedicines are preferred and are being extensively investigated for breast cancer treatment. Nanomedicines are novel drug delivery systems that can improve drug stability, aqueous solubility, blood circulation time, controlled release, and targeted delivery at the tumoral site and enhance therapeutic safety and effectiveness. Nanoparticles (NPs) can be administered through different routes. Although the injectable route is less preferred than the oral route for drug administration, it has its advantages: it helps tailor drugs with targeted moiety, boosts payload, avoids first-pass metabolism, and improves the pharmacokinetic parameters of the active pharmaceutical ingredients. Targeted delivery of nanomedicine, closer to organelles such as the mitochondria and nuclei in breast cancer, reduces the dosage requirements and the toxic effects of chemotherapeutics. This review aims to provide the current status of the recent advances in various injectable nanomedicines for targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Urmila Kafle
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Satish Agrawal
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
25
|
Makrantonakis AE, Zografos E, Gazouli M, Dimitrakakis K, Toutouzas KG, Zografos CG, Kalapanida D, Tsiakou A, Samelis G, Zagouri F. PD-L1 Gene Polymorphisms rs822336 G>C and rs822337 T>A: Promising Prognostic Markers in Triple Negative Breast Cancer Patients. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101399. [PMID: 36295559 PMCID: PMC9612177 DOI: 10.3390/medicina58101399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
Background and Objectives: Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype that is associated with unresponsiveness to therapy and hence with high mortality rates. In this study we aimed to investigate the prognostic role of the rs822336 G>C and rs822337 T>A polymorphisms of the PD-L1 (Programmed Death-Ligand 1) in TNBC patients. Materials and methods: Formalin-fixed paraffin-embedded tissues from 114 TNBC patients and blood samples from 124 healthy donors were genotyped, and subsequently extensive statistical analysis was performed in order to investigate the clinical value of these polymorphism in TNBC. Results: Regarding rs822336 G>C, we found that the CG genotype was the most common among women that harbored Stage IV breast tumors (81.8%; p = 0.022), recurred (38.9%; p = 0.02) and died (66.7%; p = 0.04). Similarly, the rs822337 T>A genotype AA is associated with worse prognosis, since it was the most common genotype among stage IV tumors (72.7%; p = 0.04) and in TNBC patients that relapsed (75%; p = 0.021) and died (81.5%; p = 0.004). Our statistical analysis revealed that the rs822336 G>C genotype CG and the rs822337 T>A allele AA are strongly associated with inferior DFS and OS intervals. Moreover, it was revealed that women harboring mutated genotypes of both SNPs had shorter disease-free (Kaplan−Meier; p = 0.037, Cox analysis; p = 0.04) and overall (Kaplan−Meier; p = 0.025, Cox analysis; p = 0.03) survival compared to patients having normal genotype of at least one SNP. Multivariate analysis also showed that the presence of mutated genotypes of both SNPs is a strong and independent marker for predicting shorter DFS (p = 0.02) and OS (p = 0.008). Conclusion: Our study revealed that PD-L1 rs822336 G>C and rs822337 T>A polymorphisms were differentially expressed in our cohort of TNBC patients, and that this distribution was associated with markers of unfavorable prognosis and worse survival.
Collapse
Affiliation(s)
| | - Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Correspondence: (E.Z.); (F.Z.)
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantinos Dimitrakakis
- Department of Obstetrics and Gynaecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Konstantinos G. Toutouzas
- 1st Propaedeutic Surgical Department, Hippokrateio Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Constantinos G. Zografos
- 1st Propaedeutic Surgical Department, Hippokrateio Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Andriani Tsiakou
- First Department of Dermatology, Syggros Hospital, School of Medicine, National and Kapodistrian University of Athens, 161 21 Athens, Greece
| | - George Samelis
- Department of Oncology, Hippocrateion Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
- Correspondence: (E.Z.); (F.Z.)
| |
Collapse
|
26
|
Tsirigoti C, Ali MM, Maturi V, Heldin CH, Moustakas A. Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells. Cell Death Dis 2022; 13:832. [PMID: 36171192 PMCID: PMC9519755 DOI: 10.1038/s41419-022-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFβ. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.
Collapse
Affiliation(s)
- Chrysoula Tsirigoti
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mohamad Moustafa Ali
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Varun Maturi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Department of Pharmacy, Drug Delivery, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Carl-Henrik Heldin
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
27
|
Sun J, Zhao H, Xu W, Jiang GQ. Recent advances in photothermal therapy-based multifunctional nanoplatforms for breast cancer. Front Chem 2022; 10:1024177. [PMID: 36199665 PMCID: PMC9528973 DOI: 10.3389/fchem.2022.1024177] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women worldwide; however, the successful treatment of BC, especially triple-negative breast cancer (TNBC), remains a significant clinical challenge. Recently, photothermal therapy (PTT), which involves the generation of heat under irradiation to achieve photothermal ablation of BC with minimal invasiveness and outstanding spatial–temporal selectivity, has been demonstrated as a novel therapy that can overcome the drawbacks of chemotherapy or surgery. Significantly, when combining PTT with chemotherapy and/or photodynamic therapy, an enhanced synergistic therapeutic effect can be achieved in both primary and metastatic BC tumors. Thus, this review discusses the recent developments in nanotechnology-based photothermal therapy for the treatment of BC and its metastasis to provide potential strategies for future BC treatment.
