1
|
Ni R, Ge K, Luo Y, Zhu T, Hu Z, Li M, Tao P, Chi J, Li G, Yuan H, Pang Q, Gao W, Zhang P, Zhu Y. Highly sensitive microfluidic sensor using integrated optical fiber and real-time single-cell Raman spectroscopy for diagnosis of pancreatic cancer. Biosens Bioelectron 2024; 264:116616. [PMID: 39137518 DOI: 10.1016/j.bios.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic cancer is notoriously lethal due to its late diagnosis and poor patient response to treatments, posing a significant clinical challenge. This study introduced a novel approach that combines a single-cell capturing platform, tumor-targeted silver (Ag) nanoprobes, and precisely docking tapered fiber integrated with Raman spectroscopy. This approach focuses on early detection and progression monitoring of pancreatic cancer. Utilizing tumor-targeted Ag nanoparticles and tapered multimode fibers enhances Raman signals, minimizes light loss, and reduces background noise. This advanced Raman system allows for detailed molecular spectroscopic examination of individual cells, offering more practical information and enabling earlier detection and accurate staging of pancreatic cancer compared to conventional multicellular Raman spectroscopy. Transcriptomic analysis using high-throughput gene screening and transcriptomic databases confirmed the ability and accuracy of this method to identify molecular changes in normal, early, and metastatic pancreatic cancer cells. Key findings revealed that cell adhesion, migration, and the extracellular matrix are closely related to single-cell Raman spectroscopy (SCRS) results, highlighting components such as collagen, phospholipids, and carotene. Therefore, the SCRS approach provides a comprehensive view of the molecular composition, biological function, and material changes in cells, offering a novel, accurate, reliable, rapid, and efficient method for diagnosing and monitoring pancreatic cancer.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Kaixin Ge
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Min Li
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Pan Tao
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Jinyi Chi
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Guanron Li
- Health Science Center, Ningbo University, Ningbo, 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - Haojun Yuan
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wanlei Gao
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Peiqing Zhang
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Nishitsuji R, Nakashima T, Hisamoto H, Endo T. Simultaneous Recognition and Detection of Adenosine Phosphates by Machine Learning Analysis for Surface-Enhanced Raman Scattering Spectral Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:6648. [PMID: 39460128 PMCID: PMC11511347 DOI: 10.3390/s24206648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Adenosine phosphates (adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP)) play important roles in energy storage and signal transduction in the human body. Thus, a measurement method that simultaneously recognizes and detects adenosine phosphates is necessary to gain insight into complex energy-relevant biological processes. Surface-enhanced Raman scattering (SERS) is a powerful technique for this purpose. However, the similarities in size, charge, and structure of adenosine phosphates (APs) make their simultaneous recognition and detection difficult. Although approaches that combine SERS and machine learning have been studied, they require massive quantities of training data. In this study, limited AP spectral data were obtained using fabricated gold nanostructures for SERS measurements. The training data were created by feature selection and data augmentation after preprocessing the small amount of acquired spectral data. The performances of several machine learning models trained on these generated training data were compared. Multilayer perceptron model successfully detected the presence of AMP, ADP, and ATP with an accuracy of 0.914. Consequently, this study establishes a new measurement system that enables the highly accurate recognition and detection of adenosine phosphates from limited SERS spectral data.
Collapse
Affiliation(s)
- Ryosuke Nishitsuji
- Department of Information Networking, Graduate School of Information Science and Technology, Osaka University, 2-8 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Tomoharu Nakashima
- Department of Interdisciplinary Informatics, Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| | - Tatsuro Endo
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| |
Collapse
|
3
|
Zheng X, Zhu H, Zhao X, Wang J, Li Q, Zhao X. Emerging affinity methods for protein-drug interaction analysis. J Pharm Biomed Anal 2024; 249:116371. [PMID: 39047466 DOI: 10.1016/j.jpba.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The study of protein-drug interaction plays a crucial role in understanding drug mechanisms, identifying new drug targets and biomarkers, and facilitating drug development and disease treatment. In recent years, significant progress has been made in various protein-drug interaction research methods due to the rapid development and in-depth application of mass spectrometry, nuclear magnetic resonance, Raman spectroscopy, and other technologies. The progress has enhanced the sensitivity, precision, accuracy, and applicability of analytical methods, enabling the establishment of drug-protein interaction networks. This review discusses various emerging research methods, such as native mass spectrometry, infrared spectroscopy, nuclear magnetic resonance and spectrum, biosensor technologies employing surface enhanced Raman, electrochemistry, and magneto resistive signals, as well as affinity magnetic levitation and affinity chromatography. The article also delves into the principles, applications, advantages, and limitations of these technologies.
