1
|
Hussain K, Ahmad R, Hassan S, Khan MY, Ahmad A, Alshammari MB, Ali MS, Lakho SA, Lee BI. Electrochemical detection of nalbuphine drug using oval-like ZnO nanostructure-based sensor. Anal Biochem 2024; 693:115595. [PMID: 38909770 DOI: 10.1016/j.ab.2024.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.
Collapse
Affiliation(s)
- Kanwal Hussain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Rafiq Ahmad
- 'New-Senior' Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sohail Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Muhammad Y Khan
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan.
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Muhammad S Ali
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Saeed A Lakho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sindh, Jamshoro, 76080. Sindh, Pakistan
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Wahid AA, Usman M, Haleem YA, Ahmed A, Raza K, Munir MU, Pan L, Khan A. Fabrication of a graphene@Ni foam-supported silver nanoplates-PANI 3D architecture electrode for enzyme-free glucose sensing. NANOTECHNOLOGY 2024; 35:495501. [PMID: 39284312 DOI: 10.1088/1361-6528/ad7b41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Reliable and cost-effective glucose sensors are in rising demand among diabetes patients. The combination of metals and conducting polymers creates a robust electrocatalyst for glucose oxidation, offering enzyme-free, high stability, and sensitivity with outstanding electrochemical results. Herein, graphene is grown on nickel foam by chemical vapor deposition to make a graphene@nickel foam scaffold (G@NF), on which silver nanoplates-polyaniline (Ag-PANI) 3D architecture is developed by sonication-assisted co-electrodeposition. The resulting binder-free 3D Ag-PANI/G@NF electrode was highly porous, as characterized by x-ray photoelectron spectroscopy, Field emission scanning electron microscope, x-ray diffractometer, FTIR, and Raman spectroscopy. The binder-free 3D Ag-PANI/G@NF electrode exhibits remarkable electrochemical efficiency with a superior electrochemical active surface area. The amperometric analysis provides excellent anti-interference performance, a low limit of deduction (0.1 nM), robust sensitivity (1.7 × 1013µA mM-1cm-2), and a good response time. Moreover, the Ag-PANI/G@NF enzyme-free sensor is utilized to observe glucose levels in human blood serums and exhibits excellent potential to become a reliable clinical glucose sensor.
Collapse
Affiliation(s)
- Ahtisham Abdul Wahid
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Usman
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Yasir A Haleem
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Kabeer Raza
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lujan Pan
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Aslam Khan
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
3
|
Wahyuni WT, Rahman HA, Afifah S, Anindya W, Hidayat RA, Khalil M, Fan B, Putra BR. Comparison of the analytical performance of two different electrochemical sensors based on a composite of gold nanorods with carbon nanomaterials and PEDOT:PSS for the sensitive detection of nitrite in processed meat products. RSC Adv 2024; 14:24856-24873. [PMID: 39119281 PMCID: PMC11307257 DOI: 10.1039/d4ra04629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Herein, two platforms for electrochemical sensors were developed based on a combination of gold nanorods (AuNRs) with electrochemically reduced graphene oxide (ErGO) or with multiwalled carbon nanotubes (MWCNTs) and PEDOT:PSS for nitrite detection. The first and second electrodes were denoted as AuNRs/ErGO/PEDOT:PSS/GCE and AuNRs/MWCNT/PEDOT:PSS/GCE, respectively. Both materials for electrode modifiers were then characterized using UV-Vis and Raman spectroscopy, SEM, and HR-TEM. In addition, both sensors exhibit good electrochemical and electroanalytical performance for nitrite detection when investigated using voltammetric techniques. The synergistic effect between the AuNRs and their composites enhanced the electrocatalytic activity toward nitrite oxidation compared with the unmodified electrode, and the electroanalytical performance of the second electrode was superior to the first electrode. This is because the high surface area and conductivity of the MWCNTs in the second electrode provide the highest electrochemically active area (0.1510 cm2) among the other electrodes. Moreover, the second electrode exhibited a higher value for the surface coverage and the diffusion coefficient than the first electrode for nitrite detection. The electroanalytical performances of the first and second electrode for nitrite detection in terms of concentration range are 0.8-100 μM and 0.2-100 μM, limit of detection (0.2 μM and 0.08 μM), and measurement sensitivity (0.0451 μA μM-1 cm-2 and 0.0634 μA μM-1 cm-2). Good selectivity was also shown from both sensors in the presence of NaCl, Na2SO4, Na3PO4, MgSO4, NaHCO3, NaNO3, glucose, and ascorbic acid as interfering species for nitrite detection. Furthermore, both sensors were employed to detect nitrite as a food preservative in the beef sample, and the results showed no significant difference compared with the spectrophotometric technique. These results indicate that both proposed nitrite sensors may be further applied as promising electrochemical sensing platforms for in situ nitrite detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