Collapse
Affiliation(s)
- Jingjun Sun
- Department of Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Breast Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
- *Correspondence: Jingjun Sun, ; Guo-Qin Jiang,
| | - Haiyan Zhao
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Weixuan Xu
- Department of Breast Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Guo-Qin Jiang
- Department of Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jingjun Sun, ; Guo-Qin Jiang,
| |
Collapse
|
28
|
Designing a Humanized Immunotoxin Based on HER2 Specific scFv and DFF40 Toxin Against Breast Cancer: An In-Silico Study. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Li L, Li L, Sun Q. High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer: an analysis based on public databases. BMC Bioinformatics 2022; 23:350. [PMID: 35996075 PMCID: PMC9394027 DOI: 10.1186/s12859-022-04894-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cuproptosis induction represents a promising alternative for immunotherapies and targeted therapies in breast cancer. This study aimed to investigate the prognostic and biological significance of cuproptosis-related genes in breast cancer. In the current study, we examined the transcriptional and clinical data of 13 cuproptosis-related genes in patients with breast cancer from TCGA database. We found that genes DLAT, SLC31A1, ATP7A and ATP7B were significantly related to the overall survival (OS) of breast cancer patients in univariate Cox regression analysis. Unlike lung or kidney cancers, SLC31A1 expression was upregulated in breast cancer samples compared with normal tissues, and predicted poor prognosis. Univariate and multivariate Cox regression analyses indicated that high SLC31A1 level was an independent prognostic factor for shorter OS. A nomogram integrating SLC31A1, age, T-, N-stage and clinical stage was constructed, and the calibration curves of the 1-, 3-, 5-, 10-year OS fitted well with the ideal model. Furthermore, we found that high SLC31A1 expression was related to deregulated immune response and metabolic pathways. Low SLC31A1 level predicted sensitivity to CTLA4 inhibitors but poor response to paclitaxel. Our study may provide novel insights for copper homeostasis and cuproptosis in breast cancer.
Collapse
Affiliation(s)
- Linrong Li
- grid.506261.60000 0001 0706 7839Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lin Li
- grid.284723.80000 0000 8877 7471Department of Joint and Orthopedics, Zhujiang Hospital, Second Clinical Medical College, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
30
|
The Landscape of Tumor-Infiltrating Immune Cells in Feline Mammary Carcinoma: Pathological and Clinical Implications. Cells 2022; 11:cells11162578. [PMID: 36010653 PMCID: PMC9406662 DOI: 10.3390/cells11162578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
Feline mammary carcinoma (FMC) shares key molecular and clinicopathological features with human breast cancer. We have herein studied the inflammatory infiltrate of FMC in order to uncover potential therapeutic targets and prognostic markers. To this end, the expression of different markers (CD3, CD4, CD8, CD20, CD56, FoxP3, CD68 and CD163) was analyzed in total, stromal (s) and intratumoral (i) tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs), in 73 feline mammary carcinomas. The results revealed that higher percentages of sCD8+ TILs were associated with longer disease-free survival (p = 0.05) and overall survival (p = 0.021). Additionally, higher percentages of iCD4+ TILs correlated with positive lymph node status (p = 0.003), whereas CD163+ TAMs were associated with undifferentiated tumors (p = 0.013). In addition, sCD3+ (p = 0.033), sCD8+ (p = 0.044) and sCD68+ (p = 0.023) immune cells were enriched in triple negative normal-like carcinomas compared to other subtypes. Altogether, our results suggest that specific subsets of immune cells may play a major role in clinical outcome of cats with mammary carcinoma, resembling what has been reported in human breast cancer. These data further support the relevance of the feline model in breast cancer studies.
Collapse
|
31
|
Rangan R, Kanetkar SR, Bhosale SJ, Kakade SV, Patil NJ, Gudur A. Evaluation and comparison of intratumoural and intrastromal infiltrating lymphocytes with clinicopathological features in breast carcinoma patients who have received neoadjuvant chemotherapy - A cross-sectional study. Ann Med Surg (Lond) 2022; 80:104308. [PMID: 36045840 PMCID: PMC9422358 DOI: 10.1016/j.amsu.2022.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background The microenvironment of breast cancer plays a significant role in determining the prognosis of the disease. With the shifting paradigm on the predictive factors post-Neoadjuvant Chemotherapy (NAC), it was sought out that Tumour infiltrating lymphocytes (TILs) are of valuable use for the same. Yet, the delineation of the two types - Intrastromal and Intratumoural has seldom been facilitated. This study, therefore, aimed to evaluate, analyse and compare the two - to gauge the importance of the treatment outcome and clinicopathological features. Materials and methods 180 breast cancer patients were included in this study who underwent NAC, and their post-surgically resected tumour specimens were sectioned and stained using routine Haematoxylin and Eosin techniques. The evaluation of TILs in the stroma and tumour was done based on the standardised guidelines. Results Out of the 180 patients, 55 (i.e. 30.56%) displayed pathological complete resolution (pCR). Furthermore, Intratumoural TILs had a slight association with the pCR (p = 0.0335) whereas Intrastromal TILs had a significantly large association with pCR (p < 0.0001) dependent on the lymphocytic response. Backward regression revealed that - the age at operation, pCR, lymph node involvement and menopause highly contributed to predicting 68.2% of the total cases correctly with a sensitivity of 93.0% and specificity of 24.6% for Intratumoral TILs. Age at operation, pCR, lymph node involvement and tumour emboli highly contributed to predicting 71.5% of the total cases correctly with sensitivity of 71.6% and specificity of 71.4% for Intrastromal TILs. Conclusion TILs and the prediction of NAC and pCR should be made standardised and reproducible so that they can be universally available to all patients with breast cancer. Through this study, further avenues of research have opened up for their relations with clinicopathological features mainly age at operation and menopausal status. IT & IS TILs play a varied role in the prediction of NAC and pCR. Post-NAC 55 patients (i.e. 30.56%) out of 180 displayed pCR. Age at operation, pCR, lymph node involvement and menopause highly contributed to predict IT TILs. Age at operation, pCR, lymph node involvement and tumour emboli highly contributed to predict IS TILs. Analysis of TILs can be a reliable method in the treatment response and immunogenicity of breast tumours.
