1
|
Kronemer SI, Gobo VE, Walsh CR, Teves JB, Burk DC, Shahsavarani S, Gonzalez-Castillo J, Bandettini PA. Cross-species real-time detection of trends in pupil size fluctuation. Behav Res Methods 2024; 57:9. [PMID: 39656432 PMCID: PMC11632003 DOI: 10.3758/s13428-024-02545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 12/13/2024]
Abstract
Pupillometry is a popular method because pupil size is easily measured and sensitive to central neural activity linked to behavior, cognition, emotion, and perception. Currently, there is no method for online monitoring phases of pupil size fluctuation. We introduce rtPupilPhase-an open-source software that automatically detects trends in pupil size in real time. This tool enables novel applications of real-time pupillometry for achieving numerous research and translational goals. We validated the performance of rtPupilPhase on human, rodent, and monkey pupil data, and we propose future implementations of real-time pupillometry.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA.
| | - Victoria E Gobo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Catherine R Walsh
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Joshua B Teves
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Diana C Burk
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, USA
| | - Somayeh Shahsavarani
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA
- Department of Audiology, San José State University, San Jose, CA, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), NIHBC 10 - Clinical Center BG RM 1D80, 10 Center Dr., Bethesda, MD, 20892, USA
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Küçükkaya B, Başgöl Ş. The effect of listening to music and drawing on coping with dysmenorrhea complaints in nursing students: randomized controlled trial. BMC Womens Health 2024; 24:571. [PMID: 39455971 PMCID: PMC11515444 DOI: 10.1186/s12905-024-03398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
AIM To examine the effect of listening to music and drawing on coping with dysmenorrhea complaints of nursing students. METHODS The study was a double-blind, three parallel-group randomized controlled trial conducted between August 2023 and May 2024 at Bartın University, Faculty of Health Sciences, Department of Nursing. Ninety-six dysmenorrheic nursing students with regular menstrual cycles were included in the study and randomly assigned to three groups as drawing, music and control groups. Visual Analog Scale (100mmVAS of pain), Perceived Stress Scale (PSS) and Menstrual Symptoms Scale (MSS) were applied to the students at baseline, 1st and 2nd months. The interventions were as follows: the music group listened to a 29-minute and 32-second song three days before menstruation and on the first day of menstruation in the third month composed by Juan Sebastian Martin-Saavedra, while the drawing group created art for the same duration. The pain scores, perceived stress, and menstrual symptoms were measured in all groups after the interventions. RESULTS Pretest, 1st and 2nd months 100mmVAS of pain score averages were 7.16 ± 1.99, 7.16 ± 1.99 and 7.50 ± 1.98 for the control group, 7.22 ± 1.64, 4.84 ± 1.80 and 2.13 ± 1.45 for the music group and 6.69 ± 1.80, 5.09 ± 1.55 and 2.91 ± 1.33 for the drawing group, respectively. Pretest, 1st and 2nd months PSS score averages were 28.75 ± 3.71, 29.09 ± 3.87 and 30.03 ± 4.16 for the control group, 29.91 ± 3.98, 14.06 ± 4.06 and 3.59 ± 3.82 for the music group and 27.38 ± 3.63, 18.13 ± 5.60 and 8.34 ± 5.46 for the drawing group, respectively. Pretest, 1st and 2nd months MSS score averages were 79.25 ± 15.41, 88.00 ± 20.08 and 90.66 ± 19.13 for the control group, 85.41 ± 10.77, 62.41 ± 15.23 and 34.00 ± 12.62 for the music group and 80.69 ± 11.07, 65.53 ± 15.37 and 47.31 ± 15.11 for the drawing group, respectively. Mean menstrual pain intensity, mean perceived stress level, and mean menstrual symptoms level in the art and music group decreased significantly at 1st and 2nd months post-intervention (p < .001). A significant increase in score levels was observed in the control group. CONCLUSIONS Both art and music practices are effective in significantly reducing menstrual pain, perceived stress, and menstrual symptoms in nursing students with dysmenorrhea. It is important to include listening to music and drawing on women's health and disease nursing practices to control menstrual pain, perceived stress, and menstrual symptoms in dysmenorrhea. CLINICAL TRIALS REGISTRATION NUMBER https://clinicaltrials.gov identifier NCT06027489; registered August 30, 2023.
