1
|
Pan Y, Wang L, Chen S, Wei Y, Wei X. A target-triggered ultra-sensitive aptasensor for simultaneous detection of Cd 2+ and Hg 2+ using MWCNTs-Au NPs modified electrode. Food Chem 2024; 440:138185. [PMID: 38100966 DOI: 10.1016/j.foodchem.2023.138185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
A sensitive electrochemical assay for simultaneously detecting cadmium ion (Cd2+) and mercury ion (Hg2+) with the aptamer as recognition unit was established, in which methylene blue (MB) and target-triggered in-situ generated Ag nanoclusters (Ag NCs) were identified as signal reporters. Multi-walled carbon nanotubes and gold nanoparticles composites were prepared with polyethyleneimine to amplify electrical signals of screen-printed electrodes. Due to the particular base sequences, MB labeled Cd2+ aptamer paired with ssDNA through T-Hg-T structure with Hg2+. Notably, the C-rich structure in ssDNA acted as a template for the generation of Ag NCs, which could induce differential pulse voltammetry signals corresponding to Hg2+ concentrations. This electrochemical aptasensor exhibited detection limits of 94.01 pg/mL and 15.74 pg/mL for Cd2+ and Hg2+, respectively. The developed aptasensor allowed for practical application to tea and vegetable samples with satisfactory accuracy. This work possesses potential in developing biosensing technologies for simultaneous determination of multiple heavy metals.
Collapse
Affiliation(s)
- Yi Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Li Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shouhui Chen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
2
|
Jain S, Nehra M, Kumar R, Dilbaghi N, Kim KH, Kumar S. Development of a FRET aptasensor based on MoS 2-doped Zn-MOF as luminophore for selective detection of cadmium in aqueous solutions. Mikrochim Acta 2024; 191:324. [PMID: 38730197 DOI: 10.1007/s00604-024-06382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
A robust "on-off" fluorescent aptasensor was developed using nanohybrids of molybdenum sulfide (MoS2) quantum dot (QD)-doped zinc metal-organic frameworks (Zn-MOF) for selective and sensitive detection of cadmium ions (Cd2+) in water. This nanohybrid (MoS2@Zn-MOF), synthesized via "bottle around the ship" methodology, exhibited a high-intensity fluorescence emission centered at 430 nm (λEm) (blue) on excitation at 320 nm (λEx). Further, the conjugation of this fluorophore to phosphate-modified cadmium aptamer (Cd-2-2) was achieved through carbodiimide reaction. The hybridization of prepared sensing probe (MoS2@Zn-MOF/Cd-2-2 aptamer) was done with dabcyl-conjugated complementary DNA (cDNA), acting as energy donor-acceptor pair in the fluorescence resonance energy transfer (FRET) system. This hybridization causes the fluorescence quenching of the nanohybrid. In the presence of Cd2+, the aptamer from the fabricated nano-biosensing probe binds to these ions, resulting in release of dabcyl-cDNA oligomer. This release of dabcyl-cDNA oligomer from the sensing probes restores the fluorescence of the nanohybrid. Under optimized conditions (sensing probe/dabcyl-cDNA ratio 1/7, pH 7.4, and temp 28 °C), the sensing probe showed a fast response time of 1 min. The fluorescence intensity of the nanohybrid can be utilized to determine the concentration of Cd2+. The proposed aptasensor achieved highly sensitive detection of Cd2+ with a limit of detection (LOD) of 0.24 ppb over the range of 1 × 10-9 to 1 × 10-4 M along with minimal effects of interferences (e.g., Hg2+, Pb2+, and Zn2+) and good reproducibility. The designed aptasensor based on MoS2@Zn-MOF nanofluorophore offers a highly sensitive and selective approach for rapid screening of metal ions in aqueous environments.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Gupta S, Priyanka, Mavileti SK, Pandey SS, Kato T. Design and Synthesis of Novel Squaraine-Based Fluorescent Probe for Far-Red Detection of Chymotrypsin Enzyme. Molecules 2024; 29:1282. [PMID: 38542918 PMCID: PMC10975582 DOI: 10.3390/molecules29061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 09/17/2024] Open
Abstract
Chymotrypsin, a crucial enzyme in human digestion, catalyzes the breakdown of milk proteins, underscoring its significance in both health diagnostics and dairy quality assurance. Addressing the critical need for rapid, cost-effective detection methods, we introduce a groundbreaking approach utilizing far-red technology and HOMO-Förster resonance energy transfer (FRET). Our novel probe, SQ-122 PC, features a unique molecular design that includes a squaraine dye (SQ), a peptide linker, and SQ moieties synthesized through solid-phase peptide synthesis. Demonstrating a remarkable quenching efficiency of 93.75% in a tailored H2O:DMSO (7:3) solvent system, our probe exhibits absorption and emission properties within the far-red spectrum, with an unprecedented detection limit of 0.130 nM. Importantly, our method offers unparalleled selectivity towards chymotrypsin, ensuring robust and accurate enzyme detection. This pioneering work underscores the immense potential of far-red-based homo-FRET systems in enabling the sensitive and specific detection of chymotrypsin enzyme activity. By bridging the gap between cutting-edge technology and biomedical diagnostics, our findings herald a new era of enzyme sensing, promising transformative advancements in disease diagnosis and dairy quality control.