Collapse
|
32
|
Rojas F, Hernandez S, Lazcano R, Laberiano-Fernandez C, Parra ER. Multiplex Immunofluorescence and the Digital Image Analysis Workflow for Evaluation of the Tumor Immune Environment in Translational Research. Front Oncol 2022; 12:889886. [PMID: 35832550 PMCID: PMC9271766 DOI: 10.3389/fonc.2022.889886] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
A robust understanding of the tumor immune environment has important implications for cancer diagnosis, prognosis, research, and immunotherapy. Traditionally, immunohistochemistry (IHC) has been regarded as the standard method for detecting proteins in situ, but this technique allows for the evaluation of only one cell marker per tissue sample at a time. However, multiplexed imaging technologies enable the multiparametric analysis of a tissue section at the same time. Also, through the curation of specific antibody panels, these technologies enable researchers to study the cell subpopulations within a single immunological cell group. Thus, multiplexed imaging gives investigators the opportunity to better understand tumor cells, immune cells, and the interactions between them. In the multiplexed imaging technology workflow, once the protocol for a tumor immune micro environment study has been defined, histological slides are digitized to produce high-resolution images in which regions of interest are selected for the interrogation of simultaneously expressed immunomarkers (including those co-expressed by the same cell) by using an image analysis software and algorithm. Most currently available image analysis software packages use similar machine learning approaches in which tissue segmentation first defines the different components that make up the regions of interest and cell segmentation, then defines the different parameters, such as the nucleus and cytoplasm, that the software must utilize to segment single cells. Image analysis tools have driven dramatic evolution in the field of digital pathology over the past several decades and provided the data necessary for translational research and the discovery of new therapeutic targets. The next step in the growth of digital pathology is optimization and standardization of the different tasks in cancer research, including image analysis algorithm creation, to increase the amount of data generated and their accuracy in a short time as described herein. The aim of this review is to describe this process, including an image analysis algorithm creation for multiplex immunofluorescence analysis, as an essential part of the optimization and standardization of the different processes in cancer research, to increase the amount of data generated and their accuracy in a short time.
Collapse
|
33
|
Tkach M, Thalmensi J, Timperi E, Gueguen P, Névo N, Grisard E, Sirven P, Cocozza F, Gouronnec A, Martin-Jaular L, Jouve M, Delisle F, Manel N, Rookhuizen DC, Guerin CL, Soumelis V, Romano E, Segura E, Théry C. Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proc Natl Acad Sci U S A 2022; 119:e2107394119. [PMID: 35439048 PMCID: PMC9169908 DOI: 10.1073/pnas.2107394119] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor associated macrophages (TAMs), which differentiate from circulating monocytes, are pervasive across human cancers and comprise heterogeneous populations. The contribution of tumor-derived signals to TAM heterogeneity is not well understood. In particular, tumors release both soluble factors and extracellular vesicles (EVs), whose respective impact on TAM precursors may be different. Here, we show that triple negative breast cancer cells (TNBCs) release EVs and soluble molecules promoting monocyte differentiation toward distinct macrophage fates. EVs specifically promoted proinflammatory macrophages bearing an interferon response signature. The combination in TNBC EVs of surface CSF-1 promoting survival and cargoes promoting cGAS/STING or other activation pathways led to differentiation of this particular macrophage subset. Notably, macrophages expressing the EV-induced signature were found among patients’ TAMs. Furthermore, higher expression of this signature was associated with T cell infiltration and extended patient survival. Together, this data indicates that TNBC-released CSF-1-bearing EVs promote a tumor immune microenvironment associated with a better prognosis in TNBC patients.
Collapse
Affiliation(s)
- Mercedes Tkach
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Jessie Thalmensi
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Eleonora Timperi
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Paul Gueguen
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Nathalie Névo
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Eleonora Grisard
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Philemon Sirven
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Federico Cocozza
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Alizée Gouronnec
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | | | - Mabel Jouve
- CNRS UMR3215, Institut Curie, PSL Research University, 75005, Paris, France
| | - Fabien Delisle
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Nicolas Manel
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | | | - Coralie L. Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, F-75005 France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, F-75006 France
| | - Vassili Soumelis
- Université de Paris, Inserm, U976 HIPI Unit, F-75006, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emanuela Romano
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Elodie Segura
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Clotilde Théry
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| |
Collapse
|
34
|
Dong X, Yang Y, Xu G, Tian Z, Yang Q, Gong Y, Wu G. The initial expression alterations occurring to transcription factors during the formation of breast cancer: Evidence from bioinformatics. Cancer Med 2022; 11:1371-1395. [PMID: 35037412 PMCID: PMC8894706 DOI: 10.1002/cam4.4545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading malignancy among women worldwide. AIM This work aimed to present a comprehensively bioinformatic analysis of gene expression profiles and to identify the hub genes during BC tumorigenesis, providing potential biomarkers and targets for the diagnosis and therapy of BC. MATERIALS & METHODS In this study, multiple public databases, bioinformatics approaches, and online analytical tools were employed and the real-time reverse transcription polymerase chain reaction was implemented. RESULTS First, we identified 10, 107, and 3869 differentially expressed genes (DEGs) from three gene expression datasets (GSE9574, GSE15852, and GSE42568, covering normal, para-cancerous, and BC samples, respectively), and investigated different biological functions and pathways involved. Then, we screened out 8, 16, and 29 module genes from these DEGs, respectively. Next, 10 candidate genes were determined through expression and survival analyses. We noted that seven candidate genes JUN, FOS, FOSB, EGR1, ZFP36, CFD, and PPARG were downregulated in BC compared to normal tissues and lower expressed in aggressive types of BC (basal, HER2+ , and luminal B), TP53 mutation group, younger patients, higher stage BC, and lymph node metastasis BC, while CD27, PSMB9, and SELL were upregulated. The present study discovered that the expression levels of these candidate genes were correlated with the infiltration of immune cells (CD8+ T cell, macrophage, natural killer [NK] cell, and cancer-associated fibroblast) in BC, as well as biomarkers of immune cells and immune checkpoints. We also revealed that promoter methylation, amplification, and deep deletion might contribute to the abnormal expressions of candidate genes. Moreover, we illustrated downstream-targeted genes of JUN, FOS, FOSB, EGR1, and ZFP36 and demonstrated that these targeted genes were involved in "positive regulation of cell death", "pathways in cancer", "PI3K-Akt signaling pathway", and so on. DISCUSSION & CONCLUSION We presented differential gene expression profiles among normal, para-cancerous, and BC tissues and further identified candidate genes that might contribute to tumorigenesis and progression of BC, as potential diagnostic and prognostic targets for BC patients.
