1
|
Gujral J, Gandhi OH, Singh SB, Ahmed M, Ayubcha C, Werner TJ, Revheim ME, Alavi A. PET, SPECT, and MRI imaging for evaluation of Parkinson's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:371-390. [PMID: 39840378 PMCID: PMC11744359 DOI: 10.62347/aicm8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025]
Abstract
This review assesses the primary neuroimaging techniques used to evaluate Parkinson's disease (PD) - a neurological condition characterized by gradual dopamine-producing nerve cell degeneration. The neuroimaging techniques explored include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). These modalities offer varying degrees of insights into PD pathophysiology, diagnostic accuracy, specificity by way of exclusion of other Parkinsonian syndromes, and monitoring of disease progression. Neuroimaging is thus crucial for diagnosing and managing PD, with integrated multimodal approaches and novel techniques further enhancing early detection and treatment evaluation.
Collapse
Affiliation(s)
- Jaskeerat Gujral
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Om H Gandhi
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Shashi B Singh
- Stanford University School of MedicineStanford, CA 94305, USA
| | - Malia Ahmed
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Cyrus Ayubcha
- Harvard Medical SchoolBoston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBoston, MA 02115, USA
| | - Thomas J Werner
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- The Intervention Center, Rikshopitalet, Division of Technology and Innovation, Oslo University HospitalOslo 0372, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo 0315, Norway
| | - Abass Alavi
- Department of Radiology, University of PennsylvaniaPhiladelphia, PA 19104, USA
| |
Collapse
|
2
|
Su Y, Zheng H, Cui X, Zhang S, Zhang S, Hu Z, Hao X, Li M, Guo G, Xia Z, Shi C, Mao C, Xu Y. Single-cell sequencing insights into the transcriptional landscape of Parkinson's disease. Ageing Res Rev 2024; 102:102553. [PMID: 39454761 DOI: 10.1016/j.arr.2024.102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, with an unknown etiology and no specific treatment. Emerging single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) technologies have become instrumental in unravelling cellular heterogeneity and characterizing molecular signatures at single-cell resolution. Single-cell T cell receptor sequencing (scTCR-seq) and single-cell B cell receptor sequencing (scBCR-seq) technologies provide unprecedented opportunities to explore the immune repertoire diversity. These state-of-the-art technologies have been increasingly applied in PD research in the last five years, offering novel insights into the cellular susceptibilities and complex molecular mechanisms underlying PD pathogenesis. Herein we review recent advances in the applications of sc/snRNA-seq, scTCR-seq and scBCR-seq technologies in various PD models. Moreover, we focus on degenerative neurons, activated neuroglial cells, as well as pro-inflammatory immune cells, exploring their unique transcriptional landscapes in PD, as revealed by single-cell sequencing technologies. Finally, we highlight important challenges and the future directions of single-cell experiments in PD research.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuyu Zhang
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China; NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, Henan 450052, China.
| |
Collapse
|
3
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
4
|
Cafferata EA, Ramanauskaite A, Cuypers A, Obreja K, Dohle E, Ghanaati S, Schwarz F. Experimental peri-implantitis induces neuroinflammation: An exploratory study in rats. BMC Oral Health 2024; 24:1238. [PMID: 39425138 PMCID: PMC11490110 DOI: 10.1186/s12903-024-04995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
PURPOSE Cumulating evidence supports the close association between periodontal diseases, neuroinflammation and neurodegenerative pathologies, except for peri-implantitis (PI). Thus, this study explored the association between experimental PI and neuropathological changes in the rat brain. MATERIALS AND METHODS After bilateral first molars extraction, experimental PI was induced at titanium implants placed in the maxillae by lipopolysaccharide injections and ligature placement. Following 28-weeks of disease progression, the maxillae and brains were retrieved from 6 rats. Healthy brains from 3 rats were used as control. Brains were analyzed by immunohistochemistry to detect signs of neuroinflammation (interleukin (IL)-6 and tumor necrosis factor (TNF)-α)), microglial activation (IBA-1) and astrogliosis (GFAP). To explore signs of neurodegeneration, hematoxylin/eosin and Nissl stainings were used. Also, four different antibodies against amyloid beta (Aβ 1-42) were tested. RESULTS Chronic PI lesions showed peri-implant bone resorption accompanied by large inflammatory infiltrates. IL-6+ and TNF-α+ cells were found within the CA1 and Dentate Gyrus regions of the hippocampus of the PI-affected group, while almost no immune-positivity was detected in the control (p < 0.05). Detection of activated GFAP+ microglia and IBA-1+ astrocytes surface were significantly higher at the CA areas, and cerebral cortex of the PI-affected group, in comparison with control (p < 0.05). Shrunk neurons with pyknotic nuclei were inconsistently found among the PI-affected group, and these were almost not detected in control. No positive Aβ reactivity was detected in any of the samples. CONCLUSION Chronic experimental PI lesions led to an increased detection of IL-6 and TNF-α, GFAP+ microgliosis and IBA-1+ astrocytosis, and in some cases, neurodegeneration, in the rat brain.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany.