- Tropical Biopharmaca Research Center, IPB University Bogor 16680 Indonesia
| | - Hemas Arif Rahman
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Salmi Afifah
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Weni Anindya
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Rayyan Azzahra Hidayat
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia Depok 16424 Indonesia
| | - Bingbing Fan
- School of Material Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| |
Collapse
|
4
|
Singh D, Verma R, Singh KR, Srivastava M, Singh RP, Singh J. Biogenic synthesis of CuO/ZnO nanocomposite from Bauhinia variegate flower extract for highly sensitive electrochemical detection of vitamin B 2. BIOMATERIALS ADVANCES 2024; 161:213898. [PMID: 38796957 DOI: 10.1016/j.bioadv.2024.213898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
In this study, we report the preparation of bio-inspired binary CuO/ZnO nanocomposite (bb-CuO/ZnO nanocomposite) via the biological route using Bauhinia variegata flower extract following hydrothermal treatment. The prepared bb-CuO/ZnO nanocomposite was electrophoretically deposited (EPD) on indium tin oxide (ITO) substrate to develop bb-CuO/ZnO/ITO biosensing electrode which is employed for the determination of vitamin B2 (Riboflavin) through electrochemical techniques. Physicochemical assets of the prepared bb-CuO/ZnO nanocomposite have been extensively evaluated and make use of different characterization techniques including powder XRD, FT-IR, AFM, SEM, TEM, EDX, XPS, Raman, and TGA. Electrochemical characteristics of the bb-CuO/ZnO/ITO biosensing electrode have been studied towards vitamin B2 determination. Furthermore, different biosensing parameters such as response time, reusability, stability, interference, and real sample analysis were also estimated. From the linear plot of scan rate, charge transfer rate constant (Ks), surface concentration of electrode (γ), and diffusion coefficient (D) have been calculated, and these are found to be 6.56 × 10-1 s-1, 1.21 × 10-7 mol cm-2, and 6.99 × 10-3 cm2 s-1, respectively. This biosensor exhibits the linear range of vitamin B2 detection from 1 to 40 μM, including sensitivity and limit of detection (LOD) of 1.37 × 10-3 mA/μM cm2 and 0.254 μM, respectively. For higher concentration range detection linearity is 50-100 μM, with sensitivity and the LOD of 1.26 × 10-3 mA/μM cm2 and 0.145 μM, respectively. The results indicate that the bio-inspired nanomaterials are promising sustainable biosensing platforms for various food and health-based biosensing devices.
Collapse
Affiliation(s)
- Diksha Singh
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rahul Verma
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India; Saveetha Institute of Medical and Technical Sciences, (Deemed to be University), Chennai, 600077, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Jay Singh
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
5
|
Zhang C, Li L. Study on electrochemical sensor for sunitinib cancer medicine based on metal-organic frameworks and carbon nanotubes nanocomposite. ALEXANDRIA ENGINEERING JOURNAL 2024; 97:8-13. [DOI: 10.1016/j.aej.2024.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
6
|
Keles G, Sifa Ataman E, Taskin SB, Polatoglu İ, Kurbanoglu S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. BIOSENSORS 2024; 14:238. [PMID: 38785712 PMCID: PMC11117604 DOI: 10.3390/bios14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Nanostructured metal oxides (NMOs) provide electrical properties such as high surface-to-volume ratio, reaction activity, and good adsorption strength. Furthermore, they serve as a conductive substrate for the immobilization of biomolecules, exhibiting notable biological activity. Capitalizing on these characteristics, they find utility in the development of various electrochemical biosensing devices, elevating the sensitivity and selectivity of such diagnostic platforms. In this review, different types of NMOs, including zinc oxide (ZnO), titanium dioxide (TiO2), iron (II, III) oxide (Fe3O4), nickel oxide (NiO), and copper oxide (CuO); their synthesis methods; and how they can be integrated into biosensors used for medical diagnosis are examined. It also includes a detailed table for the last 10 years covering the morphologies, analysis techniques, analytes, and analytical performances of electrochemical biosensors developed for medical diagnosis.