Collapse
Affiliation(s)
| | | | | | - Shyam S. Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Kitakyushu 808-0196, Japan; (S.G.); (P.); (S.K.M.)
| | - Tamaki Kato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Kitakyushu 808-0196, Japan; (S.G.); (P.); (S.K.M.)
| |
Collapse
|
4
|
Iwuala E, Olajide O, Abiodun I, Odjegba V, Utoblo O, Ajewole T, Oluwajobi A, Uzochukwu S. Silicon ameliorates cadmium (Cd) toxicity in pearl millet by inducing antioxidant defense system. Heliyon 2024; 10:e25514. [PMID: 38333779 PMCID: PMC10850601 DOI: 10.1016/j.heliyon.2024.e25514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Cadmium (Cd) stress is a significant environmental pollutant that can negatively impact crop yield and growth, and is a serious global issue. However, silicon (Si) has been shown to have a potential function in alleviating the effects of several abiotic stress conditions on crops, including Cd stress. This study investigated the effectiveness of applying silicon to soil as a method for reducing cadmium toxicity in pearl millet (IP14599) seedlings. Seeds of IP14599 were treated with Si + Cd element which cumulated to a combination of 9 treatments. Different Cd concentration of (0, 200, and 300 mg/kg-1) was taken and manually mixed into a sieved soil prior to planting and Si (0, 100 and 200 mg/kg-1) was selectively introduced till after attaining 12 days of seedling emergence. The physiochemical parameters of Cd stressed plants investigated includes chlorophyll, gas exchange attributes, proline, relative water contents, malondialdehyde (MDA) content and antioxidant enzymes (superoxide dismutase (SOD),catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD). Our result revealed that the metal (Cd) caused serious oxidative impairment thereby reducing photosynthetic performance, increased activity of MDA and Cd content in the roots and leaves of IP14599.In addition, Si increased the growth pattern and antioxidant defense action thereby mitigating the Cd toxicity. The results revealed that at Si 200, Si significantly increased the chlorophyll, carotenoids and plant height at 122 %, 69 % and 128 % under the Cd 200 and Cd 300 mg/kg-1 treatment, respectively. The single treatment at Si100 and Si 200 decreased ROS by 29 %, and 37 % respectively and MDA decreased by 33 % and 43 % in contrast to Cd 200 and 300 treatments, respectively. However, Si200 showed significant increase in the activities of APX 97 %, SOD by 89 %, CAT 35 % and POD 86 % as compared to single Si, Cd or combine Cd + Si treatment. Also, a gradual decline in Cd level in both the leaf and root was present when exposed to high concentrations of Si at Si200 and 300 mg/kg-1. Our findings revealed that Si might significantly increase the capacity to tolerate Cd stress in crop plants. Therefore, the study revealed that Si has the potential to alleviate Cd-induced toxicity by reducing Cd assimilation and enhancing the growth attributes of IP14599 plants.
Collapse
Affiliation(s)
- Emmanuel Iwuala
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Olubunmi Olajide
- Department of Landscape and Horticulture, Ekiti State University, Ekiti, Nigeria
| | - Isaika Abiodun
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Victor Odjegba
- Department of Botany, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
| | - Obaiya Utoblo
- Department of Plant Science and Biotechnology, University of Jos, Plateau State, Nigeria
| | - Tolulope Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Ayoola Oluwajobi
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Sylvia Uzochukwu
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| |
Collapse
|
5
|
Zheng D, Zhang J, Jiang W, Xu Y, Meng H, Poh CL, Chen CH. Graphene oxide aptasensor droplet assay for detection of metabolites secreted by single cells applied to synthetic biology. LAB ON A CHIP 2023; 24:137-147. [PMID: 38054213 DOI: 10.1039/d3lc00959a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Synthetic biology harnesses the power of natural microbes by re-engineering metabolic pathways to manufacture desired compounds. Droplet technology has emerged as a high-throughput tool to screen single cells for synthetic biology, while the challenges in sensitive flexible single-cell secretion assay for bioproduction of high-value chemicals remained. Here, a novel droplet modifiable graphene oxide (GO) aptasensor was developed, enabling sensitive flexible detection of different target compounds secreted from single cells. Fluorophore-labeled aptamers were stably anchored on GO through π-π stacking interactions to minimize the non-specific interactions for low-background detection of target compounds with high signal-to-noise ratios. The assay's versatility was exhibited by adapting aptamer sequences to measure metabolic secretions like ATP and naringenin. To show the case, engineered E. coli were constructed for the bioproduction of naringenin. The high signal-to-noise ratio assay (∼2.72) was approached to precisely measure the naringenins secreted from single E. coli in the droplets. Consequently, secretory cells (Gib) were clearly distinguished from wild-type (WT) cells, with a low overlap in cell populations (∼0%) for bioproduction.