Collapse
Affiliation(s)
- Xingxing Dong
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yalong Yang
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gaoran Xu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zelin Tian
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qian Yang
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational MedicineHubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gaosong Wu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
35
|
Locy H, Verhulst S, Cools W, Waelput W, Brock S, Cras L, Schiettecatte A, Jonckheere J, van Grunsven LA, Vanhoeij M, Thielemans K, Breckpot K. Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Front Immunol 2022; 13:794175. [PMID: 35222378 PMCID: PMC8876933 DOI: 10.3389/fimmu.2022.794175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Scoring of tumor-infiltrating lymphocytes (TILs) in breast cancer specimens has gained increasing attention, as TILs have prognostic and predictive value in HER2+ and triple-negative breast cancer. We evaluated the intra- and interrater variability when scoring TILs by visual inspection of hematoxylin and eosin-stained tissue sections. We further addressed whether immunohistochemical staining of these sections for immune cell surface markers CD45, CD3, CD4, and CD8 and combination with nanoString nCounter® gene expression analysis could refine TIL scoring. Formalin-fixed paraffin-embedded and fresh-frozen core needle biopsies of 12 female and treatment-naive breast cancer patients were included. Scoring of TILs was performed twice by three independent pathologists with a washout period of 3 days. Increasing intra- and interrater variability was observed with higher TIL numbers. The highest reproducibility was observed on tissue sections stained for CD3 and CD8. The latter TIL scores correlated well with the TIL scores obtained through nanoString nCounter® gene expression analysis. Gene expression analysis also revealed 104 and 62 genes that are positively and negatively related to both TIL scores. In conclusion, integration of immunohistochemistry and gene expression analysis is a valuable strategy to refine TIL scoring in breast tumors.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| | | | - Wilfried Cools
- Interfaculty Center Data processing and Statistics, VUB, Brussels, Belgium
| | - Wim Waelput
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stefanie Brock
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Louise Cras
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| |
Collapse
|
36
|
Ma YY, Wang H, Zhao WD, Li YF, Wang JJ, Chen XY, Huang YQ, Wang WJ, Wang Y, Sun SC. Prognostic Value of Combined Lactate Dehydrogenase, C-Reactive Protein, Cancer Antigen 153 and Cancer Antigen 125 in Metastatic Breast Cancer. Cancer Control 2022; 29:10732748211053150. [PMID: 34989251 PMCID: PMC8743925 DOI: 10.1177/10732748211053150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Breast cancer (BC), especially metastatic BC, is one of the most lethal diseases in women. CA 125 and CA 15-3 are commonly used indicators for diagnosis and prognosis of BC. Some serological indicators, such as lactate dehydrogenase (LDH) and C-reactive protein (CRP), can also be used to assess the prognosis and progression in BC. Methods Univariate Cox regression analysis and LASSO regression analysis were performed to identify prognostic factors and build prognostic models. We distributed the patients into 2 groups based on the median risk score, analyzed prognosis by Kaplan–Meier curve, and screened independent prognostic factors by multivariate Cox regression analysis. Result We identified 4 indicators-LDH, CRP, CA 15-3, and CA 125—related to the prognosis in BC and established a prognostic model. The high LDH group showed worse overall survival (OS) than low LDH group (P = .017; hazard ratio (HR), 1.528; 95% confidence interval (CI), 1.055-2.215). The high CRP group showed worse OS than low CRP group (P = .004; HR, 1.666; 95% CI, 1.143-2.429). The high CA153 group showed worse OS than low CA 15-3 group (P=.011; HR, 1.563; 95% CI, 1.075-2.274). The high CA 125 group showed worse OS than low CA 125 group (P = .021; HR, 1.499; 95% CI, 1.031-2.181). The area under the curve for risk score was .824, Ki-67 was .628, age was .511, and grade was .545. Risk score was found to be an independent prognostic factor using multivariate Cox regression analysis. Conclusion We successfully established an optimization model by combining 4 prognosis-related indicators to assess the prognosis in patients with metastatic BC.