Collapse
Affiliation(s)
- Burcu Küçükkaya
- Faculty of Health Sciences, Nursing Department, Division of Gynecology and Obstetrics Nursing, Bartın University, Bartın, Türkiye.
| | - Şükran Başgöl
- Faculty of Health Sciences, Midwifery Department, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
3
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Carroll AM, Pruitt DT, Riley JR, Danaphongse TT, Rennaker RL, Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation during training fails to improve learning in healthy rats. Sci Rep 2024; 14:18955. [PMID: 39147873 PMCID: PMC11327266 DOI: 10.1038/s41598-024-69666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Learning new skills requires neuroplasticity. Vagus nerve stimulation (VNS) during sensory and motor events can increase neuroplasticity in networks related to these events and might therefore serve to facilitate learning on sensory and motor tasks. We tested if VNS could broadly improve learning on a wide variety of tasks across different skill domains in healthy, female adult rats. VNS was paired with presentation of stimuli or on successful trials during training, strategies known to facilitate plasticity and improve recovery in models of neurological disorders. VNS failed to improve either rate of learning or performance for any of the tested tasks, which included skilled forelimb motor control, speech sound discrimination, and paired-associates learning. These results contrast recent findings from multiple labs which found VNS pairing during training produced learning enhancements across motor, auditory, and cognitive domains. We speculate that these contrasting results may be explained by key differences in task designs, training timelines and animal handling approaches, and that while VNS may be able to facilitate rapid and early learning processes in healthy subjects, it does not broadly enhance learning for difficult tasks.
Collapse
Affiliation(s)
- Alan M Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
5
|
Kronemer SI, Gobo VE, Walsh CR, Teves JB, Burk DC, Shahsavarani S, Gonzalez-Castillo J, Bandettini PA. Cross-species real time detection of trends in pupil size fluctuation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579393. [PMID: 38410482 PMCID: PMC10896349 DOI: 10.1101/2024.02.12.579393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pupillometry is a popular method because pupil size is easily measured, sensitive to central neural activity, and associated with behavior, cognition, emotion, and perception. Currently, there is no method for online monitoring phases of pupil size fluctuation. We introduce rtPupilPhase - an open source software that automatically detects trends in pupil size in real time, enabling novel implementations of real time pupillometry towards achieving numerous research and translational goals. We validated the performance of rtPupilPhase on human, rodent, and monkey pupil data and propose future applications of real time pupillometry.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
| | - Victoria E Gobo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
| | - Catherine R Walsh
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
| | - Joshua B Teves
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
| | - Diana C Burk
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, USA
| | - Somayeh Shahsavarani
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia, University, New York (NY), NY, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), United States of America (USA)
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Messanvi F, Visocky V, Senneca C, Berkun K, Taori M, Bradley SP, Wang H, Tejeda H, Chudasama Y. Galanin receptor 1 expressing neurons in hippocampal-prefrontal circuitry modulate goal directed attention and impulse control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605653. [PMID: 39131306 PMCID: PMC11312591 DOI: 10.1101/2024.07.29.605653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
While amino acid neurotransmitters are the main chemical messengers in the brain, they are co-expressed with neuropeptides which are increasingly recognized as modulators of cognitive pathways. For example, the neuropeptide galanin has been implicated in a wide range of pathological conditions in which frontal and temporal structures are compromised. In a recent study in rats, we discovered that direct pharmacological stimulation of galanin receptor type 1 (GalR1) in the ventral prefrontal cortex (vPFC) and ventral hippocampus (vHC) led to opposing effects on attention and impulse control behavior. In the present study, we investigate how subtypes of neurons expressing GalR1 in these two areas differentially contribute to these behaviors. We first establish that GalR1 is predominantly expressed in glutamatergic neurons in both the vPFC and HC. We develop a novel viral approach to gain genetic access to GalR1-expressing neurons and demonstrate that optogenetic excitation of GalR1 expressing neurons in the vPFC, but not vHC, selectively disrupts attention in a complex behavioral task. Finally, using fiber photometry, we measure the bulk calcium dynamics in GalR1-expressing neurons during the same task to demonstrate opposing activity in vPFC and vHC. These results are consistent with our previous work demonstrating differential behavioral effects induced by GalR1 activating in vPFC and vHC. These results indicate the distinct neuromodulatory and behavioral contributions of galanin mediated by subclasses of neurons in the hippocampal and prefrontal circuitry.