Collapse
Affiliation(s)
- Xinxin Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huiting Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
4
|
Su L, Wang G, Zhao L, Deng Y, Guo Y, Xiao Y, Wang H, Dong C, Fan L. Ultrasensitive monitoring of PCB77 in environmental samples using a visible-driven photoelectrochemical sensing platform coupling with exonuclease I assisted in target recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173982. [PMID: 38889816 DOI: 10.1016/j.scitotenv.2024.173982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Due to the urgent need for detecting trace amounts of 3,3',4,4'-tetrachlorobiphenyl (PCB77) in the environment, we have developed an efficient and visible-driven photoelectrochemical (PEC) sensing platform based on carbon quantum dots (CQDs) modified titanium dioxide nanorods (TiO2 NRs), coupling with exonuclease I (Exo I) assisted in target recycling for significant signal amplification. CQDs/TiO2 NRs with high visible-light absorption ability and electron-hole separation efficiency is used as photoactive substrate for anchoring anti-PCB77 aptamer and its complementary DNA (cDNA). With the addition of PCB77, the specific interaction between PCB77 and its aptamer forces aptamer to separate from the electrode surface, resulting in an increase in photocurrent density. Adding Exo I in the test system, a self-catalytic target cycle was motivated, which significantly increased the PEC signal by more than twice, achieving signal amplification. The relationship between the photocurrent density changes and the concentrations of PCB77 are utilized to achieve quantitative detection of PCB77. The designed PEC sensing platform has good analytical performance with a detection limit as low as 0.33 pg L-1, high selectivity and stability. Moreover, the PEC sensor is successfully used to evaluate the content of PBC77 in the environment samples. The established sensing platform provides a simple and efficient method for detecting trace amounts of PCB77 in the environment.
Collapse
Affiliation(s)
- Lining Su
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guizhen Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Linlin Zhao
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuan Deng
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Yong Xiao
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Huanwen Wang
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
5
|
Prakash O, T A, Nagpal P, Perumal V, Karak S, Singh UB, Ghosh S. Highly sensitive label-free biomolecular detection using Au-WS 2 nanohybrid based SERS substrates. NANOSCALE ADVANCES 2024:d4na00464g. [PMID: 39372440 PMCID: PMC11447697 DOI: 10.1039/d4na00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Recent advancements in nanotechnology have led to the development of surface-enhanced Raman spectroscopy (SERS) based rapid and low-cost technologies for ultra-sensitive label-free detection and identification of molecular analytes. Herein, we utilized the synergistic plasmonic and chemical enhancement effects of Au-WS2 nanohybrids to attain the high-intensity Raman signals of targeted analytes. To develop these nanohybrids, a series of monodispersed Au nanoparticles (NPs) of varying diameters from 20 to 80 nm was chemically synthesized and successively blended with liquid-phase exfoliated WS2 nano-flakes of average lateral size 90 nm. They provided a maximum enhancement factor (EF) of ∼1.80 × 109 corresponding to the characteristic peaks at 1364 cm-1 and 1512 cm-1 for R6G analyte molecules. Theoretical studies based on the finite-difference time-domain simulations on Au-WS2 nanohybrid systems revealed a huge field-intensity enhancement with an EF of more than 1000 at the plasmonic hotspots, which was induced by the strong coupling of individual plasmon oscillations of the adjacent Au NPs upon light interactions. These electromagnetic effects along with the chemical enhancement effects of WS2 nanoflakes were found to be mainly responsible for such huge enhancement in Raman signals. Furthermore, these hybrids were successfully employed for achieving highly sensitive detection of the E. coli ATCC 35218 bacterial strain with a concentration of 104 CFU mL-1 in phosphate-buffered saline media, indicating their real capabilities for practical scenarios. The findings of the present study will indeed provide vital information in the development of innovative nanomaterial-based biosensors, that will offer new possibilities for addressing critical public health concerns.