Collapse
Affiliation(s)
- Yu-Yuan Ma
- Department of Thyroid and Breast Surgery, 117958Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, P.R. China
| | - Wei-Dong Zhao
- Department of Oncology, 569222Yijishan Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, P.R. China
| | - Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, P.R. China
| | - Xing-Yu Chen
- Department of General Surgery, Taizhou Fourth People's Hospital, Taizhou, P.R. China
| | - Yue-Qing Huang
- Department of General Medicine, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Wen-Jie Wang
- Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Ying Wang
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, P.R. China
| | - Shi-Chang Sun
- Department of Oncology, Jining Cancer Hospital, Jining, P.R. China
| |
Collapse
|
37
|
Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222413571. [PMID: 34948368 PMCID: PMC8703661 DOI: 10.3390/ijms222413571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.
Collapse
|
38
|
Dias CJ, Helguero L, Faustino MAF. Current Photoactive Molecules for Targeted Therapy of Triple-Negative Breast Cancer. Molecules 2021; 26:7654. [PMID: 34946732 PMCID: PMC8709347 DOI: 10.3390/molecules26247654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is the second leading cause of death worldwide; therefore, there is an urgent need to find safe and effective therapies. Triple-negative breast cancer (TNBC) is diagnosed in ca. 15-20% of BC and is extremely aggressive resulting in reduced survival rate, which is mainly due to the low therapeutic efficacy of available treatments. Photodynamic therapy (PDT) is an interesting therapeutic approach in the treatment of cancer; the photosensitizers with good absorption in the therapeutic window, combined with their specific targeting of cancer cells, have received particular interest. This review aims to revisit the latest developments on chlorin-based photoactive molecules for targeted therapy in TNBC. Photodynamic therapy, alone or combined with other therapies (such as chemotherapy or photothermal therapy), has potential to be a safe and a promising approach against TNBC.
Collapse
Affiliation(s)
- Cristina J. Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luisa Helguero
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | | |
Collapse
|
39
|
Wilson GJ, Fukuoka A, Vidler F, Graham GJ. Diverse myeloid cells are recruited to the developing and inflamed mammary gland. Immunology 2021; 165:206-218. [PMID: 34775606 DOI: 10.1111/imm.13430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
The immune system plays fundamental roles in the mammary gland, shaping developmental processes and controlling inflammation during infection and cancer. Here, we reveal unanticipated heterogeneity in the myeloid cell compartment during development of virgin, pregnant, lactating and involuting mouse mammary glands, and in milk. We investigate the functional consequences of individual and compound chemokine receptor deficiency on cell recruitment. Diverse myeloid cell recruitment was also shown in models of sterile inflammation and bacterial infection. Strikingly, we have shown that inflammation and infection can alter the abundance of terminal end buds, a key developmental structure, within the pubertal mammary gland. This previously unknown effect of inflammatory burden during puberty could have important implications for understanding pubertal development.
Collapse
Affiliation(s)
- Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ayumi Fukuoka
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Francesca Vidler
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Noske A, Wagner DC, Schwamborn K, Foersch S, Steiger K, Kiechle M, Oettler D, Karapetyan S, Hapfelmeier A, Roth W, Weichert W. Interassay and interobserver comparability study of four programmed death-ligand 1 (PD-L1) immunohistochemistry assays in triple-negative breast cancer. Breast 2021; 60:238-244. [PMID: 34768219 PMCID: PMC8602040 DOI: 10.1016/j.breast.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
Different immunohistochemical programmed death-ligand 1 (PD-L1) assays and scorings have been reported to yield variable results in triple-negative breast cancer (TNBC). We compared the analytical concordance and reproducibility of four clinically relevant PD-L1 assays assessing immune cell (IC) score, tumor proportion score (TPS), and combined positive score (CPS) in TNBC. Primary TNBC resection specimens (n = 104) were stained for PD-L1 using VENTANA SP142, VENTANA SP263, DAKO 22C3, and DAKO 28–8. PD-L1 expression was scored according to guidelines on virtual whole slide images by four trained readers. The mean PD-L1 positivity at IC-score ≥1% and CPS ≥1 ranged between 53% and 75% with the highest positivity for SP263 and comparable levels for 22C3, 28–8, and SP142. Inter-assay agreement was good between 28–8 and 22C3 across all scores and cut-offs (kappa 0.68–0.74) and for both assays with SP142 at IC-score ≥1% and CPS ≥1 (kappa 0.61–0.67). The agreement between SP263 and all other assays was substantially lower for all scores. Inter-reader agreement for each assay was good to excellent for IC-score ≥1% (kappa 0.73–0.78) and CPS ≥1 (kappa 0.68–0.74), fair to good for CPS ≥10 (kappa 0.52–0.67) and TPS ≥1% (kappa 0.53–0.72). The percentage of overlapping cases in the positive/negative category was >90% between IC-score ≥1% and CPS ≥1 but below when comparing IC-score ≥1% with CPS ≥10. We demonstrate an overall good inter-reader agreement for all PD-L1 assays in TNBC along with assay specific differences in positivity and concordances, which may aid to select the right test strategy in routine diagnostics. Different PD-L1 IHC assays and scorings may show variable results in TNBC. Overall good assay concordance between SP142, 22C3, and 28–8 at IC-score 1%. Overall good assay concordance between SP142, 22C3, and 28–8 at CPS 1. SP142 is less optimal for CPS assessment at higher cut-offs. SP263 assay is not interchangeable with the other three PD-L1 assays.
