1
|
Xiong H, Zhang X, Sun J, Xue Y, Yu W, Mou S, Hsia KJ, Wan H, Wang P. Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis. Biosens Bioelectron 2024; 267:116820. [PMID: 39374569 DOI: 10.1016/j.bios.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The global demand for rapid and non-invasive diagnostic methods for respiratory diseases has significantly intensified due to the wide spread of respiratory infectious diseases. Recent advancements in respiratory disease diagnosis through the analysis of exhaled breath and saliva has attracted great attention all over the world. Among various analytical methods, biosensors can offer non-invasive, efficient, and cost-effective diagnostic capabilities, emerging as promising tools in this area. This review intends to provide a comprehensive overview of various biosensors for the detection of respiratory disease related biomarkers in exhaled breath and saliva. Firstly, the characteristics of exhaled breath and saliva, including their generation, composition, and relevant biomarkers are introduced. Subsequently, the design and application of various biosensors for detecting these biomarkers are presented, along with the innovative materials employed as sensitive components. Different types of biosensors are reviewed, including electrochemical, optical, piezoelectric, semiconductor, and other novel biosensors. At last, the challenges, limitations, and future trends of these biosensors are discussed. It is anticipated that biosensors will play a significant role in respiratory disease diagnosis in the future.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Shimeng Mou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Alarcón-Sánchez MA, Escoto-Vasquez LS, Heboyan A. Salivary 8-hydroxy-2'-deoxyguanosine levels in patients with oral cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:960. [PMID: 39107689 PMCID: PMC11302223 DOI: 10.1186/s12885-024-12746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND DNA is an important target for oxidative attack and its modification may increase the risk of mutagenesis. The aim of this study was to evaluate and compare salivary levels of the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in patients with oral cancer (OC) compared to the control group by a comprehensive search of the available literature. METHODS The present systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and was registered in Open Science Framework (OSF): https://doi.org/10.17605/OSF.IO/X3YMR. Four electronic databases were used to identify studies for this systematic review: PubMed, Scopus, ScienceDirect, and Web of Science from January 15, 2005, to April 15, 2021. The Joanna Briggs Institute (JBI) tool was used to assess article quality. RESULTS Of the 166 articles identified, 130 articles were excluded on the basis of title and abstract screening (duplicates, reviews, etc.). Thirty-six articles were evaluated at full text and 7 articles met the inclusion criteria. Of these, only 5 studies had compatible data for quantitative analysis. An increase in salivary 8-OHdG levels was found in patients with OC compared to healthy subjects, but without statistical significance. 8-OHdG: SMD = 2,72 (95%CI= -0.25-5.70); *p = 0.07. CONCLUSIONS This systematic review and meta-analysis suggests a clear trend of increased 8-OHdG levels in saliva of OC patients compared to the control group. However, further studies are required to clarify and understand the altered levels of this oxidative stress marker.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, 39090, Mexico.
| | - Lilibeth-Stephania Escoto-Vasquez
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, North Karegar St, Tehran, Iran.