Collapse
Affiliation(s)
- Dan Zheng
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| | - Jingyun Zhang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| | - Wenxin Jiang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Haixu Meng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Chueh Loo Poh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen Virtual University Park, Shenzhen, China
| |
Collapse
|
6
|
Soylak M, Uzcan F, Goktas O, Gumus ZP. Fe 3O 4-SiO 2-MIL-53 (Fe) nanocomposite for magnetic dispersive micro-solid phase extraction of cadmium (II) at trace levels prior to HR-CS-FAAS detection. Food Chem 2023; 429:136855. [PMID: 37478612 DOI: 10.1016/j.foodchem.2023.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
A magnetic metal-organic framework Fe3O4-SiO2-MIL-53 (Fe) nanocomposite was synthesized for magnetic dispersion micro-solid phase extraction (M-d-µSPE) of cadmium in water, spice, chocolate, tea, and tobacco samples prior to the detection by flame atomic absorption spectrometry. Fe3O4-SiO2-MIL-53 (Fe) nanocomposite fabricated using the solvothermal technique was characterized using a field emission scanning electron microscope and X-ray diffraction. The extraction efficiency of the method was improved by optimizing the experimental factors. After optimization, the linearity range for Cd (II) was 4.3-500 µgL-1. The limits of detection and quantification were 1.3 and 4.3 µgL-1, respectively. The presented magnetic dispersion-micro solid phase extraction method was applied to Cd (II) analysis in food and some environmental samples.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Ankara, Turkey.
| | - Furkan Uzcan
- Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Oguzhan Goktas
- Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Zinar Pinar Gumus
- Ege University, Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), İzmir, Turkey
| |
Collapse
|
7
|
Rai PK, Song H, Kim KH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: Hormesis for food security/safety and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166064. [PMID: 37544460 DOI: 10.1016/j.scitotenv.2023.166064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Wu X, Yuan H, Zhao R, Wang P, Yuan M, Cao H, Ye T, Xu F. Mechanisms of ssDNA aptamer binding to Cd 2+ in aqueous solution: A molecular dynamics study. Int J Biol Macromol 2023; 251:126412. [PMID: 37598831 DOI: 10.1016/j.ijbiomac.2023.126412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ssDNA aptamers have been increasingly used to detect heavy metal ions as recognition elements due to their high affinity and specificity. However, the specific recognition and binding mechanisms between aptamers and most heavy metals were still unclear, which limits the development of aptamer-based detection methods. In this work, the interaction mechanisms of CD-2-1 aptamers with Cd2+ in aqueous solutions were investigated using molecular dynamic simulations. The most stable complex was found where Cd2+ binding at aptamer's stem-loop junction and preferred at the phosphate backbone or bases. Noteworthily, two binding modes of Cd2+ combining aptamer in aqueous solution were discovered: direct and indirect. In the former mode, Cd2+ directly coordinated O atoms of bases. For the latter, Cd2+ connected to bases with coordinated water molecules as bridges. Electrostatic interaction was found to be the main driving force, and differences of residues role between two binding modes were elucidated. Buffer molecules in aqueous solutions can stabilize aptamer-Cd2+ complex by hydrogen bonds. This study revealed the specific interaction mechanisms of aptamer with Cd2+ at an atomic level, which provided theoretical references for aptamer-based Cd2+ detection methods establishment as well as an efficient technical route of screening potential aptamers for heavy metal ions.
