1
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Çamurcu T, Sanko V, Ömeroğlu İ, Tümay SO, Şenocak A. Sulfonated-polypyrene aniline/polyaniline composite fortified with Cu-GQD@ZIF8 as an electrochemical enzymatic urea biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6696-6707. [PMID: 39254379 DOI: 10.1039/d4ay01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The determination of urea concentration is essential for human health owing to its crucial role in the ability to metabolize nitrogen-containing substances. This study developed new electrochemical enzymatic detection systems via the synergistic effect of the superior features of novel electropolymerizable pyranine-aniline (PA, 4), polyaniline (PANI) compounds, graphene quantum dots (GQDs) and zeolitic imidazolate framework-8 (ZIF8). The novel compound 4 was characterized via1H-NMR, 13C-NMR, FTIR, and MALDI-TOF mass spectroscopies. Furthermore, Cu-GQD@ZIF8 hybrid materials containing GQD and integrated electroactive Cu metal were prepared in this study. The surface morphology of the prepared Cu-GQD@ZIF8 hybrid material was investigated through microscopic methods such as SEM and TEM, and chemical characterizations were performed using FTIR, XPS, XRD, and TGA analyses. After the characterization of the novel materials, the urease (Urs) enzyme was bound to the new modified electrode surface. Next, the enzymatic biosensor properties of the Urs/Cu-GQD@ZIF8/PANI/PA/GCE sensor electrode for urea detection via reduction of PANI were investigated by DPV and CV techniques. The LOD and LOQ values of the presented sensor were calculated to be 0.77 μM and 2.31 μM, respectively, in the linear range of 1.0-80.0 μM, based on DPV measurements. The presented biosensor system determined the amount of urea in an artificial serum sample, and its accuracy was confirmed via the recovery test and GC-MS analysis.
Collapse
Affiliation(s)
- Taşkın Çamurcu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| | - Vildan Sanko
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
- METU MEMS Center, Ankara, 06530, Turkey
| | - İpek Ömeroğlu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| | | | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| |
Collapse
|
3
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Durairaj B, Mohandass S, Sakthivel KM, Poornima AA. Clinical relevance and advances in detection of translational biomarker cardiac troponin. Anal Biochem 2024; 689:115505. [PMID: 38460900 DOI: 10.1016/j.ab.2024.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Cardiovascular diseases (CVD) are a range of diseases, pointing the functional hindrances in the heart and blood vessels of the human system that contributes to 48.6 % of the world's adult death rate. The diagnosis of CVD relies upon the Electro Cardio Gram (ECG) and detection of muscle markers such as troponins. Among the cardiac trio, Cardiac Troponin I (cTnI) weighing 23 KiloDalton (kDa) is a sorted biomarker for CVD. cTnI remains high in the blood after 1-2 weeks of myocardial damage. Testing of cTnI in CVD patients aids in diagnosis and risk stratification of the disease. Different determination systems including optical, electrochemical, and acoustic have been put forward for monitoring the cTnI which are Point of Care (POC) that promotes simple and sensitive detection of cTnI. The modern era has paved way to high-sensitivity Troponin I (hscTnI) devices that can detect up to 0.01 ng/ml in human blood/plasma/serum. Yet, the practice of hscTnI is impracticable due to cost inefficiency. Development of new hscTnI devices with minimal investment and maximal detection range will meet the global requirement. This review gives an over view on different detection systems of cardiac troponin I which stands as a translational detection molecule for CVDs.
Collapse
Affiliation(s)
- Brindha Durairaj
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India.
| | - Swathanthiram Mohandass
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | | |
Collapse
|
5
|
Wei Q, Xiao Y, Du L, Li Y. Advances in Nanoparticles in the Prevention and Treatment of Myocardial Infarction. Molecules 2024; 29:2415. [PMID: 38893291 PMCID: PMC11173599 DOI: 10.3390/molecules29112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Myocardial infarction (MI) is one of the most prevalent types of cardiovascular disease. During MI, myocardial cells become ischemic and necrotic due to inadequate blood perfusion, leading to irreversible damage to the heart. Despite the development of therapeutic strategies for the prevention and treatment of MI, their effects are still unsatisfactory. Nanoparticles represent a new strategy for the pre-treatment and treatment of MI, and novel multifunctional nanoparticles with preventive and therapeutic capabilities hold promise for the prevention and treatment of this disease. This review summarizes the common types and properties of nanoparticles, and focuses on the research progress of nanoparticles for the prevention and treatment of MI.