| |
Collapse
|
3
|
Ebersole JL, Hasturk H, Huber M, Gellibolian R, Markaryan A, Zhang XD, Miller CS. Realizing the clinical utility of saliva for monitoring oral diseases. Periodontol 2000 2024; 95:203-219. [PMID: 39010260 DOI: 10.1111/prd.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 07/17/2024]
Abstract
In the era of personalized/precision health care, additional effort is being expended to understand the biology and molecular mechanisms of disease processes. How these mechanisms are affected by individual genetics, environmental exposures, and behavioral choices will encompass an expanding role in the future of optimally preventing and treating diseases. Considering saliva as an important biological fluid for analysis to inform oral disease detection/description continues to expand. This review provides an overview of saliva as a diagnostic fluid and the features of various biomarkers that have been reported. We emphasize the use of salivary biomarkers in periodontitis and transport the reader through extant literature, gaps in knowledge, and a structured approach toward validating and determine the utility of biomarkers in periodontitis. A summation of the findings support the likelihood that a panel of biomarkers including both host molecules and specific microorganisms will be required to most effectively identify risk for early transition to disease, ongoing disease activity, progression, and likelihood of response to standard periodontal therapy. The goals would be to develop predictive algorithms that serve as adjunctive diagnostic tools which provide the clinician and patient important information for making informed clinical decisions.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Hatice Hasturk
- Immunology and Inflammation, Center for Clinical and Translational Research, The ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Michaell Huber
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Xiaohua D Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Craig S Miller
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Sobiak J, Resztak M, Sikora W, Zachwieja J, Ostalska-Nowicka D. Liquid chromatography-tandem mass spectrometry method for mycophenolic acid and its glucuronide determination in saliva samples from children with nephrotic syndrome. Pharmacol Rep 2024; 76:600-611. [PMID: 38485859 PMCID: PMC11126467 DOI: 10.1007/s43440-024-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Saliva sampling is one of the methods of therapeutic drug monitoring for mycophenolic acid (MPA) and its metabolite, mycophenolic acid glucuronide (MPAG). The study describes the liquid chromatography tandem mass spectrometry (LC-MS/MS) method developed for saliva MPA and MPAG determination in children with nephrotic syndrome. METHODS The mobile phase consisted of methanol and water at gradient flow, both with 0.1% formic acid. Firstly, 100 µL of saliva was evaporated at 45 °C for 2 h to dryness, secondly, it was reconstituted in the mobile phase, and finally 10 µL was injected into the LC-MS/MS system. Saliva from ten children with nephrotic syndrome treated with mycophenolate mofetil was collected with Salivette®. RESULTS For MPA and MPAG, within the 2-500 ng/mL range, the method was selective, specific, accurate and precise within-run and between-run. No carry-over and matrix effects were observed. Stability tests showed that MPA and MPAG were stable in saliva samples if stored for 2 h at room temperature, 18 h at 4 °C, and at least 5 months at - 80 °C as well as after three freeze-thaw cycles, in a dry extract for 16 h at 4 °C, and for 8 h at 15 °C in the autosampler. The analytes were not adsorbed onto Salivette® cotton swabs. For concentrations above 500 ng/mL, the samples may be diluted twofold. In children, saliva MPA and MPAG were within the ranges of 4.6-531.8 ng/mL and 10.7-183.7 ng/mL, respectively. CONCLUSIONS The evaluated LC-MS/MS method has met the validation requirements for saliva MPA and MPAG determination in children with nephrotic syndrome. Further studies are needed to explore plasma-saliva correlations and assess their potential contribution to MPA monitoring.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Weronika Sikora
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
5
|