Collapse
Affiliation(s)
- Om Prakash
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Abhijith T
- Organic and Hybrid Electronic Device Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
- Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore Tamil Nadu 641004 India
| | - Priya Nagpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Supravat Karak
- Organic and Hybrid Electronic Device Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Udai B Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University Gorakhpur 273009 India
| | - Santanu Ghosh
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
6
|
Li J, Feng Y, Liang L, Liao F, Huang W, Li K, Cui G, Zuo Z. Flexible Multicavity SERS Substrate Based on Ag Nanoparticle-Decorated Aluminum Hydrous Oxide Nanoflake Array for Highly Sensitive In Situ Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35771-35780. [PMID: 38935816 DOI: 10.1021/acsami.4c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates are very promising to meet the needs for real-time and on-field detection in practical applications. However, high-performance flexible SERS substrates often suffer from complexity and high cost in fabrication, limiting their widespread applications. Herein, we developed a facile method to fabricate a flexible multicavity SERS substrate composed of a silver nanoparticle (AgNP)-decorated aluminum hydrous oxide nanoflake array (NFA) grown on a polydimethylsiloxane (PDMS) membrane. Strong plasmon couplings promoted by multiple nanocavities afford high-density hotspots within such a flexible AgNPs@NFA/PDMS film, boosting high SERS sensitivity with an enhancement factor (EF) of ∼1.54 × 109, and a limit of detection (LOD) of ∼7.4 × 10-13 M for rhodamine 6G (R6G) molecules. Furthermore, benefiting from the high sensitivity, high mechanical stability, and transparency of this substrate, in situ SERS detections of trace thiram and crystal violet (CV) molecules on the surface of cherry tomatoes and fish have been realized, with LODs much lower than the maximum allowable limit in food, demonstrating the great potential of such a flexible substrate in food safety monitoring. More importantly, the preparation processes are very simple and environmentally friendly, and the techniques involved are completely compatible with well-established silicon device technologies. Therefore, large-area fabrication with low cost can be readily realized, enabling the extensive applications of SERS sensors in daily life.
Collapse
Affiliation(s)
- Jiapu Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Yuan Feng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Li Liang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Feng Liao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Wanxia Huang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Kuanguo Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Guanglei Cui
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Zewen Zuo
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua South Road, Wuhu 241003, China
| |
Collapse
|
7
|
Lu X, Lu W, Hua D. A novel SERS-lateral flow assay (LFA) tray for monitoring of miR-155-5p during pyroptosis in breast cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3878-3894. [PMID: 38828902 DOI: 10.1039/d4ay00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the study, a novel surface-enhanced Raman scattering (SERS)-lateral flow assay (LFA) tray for the real-time detection of pyroptosis-associated miR-155-5p in breast cancer cells was established and validated. The SERS probe modified with monoclonal antibodies and functionalized HP1@5-FAM was first synthesized. When miR-155-5p was present, HP1@5-FAM on the SERS probe specifically recognized target miRNAs and hybridized with them, resulting in HP2 on the T line only capturing some SERS probes that were not bound to miR-155-5p. The T line appeared as a light orange band or there was no color change, and the corresponding Raman detection result showed a weak or insignificant Raman signal. The SERS probe showed high selectivity, satisfactory stability, and excellent reproducibility, and the limit of detection (LOD) for miR-155-5p was 7.26 aM. Finally, the proposed SERS-LFA tray was applied to detect miR-155-5p in MBA-MD-468 cells that underwent varying degrees of pyroptosis, and the detection results of SERS were consistent with those of the conventional real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. The study demonstrated that the SERS-LFA tray was a convenient and ultrasensitive method for miR-155-5p real-time detection, which could provide more detailed information for pyroptosis and be of potential value in guiding the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoxia Lu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 214122, China.