Collapse
Affiliation(s)
- Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongen Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rui Zhao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pengsheng Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China..
| |
Collapse
|
9
|
Yu H, Zhao Q. Rapid sensitive fluorescence detection of cadmium (II) with pyrene excimer switching aptasensor. J Environ Sci (China) 2023; 133:1-7. [PMID: 37451780 DOI: 10.1016/j.jes.2022.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 07/18/2023]
Abstract
Heavy metal cadmium (II) contamination often occurs, causing great health risk to human due to high toxicity of cadmium (II). Rapid, sensitive and simple detection of cadmium (II) are of great importance in environmental monitoring. Taking advantage of aptamer in specific recognition, easy modification, and capability of binding-induced structure change, here we reported a simple fluorescent sensor with rapid and sensitive response for Cd2+ using aptamer pyrene excimer switch. The aptamer was labeled with dual pyrene molecules at two ends of the sequence. The binding of Cd2+ to this aptamer probe brought the pyrene labels into close proximity and enhanced formation of a pyrene excimer, which generated increased fluorescence at 485 nm. By measuring the fluorescence of pyrene excimer, we achieved detection of Cd2+ with this aptasensor. Under the optimum experimental conditions, the detection limit of Cd2+ reached nanomolar levels. This method was selective and allowed for the detection of Cd2+ in tap water. This fluorescence aptasensor is promising for rapid detection of Cd2+ in broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
10
|
Gao Z, Wang Y, Wang H, Li X, Xu Y, Qiu J. Recent Aptamer-Based Biosensors for Cd 2+ Detection. BIOSENSORS 2023; 13:612. [PMID: 37366977 DOI: 10.3390/bios13060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Cd2+, a major environmental pollutant, is heavily toxic to human health. Many traditional techniques are high-cost and complicated; thus, developing a simple, sensitive, convenient, and cheap monitoring approach is necessary. The aptamer can be obtained from a novel method called SELEX, which is widely used as a DNA biosensor for its easy acquisition and high affinity of the target, especially for heavy metal ions detection, such as Cd2+. In recent years, highly stable Cd2+ aptamer oligonucleotides (CAOs) were observed, and electrochemical, fluorescent, and colorimetric biosensors based on aptamers have been designed to monitor Cd2+. In addition, the monitoring sensitivity of aptamer-based biosensors is improved with signal amplification mechanisms such as hybridization chain reactions and enzyme-free methods. This paper reviews approaches to building biosensors for inspecting Cd2+ by electrochemical, fluorescent, and colorimetric methods. Finally, many practical applications of sensors and their implications for humans and the environment are discussed.
Collapse
Affiliation(s)
- Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yin Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijian Wang
- Hangzhou Alltest Biotech Co., Ltd., Hangzhou 310000, China
| | - Xiangxiang Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youyang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Zhang QY, Chen M, Jia XM, Luo YH, Zhang DE. Metal-organic framework-derived molybdenum phosphide@mesoporous carbon composite for electrochemical acetaminophen detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Ma X, Suo T, Zhao F, Shang Z, Chen Y, Wang P, Li B. Integrating CRISPR/Cas12a with strand displacement amplification for the ultrasensitive aptasensing of cadmium(II). Anal Bioanal Chem 2023; 415:2281-2289. [PMID: 36952025 DOI: 10.1007/s00216-023-04650-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Cadmium ion (Cd(II)) is a pernicious environmental pollutant that has been shown to contaminate agricultural lands, accumulate through the food chain, and seriously threaten human health. At present, Cd(II) monitoring is dependent on centralized instruments, necessitating the development of rapid and on-site detection platforms. Against this backdrop, the present study reports on the development of a fluorometric aptasensor designed to target Cd(II), which is achieved through the integration of strand displacement amplification (SDA) and CRISPR/Cas12a. In the absence of Cd(II), the aptamer initiates SDA, resulting in the generation of a profusion of ssDNA that activates Cas12a, leading to a substantial increase in fluorescence output. Conversely, the presence of Cd(II) curtails the SDA efficiency, culminating in a significant reduction in fluorescence output. The proposed approach has been demonstrated to enable the selective detection of Cd(II) at concentrations of 60 pM, with the performance of the aptasensor validated in real water and rice samples. The proposed platform based on aptamer-target interaction holds immense promise as a signal-amplified and precise method for the detection of Cd(II) and has the potential to transform current hazard detection practices in food samples.