Rocha VAD, Cruz-Machado SDS, Silva IA, Fernandes PACM, Markus RP, Bueno M. Identification of Inflammatory Mediators in Saliva Samples From Hospitalized Newborns: Potential Biomarkers? Clin Nurs Res 2024; 33:207-219. [PMID: 38506123 DOI: 10.1177/10547738241238249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Saliva measurements serve as a noninvasive tool for clinically monitoring newborns (NB) and children, a vulnerable population with promising potential for both research and clinical practice. Saliva acts as a repository for various inflammatory biomarkers involved in diverse biological functions. Particularly for children, it offers numerous advantages when compared to plasma and urine sampling. Nevertheless, there is a significant knowledge gap regarding detectable levels of cytokines in the saliva of newborns and children, as well as studies aiming to assess the relationship of this content with physiological and pathological processes. OBJECTIVES To characterize the levels of 11 inflammatory mediators (IFNg, IL1b, IL2, IL4, IL6, IL8, IL10, IL12, IL17, TNF, and VEGF) in saliva samples from NB on the first and second day of hospitalization in the Neonatal Intensive Care Unit (NICU). METHOD Exploratory study, descriptive, nested within a primary clinical, observational, and prospective study, conducted in the NICU of a public hospital in São Paulo, Brazil. Demographic data and vital signs were recorded in the clinical records of 90 NB, and five saliva samples from 5 NB were collected between the first and second day of life (D1-D2) at approximately 8-hr intervals (8-9 am, 4-5 pm, and 11-12 pm). Saliva samples were used for the measurement of 11 cytokines (IFNg, IL1b, IL2, IL4, IL6, IL8, IL10, IL12, IL17, TNF, and VEGF). RESULTS Five NBs participated in this exploratory study, and the vital signs showed variability from the first (D1) to the second day (D2) of hospitalization, variability similar to that of the total population of the primary study. The presence and levels of the 11 cytokines were detected in the saliva samples, as well as a statistical correlation between 10 cytokines (IFNg, IL1b, IL2, IL4, IL6, IL10, IL12, IL17, TNF, and VEGF) and vital signs. CONCLUSIONS The novelty of measuring inflammatory mediators in saliva samples from hospitalized NBs in the NICU is highlighted, providing support and new perspectives for the development of clinical and experimental research and an opportunity for developing and implementing new salivary biomarkers in different population segments.
Collapse
Affiliation(s)
- Vanderlei Amadeu da Rocha
- Universidade de São Paulo, Hospital Universitário, Unidade de Terapia Intensiva Pediátrica e Neonatal, São Paulo, SP, Brasil
| | | | - Isília Aparecida Silva
- Escola de Enfermagem, Departamento de Enfermagem Materno-Infantil e Psiquiatrica, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Regina Pekelmann Markus
- Universidade de São Paulo, Instituto de Biociências, Laboratório de Cronofarmacologia, São Paulo, SP, Brasil
| | | |
Collapse
|
6
|
Asghar H, Bilal S, Nawaz MH, Rasool G, Hayat A. Host-Guest Mechanism via Induced Fit Fullerene Complexation in Porphin Receptor to Probe Salivary Alpha-Amylase in Dental Caries for Clinical Applications. ACS APPLIED BIO MATERIALS 2024; 7:1250-1259. [PMID: 38253544 DOI: 10.1021/acsabm.3c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Salivary α-amylase is the most abundant protein of human saliva that potentially binds to streptococcus and other bacteria via specific surface-exposed α-amylase-binding proteins and plays a significant role in caries development. The detection of α-amylase in saliva can be used as a bioindicator of caries development. Herein, a facile strategy has been applied, tailoring the photochemical properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (TPPOH) and the fullerene C60 complex. The fluorescence emission of TPPOH is quenched by starch-coated fullerene C60 via charge-transfer effects, as determined by UV absorption and fluorescence spectroscopic studies. The starch-coated C60 has been thoroughly characterized via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), optical microscopy, thermal gravimetric analysis (TGA), static water contact angle measurements, and zeta potential measurements. The analytical response of the assay showed a linear fluorescent response in α-amylase concentrations ranging from 0.001-0.1 Units/mL, with an LOD of 0.001 Units/mL. The applicability of the method was tested using artificial saliva with quantitative recoveries in the range 95-100%. The practicability of the procedure was verified by inspecting saliva samples of real clinical samples covering all age groups. We believe that the proposed method can serve as an alternative analytical method for caries detection and risk assessment that would also minimize the cost of professional preventive measures and treatments.