Collapse
Affiliation(s)
| | | | | | - Ya Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.W.); (Y.X.); (L.D.)
| |
Collapse
|
6
|
Rasheed PA, Ankitha M, Pillai VK, Alwarappan S. Graphene quantum dots for biosensing and bioimaging. RSC Adv 2024; 14:16001-16023. [PMID: 38765479 PMCID: PMC11099990 DOI: 10.1039/d4ra01431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Graphene Quantum Dots (GQDs) are low dimensional carbon based materials with interesting physical, chemical and biological properties that enable their applications in numerous fields. GQDs possess unique electronic structures that impart special functional attributes such as tunable optical/electrical properties in addition to heteroatom-doping and more importantly a propensity for surface functionalization for applications in biosensing and bioimaging. Herein, we review the recent advancements in the top-down and bottom-up approaches for the synthesis of GQDs. Following this, we present a detailed review of the various surface properties of GQDs and their applications in bioimaging and biosensing. GQDs have been used for fluorescence imaging for visualizing tumours and monitoring the therapeutic responses in addition to magnetic resonance imaging applications. Similarly, the photoluminescence based biosensing applications of GQDs for the detection of hydrogen peroxide, micro RNA, DNA, horse radish peroxidase, heavy metal ions, negatively charged ions, cardiac troponin, etc. are discussed in this review. Finally, we conclude the review with a discussion on future prospects.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Menon Ankitha
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research Rami Reddy Nagar Mangalam Tirupati AP 517507 India
| | - Subbiah Alwarappan
- Electrodics & Electrocatalysis Division, CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| |
Collapse
|
7
|
Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: shaping the future landscape of biomedical advances. DISCOVER NANO 2024; 19:79. [PMID: 38695997 PMCID: PMC11065842 DOI: 10.1186/s11671-024-04028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Graphene quantum dots (GQDs) are a newly developed class of material, known as zero-dimensional nanomaterials, with characteristics derived from both carbon dots (CDs) and graphene. GQDs exhibit several ideal properties, including the potential to absorb incident energy, high water solubility, tunable photoluminescence, good stability, high drug-loading capacity, and notable biocompatibility, which make them powerful tools for various applications in the field of biomedicine. Additionally, GQDs can be incorporated with additional materials to develop nanocomposites with exceptional qualities and enriched functionalities. Inspired by the intriguing scientific discoveries and substantial contributions of GQDs to the field of biomedicine, we present a broad overview of recent advancements in GQDs-based nanocomposites for biomedical applications. The review first outlines the latest synthesis and classification of GQDs nanocomposite and enables their use in advanced composite materials for biomedicine. Furthermore, the systematic study of the biomedical applications for GQDs-based nanocomposites of drug delivery, biosensing, photothermal, photodynamic and combination therapies are emphasized. Finally, possibilities, challenges, and paths are highlighted to encourage additional research, which will lead to new therapeutics and global healthcare improvements.
Collapse
Affiliation(s)
- Mohammad Suhaan Dar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Kny E, Hasler R, Luczak W, Knoll W, Szunerits S, Kleber C. State of the art and future research directions of materials science applied to electrochemical biosensor developments. Anal Bioanal Chem 2024; 416:2247-2259. [PMID: 38006442 DOI: 10.1007/s00216-023-05054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.