Collapse
Affiliation(s)
- Fany Messanvi
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Vladimir Visocky
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Carolyn Senneca
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Kathleen Berkun
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Maansi Taori
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Sean P Bradley
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Hugo Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Yogita Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Dahl MJ, Werkle-Bergner M, Mather M. Neuromodulatory systems in aging and disease. Neurosci Biobehav Rev 2024; 162:105647. [PMID: 38574783 DOI: 10.1016/j.neubiorev.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded the dynamics of prefrontal NE and ACh in mice performing an inhibitory control task. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Chemogenetic inhibition of locus coeruleus (LC) neurons that project to the basal forebrain region reduced inhibitory control performance to chance levels. However, this manipulation did not diminish the difference in NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between the successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair the inhibitory control performance, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the prefrontal cortex with and without inhibiting LC neurons that project to the basal forebrain during inhibitory control. The LC inhibition reduced the number of prefrontal neurons encoding inhibitory control. Demixed principal component analysis (dPCA) further revealed that population firing patterns representing inhibitory control were impaired by the LC inhibition. Disparities in NE-ACh phase synchrony relevant to inhibitory control occurred only in the prefrontal cortex, but not in the parietal cortex, somatosensory cortex, and the somatosensory thalamus. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further revealed that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
9
|
Horinouchi T, Nezu T, Saita K, Date S, Kurumadani H, Maruyama H, Kirimoto H. Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation. Sci Rep 2024; 14:11224. [PMID: 38755234 PMCID: PMC11099104 DOI: 10.1038/s41598-024-61958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.
Collapse
Affiliation(s)
- Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Kazuya Saita
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurumadani
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
10
|
Lagarde J, Olivieri P, Tonietto M, Noiray C, Lehericy S, Valabrègue R, Caillé F, Gervais P, Moussion M, Bottlaender M, Sarazin M. Combined in vivo MRI assessment of locus coeruleus and nucleus basalis of Meynert integrity in amnestic Alzheimer's disease, suspected-LATE and frontotemporal dementia. Alzheimers Res Ther 2024; 16:97. [PMID: 38702802 PMCID: PMC11067144 DOI: 10.1186/s13195-024-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France.
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France.
- Université Paris-Cité, Paris, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Camille Noiray
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Stéphane Lehericy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Romain Valabrègue
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Fabien Caillé
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Philippe Gervais
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Martin Moussion
- Centre d'Evaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, F-75014, France
| | - Michel Bottlaender
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- UNIACT, Neurospin, Gif-sur-Yvette, CEA, F-91191, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- Université Paris-Cité, Paris, France
| |
Collapse
|
11
|
Papadopoulos L, Jo S, Zumwalt K, Wehr M, McCormick DA, Mazzucato L. Modulation of metastable ensemble dynamics explains optimal coding at moderate arousal in auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588209. [PMID: 38617286 PMCID: PMC11014582 DOI: 10.1101/2024.04.04.588209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Altogether, this study elucidates computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggests a role for phase transitions in explaining nonlinear modulations of cortical computations.
Collapse
Affiliation(s)
| | - Suhyun Jo
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Kevin Zumwalt
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, Oregon and Department of Psychology, University of Oregon, Eugene, Oregon
| | - David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, Oregon and Department of Biology, University of Oregon, Eugene, Oregon
| | - Luca Mazzucato
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
- Department of Biology, University of Oregon, Eugene, Oregon
- Department of Mathematics, University of Oregon, Eugene, Oregon and Department of Physics, University of Oregon, Eugene, Oregon
| |
Collapse
|
12
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans: a randomized controlled crossover pilot study. Sci Rep 2024; 14:3975. [PMID: 38368486 PMCID: PMC10874458 DOI: 10.1038/s41598-024-54026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p = 0.00052) and visual performance by 23% (p = 0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p = 0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Sharper Sense, Inc., New York, NY, USA
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, USA
| | - Qi Wang
- Sharper Sense, Inc., New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY, USA.