Collapse
Affiliation(s)
- Hira Asghar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defence Road, Near Bhuptian Chowk, Lahore 54000, Pakistan
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Azra Naheed Dental College, Superior University, Raiwind Road, Lahore 54000, Pakistan
| | - Sehrish Bilal
- Department of Biochemistry, Gulab Devi Educational Complex, Ferozepur Road, Lahore 54600, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Ghulam Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defence Road, Near Bhuptian Chowk, Lahore 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Kumar Barik A, Mathew C, Sanoop PM, John RV, Adigal SS, Bhat S, Pai KM, Bhandary SV, Devasia T, Upadhya R, Kartha VB, Chidangil S. Protein profile pattern analysis: A multifarious, in vitro diagnosis technique for universal screening. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123944. [PMID: 38056315 DOI: 10.1016/j.jchromb.2023.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Universal health care is attracting increased attention nowadays, because of the large increase in population all over the world, and a similar increase in life expectancy, leading to an increase in the incidence of non-communicable (various cancers, coronary diseases, neurological and old-age-related diseases) and communicable diseases/pandemics like SARS-COVID 19. This has led to an immediate need for a healthcare technology that should be cost-effective and accessible to all. A technology being considered as a possible one at present is liquid biopsy, which looks for markers in readily available samples like body fluids which can be accessed non- or minimally- invasive manner. Two approaches are being tried now towards this objective. The first involves the identification of suitable, specific markers for each condition, using established methods like various Mass Spectroscopy techniques (Surface-Enhanced Laser Desorption/Ionization Mass Spectroscopy (SELDI-MS), Matrix-Assisted Laser Desorption/Ionization (MALDI-MS), etc., immunoassays (Enzyme-Linked Immunoassay (ELISA), Proximity Extension Assays, etc.) and separation methods like 2-Dimensional Polyacrylamide Gel Electrophoresis (2-D PAGE), Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Capillary Electrophoresis (CE), etc. In the second approach, no attempt is made the identification of specific markers; rather an efficient separation method like High-Performance Liquid Chromatography/ Ultra-High-Performance Liquid Chromatography (HPLC/UPLC) is used to separate the protein markers, and a profile of the protein pattern is recorded, which is analysed by Artificial Intelligence (AI)/Machine Learning (MI) methods to derive characteristic patterns and use them for identifying the disease condition. The present report gives a summary of the current status of these two approaches and compares the two in the use of their suitability for universal healthcare.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Clint Mathew
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pavithran M Sanoop
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sujatha Bhat
- Division of Microbiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keerthilatha M Pai
- Department of Dental Surgery, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim 737102, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
8
|
Popa PȘ, Onișor D, Nechita A, Earar K, Matei MN. Study on the Influence of Regular Physical Activity on Children's Oral Health. CHILDREN (BASEL, SWITZERLAND) 2023; 10:946. [PMID: 37371181 DOI: 10.3390/children10060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The benefits of physical activities conducted systematically on the harmonious development, intellectual performance, and general health of children are unanimously accepted. This study's aim is to determine whether differences in oral health between young athletes and children not engaged in competitive sports are present. A total of 173 children aged between 6 and 17 years, 58 hockey players, 55 football players, and 60 in the control group were divided into groups according to their activity, age, and biological sex and examined for oral hygiene and dental and periodontal health, using clinically determined indices. Statistical analysis showed significant differences between the groups, with lower (better) values for athletes, regardless of age, sex, or activity. Oral hygiene showed the most relevant differences for males aged 14 to 17, as did the index for dental health. Periodontal health, on the other hand, was significantly better for females aged 6 to 13. Based on this data, the beneficial influence of regular physical activity also has an impact on oral health. Identifying the mechanisms behind this needs to be explored in depth and may be a topic for further research.
Collapse
Affiliation(s)
- Paul Șerban Popa
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunărea de Jos University of Galați, 47 Domnească Str., 800181 Galați, Romania
| | - Daniela Onișor
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunărea de Jos University of Galați, 47 Domnească Str., 800181 Galați, Romania
| | - Aurel Nechita
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunărea de Jos University of Galați, 47 Domnească Str., 800181 Galați, Romania
| | - Kamel Earar
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunărea de Jos University of Galați, 47 Domnească Str., 800181 Galați, Romania
| | - Mădălina Nicoleta Matei
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunărea de Jos University of Galați, 47 Domnească Str., 800181 Galați, Romania
| |
Collapse
|