Collapse
Affiliation(s)
- Erich Kny
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Roger Hasler
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wiktor Luczak
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria.
| |
Collapse
|
9
|
Vyas T, Jaiswal S, Choudhary S, Kodgire P, Joshi A. Recombinant Organophosphorus acid anhydrolase (OPAA) enzyme-carbon quantum dot (CQDs)-immobilized thin film biosensors for the specific detection of Ethyl Paraoxon and Methyl Parathion in water resources. ENVIRONMENTAL RESEARCH 2024; 243:117855. [PMID: 38070850 DOI: 10.1016/j.envres.2023.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Organophosphates pesticide (OP) toxicity through water resources is a large concern globally among all the emerging pollutants. Detection of OPs is a challenge which needs to be addressed considering the hazardous effects on the health of human beings. In the current research thin film biosensors of recombinant, Organophosphorus acid anhydrolase (OPAA) enzyme along with carbon quantum dots (CQDs) immobilized in thin films were developed. OPAA-CQDs thin film biosensors were used for the specific detection of two OPs Ethyl Paraoxon (EP) and Methyl Parathion (MP) in river water and household water supply. Recombinant OPAA enzyme was expressed in E. Coli, purified and immobilized on the CQD containing chitosan thin films. The CQDs used for this purpose were developed by a one-pot hydrothermal method from phthalic acid and Tri ethylene diamine. The properties of CQDs, OPAA and thin films were characterized using techniques like XPS, TEM, XRD, enzyme activity and CLSM measurements. Biosensing studies of EP and MP were performed by taking fluorescence measurements using a fiber optic spectrometer. The analytical parameters of biosensing were compared against an estimation carried out using the HPLC method. The biosensing performance indicates that the OPAA-CQDs thin film-based biosensors were able to detect both EP and MP in a range of 0-100 μM having a detection limit of 0.18 ppm/0.69 ppm for EP/MP, respectively with a response time of 5 min. The accuracy of estimation of EP/MP when spiked in water resources lie in the range of ∼100-102% which clearly indicates the OPAA-CQD based thin film biosensors can function as a point-of-use method for the detection of OP pesticides in complex water resources.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Sandeep Choudhary
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
10
|
Vasudevan M, Perumal V, Raja PB, Ibrahim MNM, Lee HL, Gopinath SCB, Ovinis M, Karuppanan S, Ang PC, Arumugam N, Kumar RS. A quadruplet 3-D laser scribed graphene/MoS 2, functionalised N 2-doped graphene quantum dots and lignin-based Ag-nanoparticles for biosensing. Int J Biol Macromol 2023; 253:126620. [PMID: 37683754 DOI: 10.1016/j.ijbiomac.2023.126620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Troponin I is a protein released into the human blood circulation and a commonly used biomarker due to its sensitivity and specificity in diagnosing myocardial injury. When heart injury occurs, elevated troponin Troponin I levels are released into the bloodstream. The biomarker is a strong and reliable indicator of myocardial injury in a person, with immediate treatment required. For electrochemical sensing of Troponin I, a quadruplet 3D laser-scribed graphene/molybdenum disulphide functionalised N2-doped graphene quantum dots hybrid with lignin-based Ag-nanoparticles (3D LSG/MoS2/N-GQDs/L-Ag NPs) was fabricated using a hydrothermal process as an enhanced quadruplet substrate. Hybrid MoS2 nanoflower (H3 NF) and nanosphere (H3 NS) were formed independently by varying MoS2 precursors and were grown on 3D LSG uniformly without severe stacking and restacking issues, and characterized by morphological, physical, and structural analyses with the N-GQDs and Ag NPs evenly distributed on 3D LSG/MoS2 surface by covalent bonding. The selective capture of and specific interaction with Troponin I by the biotinylated aptamer probe on the bio-electrode, resulted in an increment in the charge transfer resistance. The limit of detection, based on impedance spectroscopy, is 100 aM for both H3 NF and H3 NS hybrids, with the H3 NF hybrid biosensor having better analytical performance in terms of linearity, selectivity, repeatability, and stability.