Collapse
Affiliation(s)
- Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Elif Sifa Ataman
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sueda Betul Taskin
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - İlker Polatoglu
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| |
Collapse
|
7
|
Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang XX, Huo P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives. ENVIRONMENTAL RESEARCH 2024; 247:118002. [PMID: 38151147 DOI: 10.1016/j.envres.2023.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The amalgamation of nanostructures with modern electrochemical and optical techniques gave rise to interesting devices, so-called biosensors. A biosensor is an analytical tool that incorporates various biomolecules with an appropriate physicochemical transducer. Over the past few years, metal oxide nanomaterials (MONMs) have significantly stimulated biosensing research due to their desired functionalities, versatile chemical stability, and low cost along with their unique optical, catalytic, electrical, and adsorption properties that provide an attractive platform for linking the biomolecules, for example, antibodies, nucleic acids, enzymes, and receptor proteins as sensing elements with the transducer for the detection of signals or signal amplifications. The signals to be measured are in direct proportionate to the concentration of the bioanalyte. Because of their simplicity, cost-effectiveness, portability, quick analysis, higher sensitivity, and selectivity against a broad range of biosamples, MONMs-based electrochemical and optical biosensing platforms are exhaustively explored as powerful early-diagnosis tools for point of care applications. Herein, we made a bibliometric analysis of past twenty years (2004-2023) on the application of MONMs as electrochemical and optical biosensing units using Web of Science database and the results of which clearly reveal the increasing number of publications since 2004. Geographical area distribution analysis of these publications shows that China tops the list followed by the United States of America and India. In this review, we first describe the electrochemical and optical properties of MONMs that are crucial for the creation of extremely stable, specific, and sensitive sensors with desirable characteristics. Then, the biomedical applications of MONMs-based bare and hybrid electrochemical and optical biosensing frameworks are highlighted in the light of recent literature. Finally, current limitations and future challenges in the field of biosensing technology are addressed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China; School of Pharmacy, University College Cork, T12 K8AF, Cork, Ireland
| | - Ramachandran Rajan
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Kapil Upadhyaya
- Chemical Physiology & Biochemistry Department, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gautam Behl
- Eirgen Pharma Ltd., Westside Business Park, Waterford, Ireland
| | - Xin-Xin Xiang
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| |
Collapse
|
8
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
9
|
Kny E, Hasler R, Luczak W, Knoll W, Szunerits S, Kleber C. State of the art and future research directions of materials science applied to electrochemical biosensor developments. Anal Bioanal Chem 2024; 416:2247-2259. [PMID: 38006442 DOI: 10.1007/s00216-023-05054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Centralized laboratories in which analytical processes are automated to enable the analysis of large numbers of samples at relatively low cost are used for analytical testing throughout the world. However, healthcare is changing, partly due to the general recognition that care needs to be more patient-centered and putting the patient at the center of action. One way to achieve this goal is to consider point-of-care testing (PoC) devices as alternative analytical concepts. This requires miniaturization of current analytical concepts and the use of cost-effective diagnostic tools with appropriate sensitivity and specificity. Electrochemical sensors are ideally adapted as they provide robust, low-cost, and miniaturized solutions for the detection of variable analytes, yet lack the high sensitivity comparable to more classical diagnosis approaches. Advances in nanotechnology have opened up a plethora of different nanomaterials to be applied as electrode and/or sensing materials in electrochemical biosensors. The choice of materials significantly influences the sensor's sensitivity, selectivity, and overall performance. A critical review of the state of the art with respect to the development of the utilized materials (between 2019 and 2023) and where the field is heading to are the focus of this article.
Collapse
Affiliation(s)
- Erich Kny
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Roger Hasler
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wiktor Luczak
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria.
| |
Collapse
|
10
|
Ramadoss J, Govindasamy M, Sonachalam A, Huang CH, Alothman AA. CuMoO 4/Ti 3C 2Tx nanocomposite layers perform as an ultrasensitive electrochemical sensor for the detection of antioxidant rutin. Mikrochim Acta 2024; 191:226. [PMID: 38558261 DOI: 10.1007/s00604-024-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 04/04/2024]
Abstract
The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.
Collapse
Affiliation(s)
- Jagadeesh Ramadoss
- Centre for High-Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Mani Govindasamy
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 24303, Taiwan
| | - Arumugam Sonachalam
- Centre for High-Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Tamil Nadu Open University, Chennai, 600015, India.