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY, USA.
| |
Collapse
|
13
|
Sedley W, Kumar S, Jones S, Levy A, Friston K, Griffiths T, Goldsmith P. Migraine as an allostatic reset triggered by unresolved interoceptive prediction errors. Neurosci Biobehav Rev 2024; 157:105536. [PMID: 38185265 DOI: 10.1016/j.neubiorev.2024.105536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Until now, a satisfying account of the cause and purpose of migraine has remained elusive. We explain migraine within the frameworks of allostasis (the situationally-flexible, forward-looking equivalent of homeostasis) and active inference (interacting with the environment via internally-generated predictions). Due to its multimodality, and long timescales between cause and effect, allostasis is inherently prone to catastrophic error, which might be impossible to correct once fully manifest, an early indicator which is elevated prediction error (discrepancy between prediction and sensory input) associated with internal sensations (interoception). Errors can usually be resolved in a targeted manner by action (correcting the physiological state) or perception (updating predictions in light of sensory input); persistent errors are amplified broadly and multimodally, to prioritise their resolution (the migraine premonitory phase); finally, if still unresolved, progressive amplification renders further changes to internal or external sensory inputs intolerably intense, enforcing physiological stability, and facilitating accurate allostatic prediction updating. As such, migraine is an effective 'failsafe' for allostasis, however it has potential to become excessively triggered, therefore maladaptive.
Collapse
Affiliation(s)
- William Sedley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Siobhan Jones
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew Levy
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Tim Griffiths
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom; Department of Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Paul Goldsmith
- Department of Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom; Institute of Global Health Innovation, Imperial College, London, United Kingdom
| |
Collapse
|
14
|
Rodenkirch C, Wang Q. Optimization of Temporal Coding of Tactile Information in Rat Thalamus by Locus Coeruleus Activation. BIOLOGY 2024; 13:79. [PMID: 38392298 PMCID: PMC10886390 DOI: 10.3390/biology13020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The brainstem noradrenergic nucleus, the locus coeruleus (LC), exerts heavy influences on sensory processing, perception, and cognition through its diffuse projections throughout the brain. Previous studies have demonstrated that LC activation modulates the response and feature selectivity of thalamic relay neurons. However, the extent to which LC modulates the temporal coding of sensory information in the thalamus remains mostly unknown. Here, we found that LC stimulation significantly altered the temporal structure of the responses of the thalamic relay neurons to repeated whisker stimulation. A substantial portion of events (i.e., time points where the stimulus reliably evoked spikes as evidenced by dramatic elevations in the firing rate of the spike density function) were removed during LC stimulation, but many new events emerged. Interestingly, spikes within the emerged events have a higher feature selectivity, and therefore transmit more information about a tactile stimulus, than spikes within the removed events. This suggests that LC stimulation optimized the temporal coding of tactile information to improve information transmission. We further reconstructed the original whisker stimulus from a population of thalamic relay neurons' responses and corresponding feature selectivity. As expected, we found that reconstruction from thalamic responses was more accurate using spike trains of thalamic neurons recorded during LC stimulation than without LC stimulation, functionally confirming LC optimization of the thalamic temporal code. Together, our results demonstrated that activation of the LC-NE system optimizes temporal coding of sensory stimulus in the thalamus, presumably allowing for more accurate decoding of the stimulus in the downstream brain structures.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
15
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.08.552508. [PMID: 37609169 PMCID: PMC10441305 DOI: 10.1101/2023.08.08.552508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p=0.00052) and visual performance by 23% (p=0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p=0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B. Carmel