Collapse
Affiliation(s)
- Mugashini Vasudevan
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Hooi-Ling Lee
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, 02600 Arau, and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia.; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mark Ovinis
- School of Engineering and the Built Environment, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, B4 7XG, UK
| | - Saravanan Karuppanan
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Phaik Ching Ang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Tabish TA, Zhu Y, Shukla S, Kadian S, Sangha GS, Lygate CA, Narayan RJ. Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems. APPLIED PHYSICS REVIEWS 2023; 10:041310. [PMID: 38229764 PMCID: PMC7615530 DOI: 10.1063/5.0162640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Gurneet S. Sangha
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr., College Park, Maryland 20742, USA
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| |
Collapse
|
12
|
Chen WT, Chiu PY, Chen CF. A flash signal amplification approach for ultrasensitive and rapid detection of single nucleotide polymorphisms in tuberculosis. Biosens Bioelectron 2023; 237:115514. [PMID: 37423064 DOI: 10.1016/j.bios.2023.115514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
In recent years, the demand for rapid, sensitive, and simple methods for diagnosing deoxyribonucleic acid (DNA) has grown due to the increase in the variation of infectious diseases. This work aimed to develop a flash signal amplification method coupled with electrochemical detection for polymerase chain reaction (PCR)-free tuberculosis (TB) molecular diagnosis. We exploited the slightly miscible properties of butanol and water to instantly concentrate a capture probe DNA, a single-stranded mismatch DNA, and gold nanoparticles (AuNPs) to a small volume to reduce the diffusion and reaction time in the solution. In addition, the electrochemical signal was enhanced once two strands of DNA were hybridized and bound to the surface of the gold nanoparticle at an ultra-high density. To eliminate non-specific adsorption and identify mismatched DNA, the self-assembled monolayers (SAMs) and Muts proteins were sequentially modified on the working electrode. This sensitive and specific approach can detect as low as attomolar levels of DNA targets (18 aM) and is successfully applied to detecting tuberculosis-associated single nucleotide polymorphisms (SNPs) in synovial fluid. More importantly, as this biosensing strategy can amplify the signal in only a few seconds, it possesses a great potential for point-of-care and molecular diagnosis applications.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Ping-Yeh Chiu
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Graduate School of Advanced Technology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
13
|
Farshidfar N, Fooladi S, Nematollahi MH, Iravani S. Carbon dots with tissue engineering and regenerative medicine applications. RSC Adv 2023; 13:14517-14529. [PMID: 37197681 PMCID: PMC10183719 DOI: 10.1039/d3ra02336b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Carbon dots (CDs) with unique physicochemical features such as exceptional biocompatibility, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl), high stability, and electron mobility have been broadly investigated in nano- and biomedicine. In addition, the controlled architecture, tunable fluorescence emission/excitation, light-emitting potential, high photostability, high water solubility, low cytotoxicity, and biodegradability make these carbon-based nanomaterials suitable for tissue engineering and regenerative medicine (TE-RM) purposes. However, there are still limited pre- and clinical assessments, because of some important challenges such as the scaffold inconsistency and non-biodegradability in addition to the lack of non-invasive methods to monitor tissue regeneration after implantation. In addition, the eco-friendly synthesis of CDs exhibited some important advantages such as environmentally friendly properties, low cost, and simplicity compared to the conventional synthesis techniques. Several CD-based nanosystems have been designed with stable photoluminescence, high-resolution imaging of live cells, excellent biocompatibility, fluorescence properties, and low cytotoxicity, which make them promising candidates for TE-RM purposes. Combining attractive fluorescence properties, CDs have shown great potential for cell culture and other biomedical applications. Herein, recent advancements and new discoveries of CDs in TE-RM are considered, focusing on challenges and future perspectives.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences Shiraz Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences Kerman Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences Kerman Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| |
Collapse
|
14
|
Smith BR, Edelman ER. Nanomedicines for cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:351-367. [PMID: 39195953 DOI: 10.1038/s44161-023-00232-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/25/2023] [Indexed: 08/29/2024]
Abstract
The leading cause of death in the world, cardiovascular disease (CVD), remains a formidable condition for researchers, clinicians and patients alike. CVD comprises a broad collection of diseases spanning the heart, the vasculature and the blood that runs through and interconnects them. Limitations in CVD therapeutic and diagnostic landscapes have generated excitement for advances in nanomedicine, a field focused on improving patient outcomes through transformative therapies, imaging agents and ex vivo diagnostics. CVD nanomedicines are fundamentally shaped by their intended clinical application, including (1) cardiac or heart-related biomaterials, which can be functionally (for example, mechanically, immunologically, electrically) improved by incorporating nanomaterials; (2) the vasculature, involving systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials or tissue-nanoengineered solutions; and (3) improving the sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. While immunotherapy has developed into a key pillar of oncology in the past dozen years, CVD immunotherapy and immunoimaging are recently emergent and likely to factor substantially in CVD management in the coming decade. The nanomaterials in CVD-related clinical trials and many promising preclinical strategies indicate that nanomedicine is on the cusp of greatly impacting patients with CVD. Here we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD nanomedicine.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Zapp E, Brondani D, Silva TR, Girotto E, Gallardo H, Vieira IC. Label-Free Immunosensor Based on Liquid Crystal and Gold Nanoparticles for Cardiac Troponin I Detection. BIOSENSORS 2022; 12:1113. [PMID: 36551080 PMCID: PMC9775587 DOI: 10.3390/bios12121113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.