Collapse
Affiliation(s)
- Aurelia Noske
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Daniel-Christoph Wagner
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Schwamborn
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marion Kiechle
- Department of Gynaecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Siranush Karapetyan
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Medical Informatics, Statistics and Epidemiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
41
|
Stalin J, Imhof BA, Coquoz O, Jeitziner R, Hammel P, McKee TA, Jemelin S, Poittevin M, Pocard M, Matthes T, Kaci R, Delorenzi M, Rüegg C, Miljkovic-Licina M. Targeting OLFML3 in Colorectal Cancer Suppresses Tumor Growth and Angiogenesis, and Increases the Efficacy of Anti-PD1 Based Immunotherapy. Cancers (Basel) 2021; 13:cancers13184625. [PMID: 34572851 PMCID: PMC8464773 DOI: 10.3390/cancers13184625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the proangiogenic factor olfactomedin-like 3 (OLFML3) in cancer is unclear. To characterize OLFML3 expression in human cancer and its role during tumor development, we undertook tissue expression studies, gene expression analyses of patient tumor samples, in vivo studies in mouse cancer models, and in vitro coculture experiments. OLFML3 was expressed at high levels, mainly in blood vessels, in multiple human cancers. We focused on colorectal cancer (CRC), as elevated expression of OLFML3 mRNA correlated with shorter relapse-free survival, higher tumor grade, and angiogenic microsatellite stable consensus molecular subtype 4 (CMS4). Treatment of multiple in vivo tumor models with OLFML3-blocking antibodies and deletion of the Olfml3 gene from mice decreased lymphangiogenesis, pericyte coverage, and tumor growth. Antibody-mediated blockade of OLFML3 and deletion of host Olfml3 decreased the recruitment of tumor-promoting tumor-associated macrophages and increased infiltration of the tumor microenvironment by NKT cells. Importantly, targeting OLFML3 increased the antitumor efficacy of anti-PD-1 checkpoint inhibitor therapy. Taken together, the results demonstrate that OLFML3 is a promising candidate therapeutic target for CRC.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
- Correspondence: ; Tel.: +41-26-300-8658
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, 20520 Turku, Finland
| | - Oriana Coquoz
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
| | - Rachel Jeitziner
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.); (M.D.)
| | - Philippe Hammel
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Thomas A. McKee
- Division of Clinical Pathology, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Stephane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Marine Poittevin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
| | - Marc Pocard
- CAP Paris-Tech, Université de Paris Diderot, INSERM U1275, 49 Boulevard de la Chapelle, CEDEX 10, F-75475 Paris, France; (M.P.); (R.K.)
- Department of Oncologic and Digestive Surgery, AP-HP, Hôpital Lariboisière, 2 Rue Ambroise Paré, CEDEX 10, F-75475 Paris, France
| | - Thomas Matthes
- Department of Oncology, Hematology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
- Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Rachid Kaci
- CAP Paris-Tech, Université de Paris Diderot, INSERM U1275, 49 Boulevard de la Chapelle, CEDEX 10, F-75475 Paris, France; (M.P.); (R.K.)
- Department of Anatomopathology, AP-HP, Hôpital Lariboisière, 2 Rue Ambroise Paré, CEDEX 10, F-75475 Paris, France
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.); (M.D.)
- Department of Oncology, University Lausanne, CH-1011 Lausanne, Switzerland
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (C.R.)
| | - Marijana Miljkovic-Licina
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (B.A.I.); (P.H.); (S.J.); (M.P.); (M.M.-L.)
- Department of Oncology, Hematology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland;
- Department of Diagnostics, Clinical Pathology Service, Geneva University Hospital, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
42
|
Martínez-Cortés F, Servín-Blanco R, Domínguez-Romero AN, Munguía ME, Guzman Valle J, Odales J, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from Oncofetal antigen (OFA/iLRP) using variable epitope libraries tested in an aggressive breast cancer model. Mol Immunol 2021; 139:65-75. [PMID: 34454186 DOI: 10.1016/j.molimm.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - María Elena Munguía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico.
| |
Collapse
|
43
|
Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, Kazemi MH, Khorramdelazad H, Safari E, Farahmand L. Breast cancer immunotherapy: Current and novel approaches. Int Immunopharmacol 2021; 98:107886. [PMID: 34153663 DOI: 10.1016/j.intimp.2021.107886] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
The crucial role of the immune system in the progression/regression of breast cancer (BC) should always be taken into account. Various immunotherapy approaches have been investigated for BC, including tumor-targeting antibodies (bispecific antibodies), adoptive T cell therapy, vaccines, and immune checkpoint blockade such as anti-PD-1. In addition, a combination of conventional chemotherapy and immunotherapy approaches contributes to improving patients' overall survival rates. Although encouraging outcomes have been reported in most clinical trials of immunotherapy, some obstacles should still be resolved in this regard. Recently, personalized immunotherapy has been proposed as a potential complementary medicine with immunotherapy and chemotherapy for overcoming BC. Accordingly, this review discusses the brief association of these methods and future directions in BC immunotherapy.