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú.
| | - Ausra Ramanauskaite
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Astrid Cuypers
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Karina Obreja
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Eva Dohle
- Frankfurt Oral Regenerative Medicine (FORM-Lab), Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Frankfurt Oral Regenerative Medicine (FORM-Lab), Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
6
|
Breznik L, Daurer M, Rabl R, Loeffler T, Etxeberria-Rekalde E, Neddens J, Flunkert S, Prokesch M. Motor deficits and brain pathology in the Parkinson's disease mouse model hA53Ttg. Front Neurosci 2024; 18:1462041. [PMID: 39371610 PMCID: PMC11450652 DOI: 10.3389/fnins.2024.1462041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of α-synuclein (α-syn) aggregates. The A53T missense point mutation occurs in autosomal dominant familial PD and has been found to promote the aggregation of α-syn. To investigate the role of the A53T mutation in PD, researchers have developed various mouse models with this mutation. Objective We therefore conducted a comprehensive characterization of the tg(THY1-SNCA*A53T)M53Sud mouse model (hA53Ttg mice) for its motor and pathological features. Methods hA53Ttg mice were tested for motor impairments in a series of motor tests at 2, 4 or 6 months of age. Human α-syn and α-syn pSer129, as well as GFAP and Iba1 signal were labeled and quantified in the cortex, hippocampus, and brainstem. Neurofilament light chain (NF-L) levels were measured in the cerebrospinal fluid (CSF) and plasma. Ex vivo analyses were performed at the age of 2, 4, 6, and 10 months. Results Behavioral tests revealed early muscle weakness and motor impairments that progressed with age. Immunohistochemical analyses demonstrated elevated levels of human α-syn and α-syn pSer129 in all evaluated brain regions. α-syn pSer129 labeling further revealed fiber-like structures in the cortex of older animals. Neuroinflammation was observed in an age-dependent manner. Biochemical evaluation revealed elevated NF-L levels in the plasma and CSF. Overall, our findings highlight the value of hA53Ttg mice in modeling PD-associated pathologies that closely resemble those observed in PD patients. Conclusion Our results thus suggest that hA53Ttg mice are a useful tool for studying the underlying mechanisms of PD.
Collapse
|
7
|
Qiu R, Cai Y, Su Y, Fan K, Sun Z, Zhang Y. Emerging insights into Lipocalin-2: Unraveling its role in Parkinson's Disease. Biomed Pharmacother 2024; 177:116947. [PMID: 38901198 DOI: 10.1016/j.biopha.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, marked by a complex pathogenesis. Lipocalin-2 (LCN2) emerges as a crucial factor during the progression of PD. Belonging to the lipocalin family, LCN2 is integral to several biological functions, including glial cell activation, iron homeostasis regulation, immune response, inflammatory reactions, and oxidative stress mitigation. Substantial research has highlighted marked increases in LCN2 expression within the substantia nigra (SN), cerebrospinal fluid (CSF), and blood of individuals with PD. This review focuses on the pathological roles of LCN2 in neuroinflammation, aging, neuronal damage, and iron dysregulation in PD. It aims to explore the underlying mechanisms of LCN2 in the disease and potential therapeutic targets that could inform future treatment strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Izquierdo-Altarejos P, Arenas YM, Martínez-García M, Vázquez L, Mincheva G, Doverskog M, Blackburn TP, Bohnen NI, Llansola M, Felipo V. Golexanolone reduces glial activation in the striatum and improves non-motor and some motor alterations in a rat model of Parkinson's disease. Front Aging Neurosci 2024; 16:1417938. [PMID: 38974902 PMCID: PMC11224447 DOI: 10.3389/fnagi.2024.1417938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Background Parkinson's disease (PD) affects more than 6 million people worldwide. Along with motor impairments, patients and animal models exhibiting PD symptoms also experience cognitive impairment, fatigue, anxiety, and depression. Currently, there are no drugs available for PD that alter the progression of the disease. A body of evidence suggests that increased GABA levels contribute to the reduced expression of tyrosine hydroxylase (TH) and accompanying behavioral deficits. TH expression may be restored by blocking GABAA receptors. We hypothesized that golexanolone (GR3027), a well-tolerated GABAA receptor-modulating steroid antagonist (GAMSA), may improve Parkinson's symptoms in a rat model of PD. Objectives The aims of this study were to assess whether golexanolone can ameliorate motor and non-motor symptoms in a rat model of PD and to identify some underlying mechanisms. Methods We used the unilateral 6-OHDA rat model of PD. The golexanolone treatment started 4 weeks after surgery. Motor symptoms were assessed using Motorater and CatWalk tests. We also analyzed fatigue (using a treadmill test), anhedonia (via the sucrose preference test), anxiety (with an open field test), and short-term memory (using a Y maze). Glial activation and key proteins involved in PD pathogenesis were analyzed using immunohistochemistry and Western blot. Results Rats with PD showed motor incoordination and impaired locomotor gait, increased fatigue, anxiety, depression, and impaired short-term memory. Golexanolone treatment led to improvements in motor incoordination, certain aspects of locomotor gait, fatigue, anxiety, depression, and short-term memory. Notably, golexanolone reduced the activation of microglia and astrocytes, mitigated TH loss at 5 weeks after surgery, and prevented the increase of α-synuclein levels at 10 weeks. Conclusions Golexanolone may be useful in improving both motor and non-motor symptoms that adversely affect the quality of life in PD patients, such as anxiety, depression, fatigue, motor coordination, locomotor gait, and certain cognitive alterations.