Collapse
Affiliation(s)
- Eduardo Zapp
- Department of Exact Science and Education, Federal University of Santa Catarina, Campus Blumenau, Blumenau 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Science and Education, Federal University of Santa Catarina, Campus Blumenau, Blumenau 89036-256, Brazil
| | - Tânia Regina Silva
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Edivandro Girotto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Hugo Gallardo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
16
|
Ratre P, Jain B, Kumari R, Thareja S, Tiwari R, Srivastava RK, Goryacheva IY, Mishra PK. Bioanalytical Applications of Graphene Quantum Dots for Circulating Cell-Free Nucleic Acids: A Review. ACS OMEGA 2022; 7:39586-39602. [PMID: 36385871 PMCID: PMC9648045 DOI: 10.1021/acsomega.2c05414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 05/09/2023]
Abstract
Graphene quantum dots (GQDs) are carbonaceous nanodots that are natural crystalline semiconductors and range from 1 to 20 nm. The broad range of applications for GQDs is based on their unique physical and chemical properties. Compared to inorganic quantum dots, GQDs possess numerous advantages, including formidable biocompatibility, low intrinsic toxicity, excellent dispensability, hydrophilicity, and surface grating, thus making them promising materials for nanophotonic applications. Owing to their unique photonic compliant properties, such as superb solubility, robust chemical inertness, large specific surface area, superabundant surface conjugation sites, superior photostability, resistance to photobleaching, and nonblinking, GQDs have emerged as a novel class of probes for the detection of biomolecules and study of their molecular interactions. Here, we present a brief overview of GQDs, their advantages over quantum dots (QDs), various synthesis procedures, and different surface conjugation chemistries for detecting cell-free circulating nucleic acids (CNAs). With the prominent rise of liquid biopsy-based approaches for real-time detection of CNAs, GQDs-based strategies might be a step toward early diagnosis, prognosis, treatment monitoring, and outcome prediction of various non-communicable diseases, including cancers.
Collapse
Affiliation(s)
- Pooja Ratre
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Bulbul Jain
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Roshani Kumari
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Suresh Thareja
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Rajnarayan Tiwari
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Rupesh Kumar Srivastava
- Department
of Biotechnology, All India Institute of
Medical Sciences, New Delhi, 110029, India
| | - Irina Yu Goryacheva
- Department
of General and Inorganic Chemistry, Institute
of Chemistry, Saratov State University, Saratov, 410012, Russia
| | - Pradyumna Kumar Mishra
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
- E-mail: . Mobile: +91 94799 83943
| |
Collapse
|
17
|
Martins G, Gogola JL, Budni LH, Papi MA, Bom MA, Budel ML, de Souza EM, Müller-Santos M, Beirão BC, Banks CE, Marcolino-Junior LH, Bergamini MF. Novel approach based on GQD-PHB as anchoring platform for the development of SARS-CoV-2 electrochemical immunosensor. Anal Chim Acta 2022; 1232:340442. [PMID: 36257733 PMCID: PMC9529294 DOI: 10.1016/j.aca.2022.340442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022]
Abstract
In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS). SEM images and EDS spectra suggest an interaction of the protein with GQD-PHB sites at the electrode surface. Differential pulse voltametric (DPV) measurements were performed before and after incubation, in presence of the target, shown a decrease in voltametric signal of an electrochemical probe ([Fe(CN)6]3/4-). Using the optimal experimental conditions, analytical curves were performed in PBS and human serum spiked with AbS showing a slight matrix effect and a relationship between voltametric signal and AbS concentration in the range of 100 ng mL-1 and 10 μg mL-1. The selectivity of the proposed sensor was tested against yellow fever antibodies (YF) and the selective layer on the electrode surface did not interact with these unspecific antibodies. Eight samples of blood serum were analyzed and 87.5% of these total investigated provided adequate results. In addition, the present approach showed better results against traditional EDC/NHS reaction with enhancements in time and the possibility to develop an immunosensor in a single drop, since the proteins can be anchored prior to the electrode modification step.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Jeferson L. Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Lucas H. Budni