Collapse
Affiliation(s)
- Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjani University of Medical Sciences, Rafsanjani, Iran; Department of Immunology, School of Medicine, Rafsanjani University of Medical Sciences, Rafsanjani, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
44
|
Cattin S, Fellay B, Calderoni A, Christinat A, Negretti L, Biggiogero M, Badellino A, Schneider AL, Tsoutsou P, Pellanda AF, Rüegg C. Circulating immune cell populations related to primary breast cancer, surgical removal, and radiotherapy revealed by flow cytometry analysis. Breast Cancer Res 2021; 23:64. [PMID: 34090509 PMCID: PMC8180078 DOI: 10.1186/s13058-021-01441-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Advanced breast cancer (BC) impact immune cells in the blood but whether such effects may reflect the presence of early BC and its therapeutic management remains elusive. METHODS To address this question, we used multiparametric flow cytometry to analyze circulating leukocytes in patients with early BC (n = 13) at the time of diagnosis, after surgery, and after adjuvant radiotherapy, compared to healthy individuals. Data were analyzed using a minimally supervised approach based on FlowSOM algorithm and validated manually. RESULTS At the time of diagnosis, BC patients have an increased frequency of CD117+CD11b+ granulocytes, which was significantly reduced after tumor removal. Adjuvant radiotherapy increased the frequency of CD45RO+ memory CD4+ T cells and CD4+ regulatory T cells. FlowSOM algorithm analysis revealed several unanticipated populations, including cells negative for all markers tested, CD11b+CD15low, CD3+CD4-CD8-, CD3+CD4+CD8+, and CD3+CD8+CD127+CD45RO+ cells, associated with BC or radiotherapy. CONCLUSIONS This study revealed changes in blood leukocytes associated with primary BC, surgical removal, and adjuvant radiotherapy. Specifically, it identified increased levels of CD117+ granulocytes, memory, and regulatory CD4+ T cells as potential biomarkers of BC and radiotherapy, respectively. Importantly, the study demonstrates the value of unsupervised analysis of complex flow cytometry data to unravel new cell populations of potential clinical relevance.
Collapse
Affiliation(s)
- Sarah Cattin
- Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Benoît Fellay
- Central Laboratory, Hôpital Fribourgeois, CH-1700, Fribourg, Switzerland
| | | | | | - Laura Negretti
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Maira Biggiogero
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland.,Clinical Research unit, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Alberto Badellino
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland.,Clinical Research unit, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Anne-Lise Schneider
- Breast and Oncology Center, Hôpital Neuchatelois, CH-2300, La Chaux-de-Fonds, Switzerland
| | - Pelagia Tsoutsou
- Breast and Oncology Center, Hôpital Neuchatelois, CH-2300, La Chaux-de-Fonds, Switzerland.,Present Address: Service de Radio-Oncologie, Hôpitaux Universitaires de Genève, CH-1205, Geneva, Switzerland
| | - Alessandra Franzetti Pellanda
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland.,Clinical Research unit, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Curzio Rüegg
- Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
45
|
Ma G, Liu C, Lian W, Zhang Y, Yuan H, Zhang Y, Song S, Yang Z. 18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer. Ann Nucl Med 2021; 35:600-607. [PMID: 33689138 DOI: 10.1007/s12149-021-01603-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Our study was to investigate 18F-FLT PET/CT imaging monitor the early response of CDK4/6 inhibitor therapy in triple negative breast cancer (TNBC). METHODS MDA-MB-231 and MDA-MB-468 cell lines and corresponding subcutaneous tumor models in CB17-SCID mice were used. Cell viability assay, cell-cycle analysis, and western blotting were performed in vitro experiments. 18F-FLT PET/CT imaging was performed and the value of tumor/muscle (T/M) of mice was measured before and 1-3 days after treatment in vivo experiments. Then, the tumor volume was recorded every day for 15 days. RESULTS In the presence of Palbociclib (CDK4/6 inhibitor), the results of in vitro experiments showed that protein pRB and E2F levels were significantly down-regulated in MDA-MB-231 cells leading to G0/G1 arrest with consumption in S phase compared with MDA-MB-468 cells. In PET/CT imaging, the 18F-FLT T/M ratio of treatment group was a significant and sustained reduction from 1 to 3 days (all p < 0.05) compared with control group in MDA-MB-231 section. However, there was no significant difference between treatment and control groups in MDA-MB-468 section. Compared with the control group, the tumor volume of the treatment group was significantly reduced from the 11th day in MDA-MB-231 section, but not in MDA-MB-468 section until 15 days. CONCLUSION 18F-FLT PET/CT imaging can immediately and effectively monitor the early treatment response of CDK4/6 inhibitors in TNBC.
Collapse
Affiliation(s)
- Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Weiling Lian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Huiyu Yuan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| |
Collapse
|
46
|
Overcoming the Challenges of High Quality RNA Extraction from Core Needle Biopsy. Biomolecules 2021; 11:biom11050621. [PMID: 33922016 PMCID: PMC8143498 DOI: 10.3390/biom11050621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
The use of gene expression profiling (GEP) in cancer management is rising, as GEP can be used for disease classification and diagnosis, tailoring treatment to underlying genetic determinants of pharmacological response, monitoring of therapy response, and prognosis. However, the reliability of GEP heavily depends on the input of RNA in sufficient quantity and quality. This highlights the need for standard procedures to ensure best practices for RNA extraction from often small tumor biopsies with variable tissue handling. We optimized an RNA extraction protocol from fresh-frozen (FF) core needle biopsies (CNB) from breast cancer patients and from formalin-fixed paraffin-embedded (FFPE) tissue when FF CNB did not yield sufficient RNA. Methods to avoid ribonucleases andto homogenize or to deparaffinize tissues and the impact of tissue composition on RNA extraction were studied. Additionally, RNA’s compatibility with the nanoString nCounter® technology was studied. This technology platform enables GEP using small RNA fragments. After optimization of the protocol, RNA of high quality and sufficient quantity was obtained from FF CNB in 92% of samples. For the remaining 8% of cases, FFPE material prepared by the pathology department was used for RNA extraction. Both resulting RNA end products are compatible with the nanoString nCounter® technology.