Collapse
Affiliation(s)
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mar Martínez-García
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lola Vázquez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
9
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
10
|
Pellegrini C, Travagli RA. Gastrointestinal dysmotility in rodent models of Parkinson's disease. Am J Physiol Gastrointest Liver Physiol 2024; 326:G345-G359. [PMID: 38261717 PMCID: PMC11212145 DOI: 10.1152/ajpgi.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Multiple studies describe prodromal, nonmotor dysfunctions that affect the quality of life of patients who subsequently develop Parkinson's disease (PD). These prodromal dysfunctions comprise a wide array of autonomic issues, including severe gastrointestinal (GI) motility disorders such as dysphagia, delayed gastric emptying, and chronic constipation. Indeed, strong evidence from studies in humans and animal models suggests that the GI tract and its neural, mainly vagal, connection to the central nervous system (CNS) could have a major role in the etiology of PD. In fact, misfolded α-synuclein aggregates that form Lewy bodies and neurites, i.e., the histological hallmarks of PD, are detected in the enteric nervous system (ENS) before clinical diagnosis of PD. The aim of the present review is to provide novel insights into the pathogenesis of GI dysmotility in PD, focusing our attention on functional, neurochemical, and molecular alterations in animal models.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
11
|
Lu S, Zhang K, Liu Y, Zhan X, Savari R. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis. ENVIRONMENTAL RESEARCH 2024; 245:117369. [PMID: 37827372 DOI: 10.1016/j.envres.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 μA/μM, a detection limit of 0.012 μM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 μM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.
Collapse
Affiliation(s)
- Shenyi Lu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Ke Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu Liu
- Guangxi Medical university, Nanning, 530021, China
| | | | - Rojan Savari
- School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, 1439955961, Iran
| |
Collapse
|
12
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
13
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
14
|
Meng T, Zhang Y, Huang J, Pandey V, Fu S, Ma S. Rubusoside mitigates neuroinflammation and cellular apoptosis in Parkinson's disease, and alters gut microbiota and metabolite composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155309. [PMID: 38237261 DOI: 10.1016/j.phymed.2023.155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Neuroinflammation plays a pivotal role in the pathogenesis of PD, involving the activation of microglia cells, heightened production of proinflammatory cytokines, and perturbations in the composition of the gut microbiota. Rubusoside (Ru), the principal steviol bisglucoside present in Rubus chingii var. suavissimus (S.K.Lee) L.T.Lu (Rosaceae), has been documented for its anti-inflammatory properties in diverse disease models. Nonetheless, there is an imperative need to comprehensively assess and elucidate the protective and anti-inflammatory attributes of Ru concerning PD, as well as to uncover the underlying mechanism involved. OBJECTIVE The aim of this study is to evaluate the neuroprotective and anti-inflammatory effects of Ru on PD and investigate its potential mechanisms associated with microbes. RESEARCH DESIGN AND METHODS We pre-treated mice and cell lines with Ru in order to simulate the progression of PD and the neuroinflammatory state. The mouse model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), SN4741 cells were induced by 1-methyl-4-phenylpyridine (mpp+), and BV-2 cells were induced by lipopolysaccharide (LPS). We assessed the impact of Ru on motor function, neuroinflammation, neuron apoptosis, the composition of gut microbes, and their metabolites. RESULTS Ru treatment reduces the release of pro-inflammatory mediators by inhibiting microglia activation. It also prevents neuronal apoptosis, thereby safeguarding dopaminergic neurons and ameliorating motor dysfunction. Furthermore, it induces alterations in the fecal microbiota composition and metabolites profile in PD mice. In vitro experiments have demonstrated that Ru inhibits neuronal apoptosis in SN4741 cells induced by mpp+, suppresses the production of pro-inflammatory mediators, and activates the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (p38 MAPK), and nuclear factor kappa-B (NF-κB) signaling pathways. CONCLUSION Ru exhibits inhibitory effects on the MPTP-induced PD model by mitigating neuroinflammation and neuronal apoptosis while also inducing changes in the gut microbiota and metabolite composition.