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Maurício A. Papi
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Maritza A.T. Bom
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Maria L.T. Budel
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Emanuel M. de Souza
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Marcelo Müller-Santos
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Breno C.B. Beirão
- Laboratório de Imunologia Comparada, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), CEP: 81531-980, Curitiba, PR, Brazil
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom
| | - Luiz H. Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Márcio F. Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil,Corresponding author
| |
Collapse
|
18
|
Al Fatease A, Haque M, Umar A, Ansari SG, Mahnashi MH, Alhamhoom Y, Ansari ZA. Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles. BIOSENSORS 2022; 12:bios12080585. [PMID: 36004981 PMCID: PMC9406182 DOI: 10.3390/bios12080585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
In this article, we describe the fabrication and characterization of a sensor for acute myocardial infarction that detects myoglobin biomarkers using chromium (Cr)-doped zinc oxide (ZnO) nanoparticles (NPs). Pure and Cr-doped ZnO NPs (13 × 1017, 20 × 1017, and 32 × 1017 atoms/cm3 in the solid phase) were synthesized by a facile low-temperature sol-gel method. Synthesized NPs were examined for structure and morphological analysis using various techniques to confirm the successful formation of ZnO NPs. Zeta potential was measured in LB media at a negative value and increased with doping. XPS spectra confirmed the presence of oxygen deficiency in the synthesized material. To fabricate the sensor, synthesized NPs were screen-printed over a pre-fabricated gold-coated working electrode for electrochemical detection of myoglobin (Mb). Cr-doped ZnO NPs doped with 13 × 1017 Cr atomic/cm3 revealed the highest sensitivity of ~37.97 μA.cm−2nM−1 and limit of detection (LOD) of 0.15 nM for Mb with a response time of ≤10 ms. The interference study was carried out with cytochrome c (Cyt-c) due to its resemblance with Mb and human serum albumin (HSA) abundance in the blood and displayed distinct oxidation potential and current values for Mb. Cr-doped ZnO NP-based Mb biosensors showed 3 times higher sensitivity as compared to pure ZnO NP-based sensors.
Collapse
Affiliation(s)
- Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (Y.A.)
| | - Mazharul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| | - Shafeeque G. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; (A.A.F.); (Y.A.)
| | - Zubaida A. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.H.); (S.G.A.); (Z.A.A.)
| |
Collapse
|
19
|
Niu P, Jiang J, Liu K, Wang S, Xu T, Wang Z, Wang T, Zhang X, Ding Z, Liu Y, Liu T. Prefab Hollow Glass Microsphere-Based Immunosensor with Liquid Crystal Sensitization for Acute Myocardial Infarction Biomarker Detection. BIOSENSORS 2022; 12:439. [PMID: 35884242 PMCID: PMC9312929 DOI: 10.3390/bios12070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Quantitative detection of cardiac troponin biomarkers in blood is an important method for clinical diagnosis of acute myocardial infarction (AMI). In this work, a whispering gallery mode (WGM) microcavity immunosensor based on a prefab hollow glass microsphere (HGMS) with liquid crystal (LC) sensitization was proposed and experimentally demonstrated for label-free cardiac troponin I-C (cTnI-C) complex detection. The proposed fiber-optic immunosensor has a simple structure; the tiny modified HGMS serves as the key sensing element and the microsample reservoir simultaneously. A sensitive LC layer with cTnI-C recognition ability was deposited on the inner wall of the HGMS microcavity. The arrangement of LC molecules is affected by the cTnI-C antigen-antibody binding in the HGMS, and the small change of the surface refractive index caused by the binding can be amplified owing to the birefringence property of LC. Using the annular waveguide of the HGMS, the WGMs were easily excited by the coupling scanning laser with a microfiber, and an all-fiber cTnI-C immunosensor can be achieved by measuring the resonant wavelength shift of the WGM spectrum. Moreover, the dynamic processes of the cTnI-C antigen-antibody binding and unbinding was revealed by monitoring the wavelength shift continuously. The proposed immunosensor with a spherical microcavity can be a cost-effective tool for AMI diagnosis.