- Sharper Sense, Inc., New York, NY
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY
| | - Qi Wang
- Sharper Sense, Inc., New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY
| |
Collapse
|
16
|
Assaran AH, Hosseini M, Shirazinia M, Ghalibaf MHE, Beheshti F, Mobasheri L, Mirzavi F, Rajabian A. Neuro-protective Effect of Acetyl-11-keto-β-boswellic Acid in a Rat Model of Scopolamine-induced Cholinergic Dysfunction. Curr Pharm Des 2024; 30:140-150. [PMID: 38532323 DOI: 10.2174/0113816128269289231226115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Acetyl-11-keto-β-boswellic acid (AKBA) is a major component of the oleo-gum resin of B. serrata with multiple pharmacological activities. The objective of this study was to explore the underlying mechanisms of neuroprotective potential of AKBA against scopolamine-mediated cholinergic dysfunction and memory deficits in rats. METHODS The rats received AKBA (2.5, 5, and 10 mg/kg, oral) for 21 days. In the third week, scopolamine was administered 30 min before the Morris water maze and passive avoidance tests. In order to perform biochemical assessments, the hippocampus and prefrontal cortex were extracted from the rats euthanized under deep anesthesia. RESULTS In the MWM test, treatment with AKBA (5 and 10 mg/kg) decreased the latency and distance to find the platform. Moreover, in the PA test, AKBA remarkably increased latency to darkness and stayed time in lightness while decreasing the frequency of entry and time in the darkness. According to the biochemical assessments, AKBA decreased acetylcholinesterase activity and malondialdehyde levels while increasing antioxidant enzymes and total thiol content. Furthermore, AKBA administration restored the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF) and mRNA expression of B-cell lymphoma (Bcl)- 2 and Bcl-2- associated X genes in brain tissue of scopolamine-injured rats. CONCLUSION The results suggested the effectiveness of AKBA in preventing learning and memory dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by modulating BDNF, cholinergic system function, oxidative stress, and apoptotic markers.
Collapse
Affiliation(s)
- Amir Hossein Assaran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Leila Mobasheri
- Department of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Narasimhan S, Schriver BJ, Wang Q. Adaptive decision-making depends on pupil-linked arousal in rats performing tactile discrimination tasks. J Neurophysiol 2023; 130:1541-1551. [PMID: 37964751 PMCID: PMC11068411 DOI: 10.1152/jn.00309.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Perceptual decision-making is a dynamic cognitive process and is shaped by many factors, including behavioral state, reward contingency, and sensory environment. To understand the extent to which adaptive behavior in decision-making is dependent on pupil-linked arousal, we trained head-fixed rats to perform perceptual decision-making tasks and systematically manipulated the probability of Go and No-go stimuli while simultaneously measuring their pupil size in the tasks. Our data demonstrated that the animals adaptively modified their behavior in response to the changes in the sensory environment. The response probability to both Go and No-go stimuli decreased as the probability of the Go stimulus being presented decreased. Analyses within the signal detection theory framework showed that while the animals' perceptual sensitivity was invariant, their decision criterion increased as the probability of the Go stimulus decreased. Simulation results indicated that the adaptive increase in the decision criterion will increase possible water rewards during the task. Moreover, the adaptive decision-making is dependent on pupil-linked arousal as the increase in the decision criterion was the largest during low pupil-linked arousal periods. Taken together, our results demonstrated that the rats were able to adjust their decision-making to maximize rewards in the tasks, and that adaptive behavior in perceptual decision-making is dependent on pupil-linked arousal.NEW & NOTEWORTHY Perceptual decision-making is a dynamic cognitive process and is shaped by many factors. However, the extent to which changes in sensory environment result in adaptive decision-making remains poorly understood. Our data provided new experimental evidence demonstrating that the rats were able to adaptively modify their decision criterion to maximize water reward in response to changes in the statistics of the sensory environment. Furthermore, the adaptive decision-making is dependent on pupil-linked arousal.