Collapse
|
47
|
Vtorushin SV, Krakhmal NV, Zavyalova MV. [Triple-negative breast cancer. Modern molecular genetic concepts and their clinical significance]. Arkh Patol 2021; 83:46-51. [PMID: 33822554 DOI: 10.17116/patol20218302146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Triple negative breast cancer (BC) is a heterogeneous group of carcinomas that substantially differ in clinical, morphological, and molecular genetic characteristics, tumor response to chemotherapy, and prognosis. These features define triple negative BC today as a special clinical problem that has not yet been completely solved. The review is devoted to the description and systematization of the currently available literature data concerning molecular and genetic features and differences in a fairly significant group of breast carcinomas with a severe, aggressive course and an extremely poor prognosis. The review presents the existing molecular genetic classification of triple negative BC based on the results of studies conducted by M.D. Burstein (2015) and B.D. Lehmann (2016), which determines the presence of 4 tumor-specific subtypes: basal-like type (type 1 and type 2), mesenchymal, and luminal androgen receptor types. The paper reflects the main stages of transformation of the proposed classification over the past decade and an attempt has been make to describe the molecular characteristics of each subtype of these carcinomas.
Collapse
Affiliation(s)
- S V Vtorushin
- Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia.,Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N V Krakhmal
- Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - M V Zavyalova
- Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia.,Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
48
|
Schick J, Ritchie RP, Restini C. Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer (Auckl) 2021; 15:1178223421995854. [PMID: 33994789 PMCID: PMC8100889 DOI: 10.1177/1178223421995854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer death in women and the second-most common cancer. An estimated 281 550 new cases of invasive BC will be diagnosed in women in the United States, and about 43 600 will die during 2021. Continual research has shed light on all disease areas, including tumor classification and biomarkers for diagnosis/prognosis. As research investigations evolve, new classes of drugs are emerging with potential benefits in BC treatment that are covered in this manuscript. The initial sections present updated classification and terminology used for diagnosis and prognosis, which leads to the following topics, discussing the past and present treatments available for BC. Our review will generate interest in exploring the complexity of the cell cycle and its association with cancer biology as part of the plethora of target factors toward developing newer drugs and effective therapeutic management of BC.
Collapse
Affiliation(s)
- Jason Schick
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
| | - Raquel P Ritchie
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Carolina Restini
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
49
|
O'Reilly D, Sendi MA, Kelly CM. Overview of recent advances in metastatic triple negative breast cancer. World J Clin Oncol 2021; 12:164-182. [PMID: 33767972 PMCID: PMC7968109 DOI: 10.5306/wjco.v12.i3.164] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Metastatic triple negative breast cancer (TNBC) has an aggressive phenotype with a predilection for visceral organs and brain. Best responses to chemotherapy are predominately in the first line. Recent studies have demonstrated improved progression free survival with the combination of atezolizumab/pembrolizumab and chemotherapy in programmed death-ligand 1 positive metastatic TNBC. However, a recent trial in a similar population showed no benefit for atezoli-zumab and paclitaxel which led to a Food and Drug Administration alert. Two phase III trials (OLYMPIAD and BROCADE3) demonstrated a benefit in progression free survival (PFS) but not overall survival in patients with BRCA-associated metastatic TNBC treated with Olaparib or Talazoparib respectively. For those treated with Talazoparib, the time to deterioration in health related-quality of life was also longer compared to chemotherapy. The BROCADE3 trial demonstrated that the combination of a platinum and veliparib increased PFS in first-line metastatic TNBC but at the cost of increased toxicity. There are no head-to-head comparisons of a poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) and platinums. There are unanswered questions regarding the role of PARPi maintenance after platinum therapy as is standard of care in BRCA-associated ovarian cancer. Other areas of therapeutic interest include targeting aberrations in the phosphoinositide 3-kinase pathway, protein kinase B, mammalian target of rapamycin or utilising antibody drug conjugates. This review focusses on recent and emerging therapeutic options in metastatic TNBC. We searched PubMed, clinicaltrials.gov and recent international meetings from American Society of Clinical Oncology, San Antonio Breast Cancer Conference and the European Society of Medical Oncology.
Collapse
Affiliation(s)
- David O'Reilly
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| | - Maha Al Sendi
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| | - Catherine M Kelly
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 1, Ireland
| |
Collapse
|
50
|
Batalha S, Ferreira S, Brito C. The Peripheral Immune Landscape of Breast Cancer: Clinical Findings and In Vitro Models for Biomarker Discovery. Cancers (Basel) 2021; 13:1305. [PMID: 33804027 PMCID: PMC8001103 DOI: 10.3390/cancers13061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the deadliest female malignancy worldwide and, while much is known about phenotype and function of infiltrating immune cells, the same attention has not been paid to the peripheral immune compartment of breast cancer patients. To obtain faster, cheaper, and more precise monitoring of patients' status, it is crucial to define and analyze circulating immune profiles. This review compiles and summarizes the disperse knowledge on the peripheral immune profile of breast cancer patients, how it departs from healthy individuals and how it changes with disease progression. We propose this data to be used as a starting point for validation of clinically relevant biomarkers of disease progression and therapy response, which warrants more thorough investigation in patient cohorts of specific breast cancer subtypes. Relevant clinical findings may also be explored experimentally using advanced 3D cellular models of human cancer-immune system interactions, which are under intensive development. We review the latest findings and discuss the strengths and limitations of such models, as well as the future perspectives. Together, the scientific advancement of peripheral biomarker discovery and cancer-immune crosstalk in breast cancer will be instrumental to uncover molecular mechanisms and putative biomarkers and drug targets in an all-human setting.
Collapse
Affiliation(s)
- Sofia Batalha
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia Ferreira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Prof Lima Basto, 1099-023 Lisboa, Portugal;
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|