Collapse
Affiliation(s)
- Panpan Niu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Kun Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tong Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Xuezhi Zhang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhenyang Ding
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Yize Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Graphene quantum dots: synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim Acta 2022; 189:258. [PMID: 35701638 DOI: 10.1007/s00604-022-05353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques. We believe that this review will shed light on the critical issues and widen the applications of GQDs for the design of biosensors with improved analytical response for future applications. HIGHLIGHTS: • Properties of GQDs play a critical role in biosensing applications. • Synthesis of GQDs using top-down and bottom-up approaches is discussed comprehensively. • Overview of advancements in GQD-based sensors over the last decade. • Methods for the design of selective and sensitive GQD-based sensors. • Challenges and opportunities for future GQD-based sensors.
Collapse
|
21
|
Alkaline Phosphatase Electrochemical Micro-Sensor Based on 3D Graphene Networks for the Monitoring of Osteoblast Activity. BIOSENSORS 2022; 12:bios12060406. [PMID: 35735554 PMCID: PMC9221009 DOI: 10.3390/bios12060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Alkaline phosphatase (ALP) is a significant biomarker that indicates osteoblast activity and skeletal growth. Efficient ALP detection methods are essential in drug development and clinical diagnosis. In this work, we developed an in-situ synthesized three-dimensional graphene networks (3DGNs)-based electrochemical sensor to determine ALP activity. The sensor employs an ALP enzymatic conversion of non-electroactive substrate to electroactive product and presents the ALP activity as an electrochemical signal. With 3DGNs as the catalyst and signal amplifier, a sample consumption of 5 μL and an incubation time of 2 min are enough for the sensor to detect a wide ALP activity range from 10 to 10,000 U/L, with a limit of detection of 5.70 U/L. This facile fabricated sensor provides a quick response, cost-effective and non-destructive approach for monitoring living adherent osteoblast cell activity and holds promise for ALP quantification in other biological systems and clinical samples.
Collapse
|
22
|
Orlov AV, Malkerov JA, Novichikhin DO, Znoyko SL, Nikitin PI. Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags. Int J Mol Sci 2022; 23:4474. [PMID: 35562865 PMCID: PMC9102693 DOI: 10.3390/ijms23094474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Express and highly sensitive immunoassays for the quantitative registration of cardiac troponin I (cTnI) are in high demand for early point-of-care differential diagnosis of acute myocardial infarction. The selection of antibodies that feature rapid and tight binding with antigens is crucial for immunoassay rate and sensitivity. A method is presented for the selection of the most promising clones for advanced immunoassays via simultaneous characterization of interaction kinetics of different monoclonal antibodies (mAb) using a direct label-free method of multiplex spectral correlation interferometry. mAb-cTnI interactions were real-time registered on an epoxy-modified microarray glass sensor chip that did not require activation. The covalent immobilization of mAb microdots on its surface provided versatility, convenience, and virtually unlimited multiplexing potential. The kinetics of tracer antibody interaction with the “cTnI—capture antibody” complex was characterized. Algorithms are shown for excluding mutual competition of the tracer/capture antibodies and selecting the optimal pairs for different assay formats. Using the selected mAbs, a lateral flow assay was developed for rapid quantitative cTnI determination based on electronic detection of functionalized magnetic nanoparticles applied as labels (detection limit—0.08 ng/mL, dynamic range > 3 orders). The method can be extended to other molecular biomarkers for high-throughput screening of mAbs and rational development of immunoassays.
Collapse
Affiliation(s)
- Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Juri A. Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Denis O. Novichikhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|