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Wenlong Lu
- Department of Pharmacy and Equipment, Taizhou Women's and Children's Hospital, Taizhou, Jiangsu Province, 225300, China
| | - Dong Hua
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 214122, China.
- Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 21411, China
| |
Collapse
|
8
|
Atanasov P, Dikovska A, Nikov R, Atanasova G, Grochowska K, Karczewski J, Fukata N, Jevasuwan W, Nedyalkov N. Surface-Enhanced Raman Spectroscopy of Ammonium Nitrate Using Al Structures, Fabricated by Laser Processing of AlN Ceramic. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2254. [PMID: 38793320 PMCID: PMC11123258 DOI: 10.3390/ma17102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
This work presents results on laser-induced surface structuring of AlN ceramic and its application in Surface-Enhanced Raman Spectroscopy (SERS). The laser processing is performed by nanosecond pulses in air and vacuum. Depending on the processing conditions, different surface morphology can be obtained. The ablation process is realized by ceramic decomposition as the formation of an aluminium layer is detected. The efficiency of the fabricated structures as active substrates in SERS is estimated by the ability of the detection of ammonium nitrate (NH4NO3). It is conducted for Raman spectrometer systems that operate at wavelengths of 514 and 785 nm where the most common commercial systems work. The obtained structures contribute to enhancement of the Raman signal at both wavelengths, as the efficiency is higher for excitation at 514 nm. The limit of detection (LOD) of ammonium nitrate is estimated to be below the maximum allowed value in drinking water. The analysis of the obtained results was based on the calculations of the near field enhancement at different conditions based on Finite Difference Time Domain simulation and the extinction spectra calculations based on Generalized Mie scattering theory. The structures considered in these simulations were taken from the SEM images of the real samples. The oxidation issue of the ablated surface was studied by X-ray photoelectron spectroscopy. The presented results indicated that laser structuring of AlN ceramics is a way for fabrication of Al structures with specific near-field properties that can be used for the detection of substances with high social impact.
Collapse
Affiliation(s)
- Petar Atanasov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria; (P.A.); (A.D.); (R.N.)
| | - Anna Dikovska
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria; (P.A.); (A.D.); (R.N.)
| | - Rosen Nikov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria; (P.A.); (A.D.); (R.N.)
| | - Genoveva Atanasova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia, Bulgaria;
| | - Katarzyna Grochowska
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-231 Gdansk, Poland;
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland;
| | - Naoki Fukata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (N.F.); (W.J.)
| | - Wipakorn Jevasuwan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (N.F.); (W.J.)
| | - Nikolay Nedyalkov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria; (P.A.); (A.D.); (R.N.)
| |
Collapse
|
9
|
Khan S, Monteiro JK, Prasad A, Filipe CDM, Li Y, Didar TF. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300875. [PMID: 37085965 DOI: 10.1002/adma.202300875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Muntean CM, Cuibus D, Boca S, Falamas A, Tosa N, Brezeştean IA, Bende A, Barbu-Tudoran L, Moldovan R, Bodoki E, Farcǎu C. Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses. BIOSENSORS 2023; 13:bios13050530. [PMID: 37232891 DOI: 10.3390/bios13050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
The increasing pollution of surface and groundwater bodies by pharmaceuticals is a general environmental problem requiring routine monitoring. Conventional analytical techniques used to quantify traces of pharmaceuticals are relatively expensive and generally demand long analysis times, associated with difficulties in performing field analyses. Propranolol, a widely used β-blocker, is representative of an emerging class of pharmaceutical pollutants with a noticeable presence in the aquatic environment. In this context, we focused on developing an innovative, highly accessible analytical platform based on self-assembled metal colloidal nanoparticle films for the fast and sensitive detection of propranolol based on Surface Enhanced Raman Spectroscopy (SERS). The ideal nature of the metal used as the active SERS substrate was investigated by comparing silver and gold self-assembled colloidal nanoparticle films, and the improved enhancement observed on the gold substrate was discussed and supported by Density Functional Theory calculations, optical spectra analyses, and Finite-Difference Time-Domain simulations. Next, direct detection of propranolol at low concentrations was demonstrated, reaching the ppb regime. Finally, we showed that the self-assembled gold nanoparticle films could be successfully used as working electrodes in electrochemical-SERS analyses, opening the possibility of implementing them in a wide array of analytical applications and fundamental studies. This study reports for the first time a direct comparison between gold and silver nanoparticle films and, thus, contributes to a more rational design of nanoparticle-based SERS substrates for sensing applications.