Collapse
Affiliation(s)
- Shreya Narasimhan
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Brian J Schriver
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States
| |
Collapse
|
18
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
19
|
Pan L, Liu J, Zhan C, Zhang X, Cui M, Su X, Wang Z, Zhao L, Liu J, Song Y. Effects of indoor exposure to low level toluene on neural network alterations during working memory encoding. CHEMOSPHERE 2023; 321:138153. [PMID: 36804498 DOI: 10.1016/j.chemosphere.2023.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE While high concentrations of toluene are known to affect multiple human organ systems, research concerning the influence of immediate, short-term exposure to toluene indoors and at low concentrations is scarce. Here, we studied effects of indoor toluene exposure on neural network alterations during working memory (WM) encoding. METHODS A total of 23 healthy college students were recruited. All participants were situated in a closed environmental chamber with a full fresh air system. Each participant was subjected to four exposure experiments with different toluene concentrations (0, 17.5, 35, and 70 ppb, named Group A, B, C and D, respectively), with at least one week between each experiment. WM Behavioral and 19-channel electroencephalogram (EEG) recordings in a pre-set environmental chamber were conducted simultaneously during each toluene exposure experiment. Neural networks relevant to WM encoding were visualized analyzing the obtained data. RESULTS 1. No significant difference in WM behavioral performance among the four groups was found. However, a significant increase in whole brain neural network functional connectivity was noted, especially in the frontal region. 2. An outflow directional transfer function (DTFoutflow) revealed higher frontal region values among Group D (the 70 ppb group) as compared to Group A, B and C (the0, 17.5 ppb and 35 ppb groups, respectively), although no differences in frontal region DTFinflow values among the four groups were noted. 3. The DTFFZ-F7, DTFFZ-T5, DTFFZ-P4, DTFFZ-P3, DTFFP2-O2, DTFP3-T4, DTFP3-F4, DTFP4-CZ and DTFP4-T4 values of Group D were found to be higher as compared to those of Group A and B. Furthermore, DTFFZ-F7 and DTFP4-T4 values of Group C were higher as compared to those of Group A. The DTFFZ-F7 values of Group D were higher as compared to those of the Group C. CONCLUSION Short-term toluene exposure significantly influences neural networks during cognitive processes such as WM encoding, even at low concentration.
Collapse
Affiliation(s)
- Liping Pan
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Liu
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Changqing Zhan
- Department of Neurology, Wuhu No.2 People's Hospital, Wuhu, Anhui, 241000, China
| | - Xin Zhang
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Mingrui Cui
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Xiao Su
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Medical University, Tianjin, 300070, China
| | - Zukun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300000, China
| | - Lei Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300000, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300000, China.
| | - Yijun Song
- General Practice Center & Emergency Department, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300000, China; General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
20
|
Wang C, Zeng L, Cao X, Dai J, Liu Y, Gao Z, Qin Y, Yang L, Wang H, Wen Z. Synergistic effects of transcutaneous vagus nerve stimulation and inhibitory control training on electrophysiological performance in healthy adults. Front Neurosci 2023; 17:1123860. [PMID: 36968500 PMCID: PMC10033592 DOI: 10.3389/fnins.2023.1123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Transcutaneous vagal nerve stimulation (tVNS) is a non-invasive nerve stimulation technique that exerts a positive “exogenous” online neuromodulatory effect on inhibitory control (IC). Additionally, IC training (ICT) is an effective approach for enhancing IC via the “endogenous” activation of brain regions implicated in this process. The aim of the present study was to examine the synergistic effects of tVNS and ICT on IC enhancement. For this, we measured the changes in neural activity in frontal, fronto-central, and central regions in the time domain of the N2 component and the frequency domain of alpha power during the stop signal task. A total of 58 participants were randomly divided into four groups that received five sessions of either ICT or sham ICT with either online tVNS or sham tVNS. No differences in N2 amplitude were detected after any of the interventions. However, N2 latency shortened after tVNS + ICT in frontal, fronto-central, and central regions. N2 latency shortened after the intervention of sham tVNS + ICT in frontal region. Moreover, alpha power after tVNS + ICT intervention was larger than those of the other interventions in frontal, fronto-central, and central regions. The obtained electrophysiological data suggested that combining tVNS with ICT has synergistic ameliorative effects on IC, and provide evidence supporting the IC-enhancing potential of tVNS combined with ICT.
Collapse
Affiliation(s)
- Chunchen Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lingwei Zeng
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinsheng Cao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Dai
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhijun Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yilong Qin
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lin Yang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Lin Yang,
| | - Hang Wang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Hang Wang,
| | - Zhihong Wen
- Department of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhihong Wen,
| |
Collapse
|
21
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|