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
M R K, Panicker LR, Narayan R, Kotagiri YG. Biopolymer-protected graphene-Fe 3O 4 nanocomposite based wearable microneedle sensor: toward real-time continuous monitoring of dopamine. RSC Adv 2024; 14:7131-7141. [PMID: 38414985 PMCID: PMC10898425 DOI: 10.1039/d4ra00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Neurological disorders can occur in the human body as a result of nano-level variations in the neurotransmitter levels. Patients affected by neuropsychiatric disorders, that are chronic require continuous monitoring of these neurotransmitter levels for effective disease management. The current work focus on developing a highly sensitive and personalized sensor for continuous monitoring of dopamine. Here we propose a wearable microneedle-based electrochemical sensor, to continuously monitor dopamine in interstitial fluid (ISF). A chitosan-protected hybrid nanomaterial Fe3O4-GO composite has been used as a chemical recognition element protected by Nafion antifouling coating layer. The morphological and physiochemical characterizations of the nanocomposite were carried out with XRD, XPS, FESEM, EDAX and FT-IR. The principle of the developed sensor relies on orthogonal detection of dopamine with square wave voltammetry and chronoamperometric techniques. The microneedle sensor array exhibited an attractive analytical performance toward detecting dopamine in phosphate buffer and artificial ISF. The limit of detection (LOD) of the developed sensor was observed to be low, 90 nM in square wave voltammetry and 0.6 μM in chronoamperometric analysis. The practical applicability of the microneedle sensor array has been demonstrated on a skin-mimicking phantom gel model. The microneedle sensor also exhibited good long-term storage stability, reproducibility, and sensitivity. All of these promising results suggest that the proposed microneedle sensor array could be reliable for the continuous monitoring of dopamine.
Collapse
Affiliation(s)
- Keerthanaa M R
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Roger Narayan
- Department of Biomedical Engineering, NC State University Raleigh NC 27695 USA
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| |
Collapse
|
12
|
Mashhadian A, Jian R, Tian S, Wu S, Xiong G. An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications. MICROMACHINES 2023; 15:42. [PMID: 38258161 PMCID: PMC10819441 DOI: 10.3390/mi15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Sensors play vital roles in industry and healthcare due to the significance of controlling the presence of different substances in industrial processes, human organs, and the environment. Electrochemical sensors have gained more attention recently than conventional sensors, including optical fibers, chromatography devices, and chemiresistors, due to their better versatility, higher sensitivity and selectivity, and lower complexity. Herein, we review transition metal carbides (TMCs) and transition metal oxides (TMOs) as outstanding materials for electrochemical sensors. We navigate through the fabrication processes of TMCs and TMOs and reveal the relationships among their synthesis processes, morphological structures, and sensing performance. The state-of-the-art biological, gas, and hydrogen peroxide electrochemical sensors based on TMCs and TMOs are reviewed, and potential challenges in the field are suggested. This review can help others to understand recent advancements in electrochemical sensors based on transition metal oxides and carbides.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
13
|
Tonelli D, Gualandi I, Scavetta E, Mariani F. Focus Review on Nanomaterial-Based Electrochemical Sensing of Glucose for Health Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1883. [PMID: 37368313 DOI: 10.3390/nano13121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Diabetes management can be considered the first paradigm of modern personalized medicine. An overview of the most relevant advancements in glucose sensing achieved in the last 5 years is presented. In particular, devices exploiting both consolidated and innovative electrochemical sensing strategies, based on nanomaterials, have been described, taking into account their performances, advantages and limitations, when applied for the glucose analysis in blood and serum samples, urine, as well as in less conventional biological fluids. The routine measurement is still largely based on the finger-pricking method, which is usually considered unpleasant. In alternative, glucose continuous monitoring relies on electrochemical sensing in the interstitial fluid, using implanted electrodes. Due to the invasive nature of such devices, further investigations have been carried out in order to develop less invasive sensors that can operate in sweat, tears or wound exudates. Thanks to their unique features, nanomaterials have been successfully applied for the development of both enzymatic and non-enzymatic glucose sensors, which are compliant with the specific needs of the most advanced applications, such as flexible and deformable systems capable of conforming to skin or eyes, in order to produce reliable medical devices operating at the point of care.
Collapse
Affiliation(s)
- Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|