Collapse
Affiliation(s)
- Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Denisa Cuibus
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Sanda Boca
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ioana Andreea Brezeştean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Cosmin Farcǎu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Aluminum Foil vs. Gold Film: Cost-Effective Substrate in Sandwich SERS Immunoassays of Biomarkers Reveals Potential for Selectivity Improvement. Int J Mol Sci 2023; 24:ijms24065578. [PMID: 36982652 PMCID: PMC10051902 DOI: 10.3390/ijms24065578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The first application of aluminum foil (Al F) as a low-cost/high-availability substrate for sandwich immunoassay using surface-enhanced Raman spectroscopy (SERS) is reported. Untreated and unmodified Al F and gold film are used as substrates for sandwich SERS immunoassay to detect tuberculosis biomarker MPT64 and human immunoglobulin (hIgG) in less than 24 h. The limits of detection (LODs) for tuberculosis (TB) biomarker MPT64 on Al foil, obtained with commercial antibodies, are about 1.8–1.9 ng/mL, which is comparable to the best LOD (2.1 ng/mL) reported in the literature for sandwich ELISA, made with fresh in-house antibodies. Not only is Al foil competitive with traditional SERS substrate gold for the sandwich SERS immunoassay in terms of LOD, which is in the range 18–30 pM or less than 1 pmol of human IgG, but it also has a large cost/availability advantage over gold film. Moreover, human IgG assays on Al foil and Si showed better selectivity (by about 30–70% on Al foil and at least eightfold on Si) and a nonspecific response to rat or rabbit IgG, in comparison to the selectivity in assays using gold film.
Collapse
|
12
|
Aitekenov S, Sultangaziyev A, Boranova A, Dyussupova A, Ilyas A, Gaipov A, Bukasov R. SERS for Detection of Proteinuria: A Comparison of Gold, Silver, Al Tape, and Silicon Substrates for Identification of Elevated Protein Concentration in Urine. SENSORS (BASEL, SWITZERLAND) 2023; 23:1605. [PMID: 36772644 PMCID: PMC9921516 DOI: 10.3390/s23031605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Excessive protein excretion in human urine is an early and sensitive marker of diabetic nephropathy and primary and secondary renal disease. Kidney problems, particularly chronic kidney disease, remain among the few growing causes of mortality in the world. Therefore, it is important to develop an efficient, expressive, and low-cost method for protein determination. Surface enhanced Raman spectroscopy (SERS) methods are potential candidates to achieve these criteria. In this paper, a SERS method was developed to distinguish patients with proteinuria from the healthy group. Commercial gold nanoparticles (AuNPs) with diameters of 60 nm and 100 nm, and silver nanoparticles (AgNPs) with a diameter of 100 nm were tested on the surface of four different substrates including silver and gold films, silicon, and aluminum tape. SERS spectra were acquired from 111 unique human urine samples prepared and measured for each of the seven different nanoparticle plus substrate combinations. Data analysis by the PCA-LDA algorithm and the ROC curves gave results for the diagnostic figures of merits. The best sensitivity, specificity, accuracy, and AUC were 0.91, 0.84, 0.88, and 0.94 for the set with 100 nm Au NPs on the silver substrate, respectively. Among the three metal substrates, the substrate with AuNPs and Al tape performed slightly worse than the other three substrates, and 100 nm gold nanoparticles on average produced better results than 60 nm gold nanoparticles. The 60 nm diameter AuNPs and silicon, which is about one order of magnitude more cost-effective than AuNPs and gold film, showed a relative performance close to the performance of 60 nm AuNPs and Au film (average AUC 0.88 (Si) vs. 0.89 (Au)). This is likely the first reported application of unmodified silicon in SERS substrates applied for direct detection of proteins in any biofluid, particularly in urine. These results position silicon and AuNPs@Si in particular as a perspective SERS substrate for direct urine analysis, including clinical diagnostics of proteinuria.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aigerim Boranova
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aigerim Dyussupova