Collapse
Affiliation(s)
- Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing, 100101, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Nanjing Jiangbei New Area Biopharmaceutical Public Platform Co., Ltd., Nanjing, 211899, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhaoyang Shang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Yu H, Zhao Q. A Sensitive Aptamer Fluorescence Anisotropy Sensor for Cd 2+ Using Affinity-Enhanced Aptamers with Phosphorothioate Modification. BIOSENSORS 2022; 12:887. [PMID: 36291024 PMCID: PMC9599812 DOI: 10.3390/bios12100887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Rapid and sensitive detection of heavy metal cadmium ions (Cd2+) is of great significance to food safety and environmental monitoring, as Cd2+ contamination and exposure cause serious health risk. In this study we demonstrated an aptamer-based fluorescence anisotropy (FA) sensor for Cd2+ with a single tetramethylrhodamine (TMR)-labeled 15-mer Cd2+ binding aptamer (CBA15), integrating the strengths of aptamers as affinity recognition elements for preparation, stability, and modification, and the advantages of FA for signaling in terms of sensitivity, simplicity, reproducibility, and high throughput. In this sensor, the Cd2+-binding-induced aptamer structure change provoked significant alteration of FA responses. To acquire better sensing performance, we further introduced single phosphorothioate (PS) modification of CBA15 at a specific phosphate backbone position, to enhance aptamer affinity by possible strong interaction between sulfur and Cd2+. The aptamer with PS modification at the third guanine (G) nucleotide (CBA15-G3S) had four times higher affinity than CBA15. Using as an aptamer probe CBA15-G3S with a TMR label at the 12th T, we achieved sensitive selective FA detection of Cd2+, with a detection limit of 6.1 nM Cd2+. This aptamer-based FA sensor works in a direct format for detection without need for labeling Cd2+, overcoming the limitations of traditional competitive immuno-FA assay using antibodies and fluorescently labeled Cd2+. This FA method enabled the detection of Cd2+ in real water samples, showing broad application potential.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
14
|
Peng Y, Xu M, Guo Y, Yang H, Zhou Y. A novel signal amplification biosensor for detection of Cd 2+ based on asymmetric PCR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120885. [PMID: 35051799 DOI: 10.1016/j.saa.2022.120885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel signal amplification biosensor was utilized to detect Cd2+ based on asymmetric PCR. In the presence of Cd2+, it can bind with Cd2+-aptamer C1 which caused the complementary strand C2 to be released from double-stranded DNA C1-C2. Because the single-stranded C1 cannot be hydrolyzed by Exo III, it can be used as a template to take part in asymmetric PCR reaction. In the absence of Cd2+, the C1-C2 was digested by Exo III and no PCR template was left. During the experiment, an interesting phenomenon was found that the asymmetric PCR can obtain higher level of fluorescent signal than that of symmetric PCR. To the best of our knowledge, this is the first report of using asymmetric PCR to detect Cd2+. Through the asymmetric PCR amplification strategy, this biosensor had a low detection limit (19.93 nM) and a wide linear range (0-500 nM). Meanwhile, this biosensor showed a satisfactory selectivity and recovery rate.
Collapse
Affiliation(s)
- Yu Peng
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Mingming Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou 550083, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
15
|
Ahmad A, Yasin NA, Khan WU, Akram W, Wang R, Shah AA, Akbar M, Ali A, Wu T. Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: Attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of Phaseolus lunatus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:874-886. [PMID: 34237605 DOI: 10.1016/j.plaphy.2021.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 05/28/2023]
Abstract
Currently, producing safe agricultural commodities from the crop plants cultivated in the soil with increasing heavy metal toxicity is a gigantic challenge in front of researchers. Heavy metals are absorbed and translocated in the crop plants and then transferred to every downstream consumer of the food chain, including humans, causing serious disorders and ailments. The current research presents a combined schematic application of iron nanoparticles (Fe-NPs) and/or silicon (Si), to mitigate cadmium (Cd) stress in Lima bean (Phaseolus lunatus). It was noted that Cd-induced toxicity curtailed growth, antioxidative machinery, glyoxalase system and nutrient uptake of the plants. Furthermore, the physiochemical features of Cd stressed plants, including carotenoids, chlorophyll, photochemical quenching, photosynthetic efficiency, and leaf relative water contents, were improved by the combined application of Si and Fe-NPs. Moreover, higher levels of malondialdehyde (MDA), methylglyoxal (MG), hydrogen peroxide (H2O2), and electrolyte leakage (EL) were observed in Cd stressed plants. Nevertheless, the independent treatment or combined application of Si and/or Fe-NPs attenuated the adversative effects of Cd on the aforementioned growth attributes. Furthermore, Si and Fe-NPs defended plants from the injurious effects of MG by improving the activities of the glyoxalase enzyme. The Si and Fe-NPs reduced Cd contents but at the same time improved uptake and accumulation of nutrients in treated plants exposed to the Cd regime. This study highlights that Si and Fe-NPs have enormous potential to mitigate Cd-induced phytotoxicity by declining Cd uptake and improving the growth attributes of plants if applied in combination.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | | | - Waheed Ullah Khan
- Department of Environmental Science, The Islamia University of Bahawalpur, Pakistan
| | - Waheed Akram
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Rui Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|