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aisha Ilyas
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH) Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
13
|
Shen K, Hua W, Ge S, Mao Y, Gu Y, Chen G, Wang Y. A dual-amplification strategy-intergated SERS biosensor for ultrasensitive hepatocellular carcinoma-related telomerase activity detection. Front Bioeng Biotechnol 2023; 10:1124441. [PMID: 36714617 PMCID: PMC9881591 DOI: 10.3389/fbioe.2022.1124441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase has been considered as a biomarker for early diagnosis and prognosis assessment of hepatocellular carcinoma (HCC), while the highly sensitive and specific methods remain challenging. To detect telomerase, a novel surface-enhanced Raman scattering (SERS) biosensor was constructed using the dual DNA-catalyzed amplification strategy composed of strand displacement amplification (SDA) and catalytic hairpin assembly (CHA). This strategy relies on the extension reaction of telomerase primer induced by telomerase, forming long-stranded DNAs with repetitive sequence to catalyze the follow-up SDA event. Subsequently, the SDA products can trigger the CHA reaction between the SERS probes (Au-Ag nanocages (Au-AgNCs) modified with hairpin DNA1 and Raman reporters) and capture substrate (Au@SiO2 array labeled with hairpin DNA2), resulting in the formation of numerous "hot spots" to significantly enhance the SERS signal. Results are promising that the established biosensor presented excellent reproducibility, specificity and sensitivity. Moreover, ELISA was applied as the golden standard to verify the application of the proposed biosensor in real samples and the results confirmed the satisfactory accuracy of our method. Therefore, the proposed SERS biosensor has the potential to be an ideal tool for the early screening of HCC.
Collapse
Affiliation(s)
- Kang Shen
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Weiwei Hua
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Gaoyang Chen
- Department of Oncology, Taizhou Second People's Hospital, Taizhou, China,*Correspondence: Gaoyang Chen, ; Youwei Wang,
| | - Youwei Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China,*Correspondence: Gaoyang Chen, ; Youwei Wang,
| |
Collapse
|
14
|
He J, Zhu S, Zhou J, Jiang W, Yin L, Su L, Zhang X, Chen Q, Li X. Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Front Bioeng Biotechnol 2023; 10:1090281. [PMID: 36704307 PMCID: PMC9871317 DOI: 10.3389/fbioe.2022.1090281] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still in an epidemic situation, which poses a serious threat to the safety of people and property. Rapid diagnosis and isolation of infected individuals are one of the important methods to control virus transmission. Existing lateral flow immunoassay techniques have the advantages of rapid, sensitive, and easy operation, and some new options have emerged with the continuous development of nanotechnology. Such as lateral flow immunoassay test strips based on colorimetric-fluorescent dual-mode and gold nanoparticles, Surface Enhanced Raman Scattering, etc., these technologies have played an important role in the rapid diagnosis of COVID-19. In this paper, we summarize the current research progress of lateral flow immunoassay in the field of Severe Acute Respiratory Syndrome Coronavirus 2 infection diagnosis, analyze the performance of Severe Acute Respiratory Syndrome Coronavirus 2 lateral flow immunoassay products, review the advantages and limitations of different detection methods and markers, and then explore the competitive CRISPR-based nucleic acid chromatography detection method. This method combines the advantages of gene editing and lateral flow immunoassay and can achieve rapid and highly sensitive lateral flow immunoassay detection of target nucleic acids, which is expected to be the most representative method for community and clinical point-of-care testing. We hope that researchers will be inspired by this review and strive to solve the problems in the design of highly sensitive targets, the selection of detection methods, and the enhancement of CRISPR technology, to truly achieve rapid, sensitive, convenient, and specific detection of novel coronaviruses, thus promoting the development of novel coronavirus diagnosis and contributing our modest contribution to the world's fight against epidemics.
Collapse
|