Collapse
Affiliation(s)
- Tianyu Meng
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, PR China; Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, PR China
| | - Yufei Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Jing Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, PR China; Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, PR China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, PR China; Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, PR China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, PR China; Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
Hanafy KA, Jovin TG. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front Immunol 2024; 15:1332776. [PMID: 38304427 PMCID: PMC10830639 DOI: 10.3389/fimmu.2024.1332776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Importance While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation. Observations A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson's disease, COVID, traumatic brain injury, and Alzheimer's disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them. Conclusions and relevance Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical "psychiatric medications" are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.
Collapse
Affiliation(s)
- Khalid A. Hanafy
- Cooper Neurological Institute and Cooper Medical School at Rowan University, Camden, NJ, United States
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, United States
| | - Tudor G. Jovin
- Cooper Neurological Institute and Cooper Medical School at Rowan University, Camden, NJ, United States
| |
Collapse
|
16
|
Di Lazzaro G, Picca A, Boldrini S, Bove F, Marzetti E, Petracca M, Piano C, Bentivoglio AR, Calabresi P. Differential profiles of serum cytokines in Parkinson's disease according to disease duration. Neurobiol Dis 2024; 190:106371. [PMID: 38061398 DOI: 10.1016/j.nbd.2023.106371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Neurodegeneration and neuroinflammation are two intertwined mechanisms contributing to the pathophysiology of Parkinson's disease. Whether circulating biomarkers reflecting those two processes differ according to disease duration remains to be established. The present study was conducted to characterize the biomarkers individuals with PD with short (≤5 years) or long disease duration (>5 years). METHODS We consecutively enrolled 104 patients with Parkinson's disease and evaluated them using validated clinical scales (MDS-UPDRS, Hoehn and Yahr staging, MMSE). Serum samples were assayed for the following biomarkers: neurofilament light chain (NfL), brain-derived neurotrophic factor (BDNF), interleukin (IL-) 1β, 4, 5, 6, 10, 17, interferon-γ, and tumor necrosis factor α. RESULTS Mean age of participants was 66.0 ± 9.6 years and 45 (34%) were women. The average disease duration was 8 ± 5 years (range 1 to 19 years). Patients with short disease duration (≤ 5 years) showed a pro-inflammatory profile, with significantly higher levels of pro-inflammatory IL-1β and lower concentrations of IL-5, IL-10 and IL-17 (p < 0.05). NfL serum levels showed a positive correlation with disease duration and age (respectively rho = 0.248, p = 0.014 and rho = 0.559, p < 0.001) while an opposite pattern was detected for BDNF (respectively rho -0,187, p = 0.034 and rho = -0.245, p = 0.014). CONCLUSIONS Our findings suggest that a pro-inflammatory status may be observed in PD patients in the early phases of the disease, independently from age.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| | | | - Francesco Bove
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Martina Petracca
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Carla Piano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Rita Bentivoglio
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Paolo Calabresi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
17
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Bhushan B, Singh NK. Role of Astrogliosis in the Pathogenesis of Parkinson's Disease: Insights into Astrocytic Nrf2 Pathway as a Potential Therapeutic Target. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1015-1029. [PMID: 37817521 DOI: 10.2174/0118715273270473231002104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
Recently, Parkinson's disease (PD) has become a remarkable burden on families and society with an acceleration of population aging having several pathological hallmarks such as dopaminergic neuronal loss of the substantia nigra pars compacta, α-synucleinopathy, neuroinflammation, autophagy, last but not the least astrogliosis. Astrocyte, star-shaped glial cells perform notable physiological functions in the brain through several molecular and cellular mechanisms including nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. It has been well established that the downregulation of the astrocytic Nrf2 signaling pathway plays a crucial role in the pathogenesis of PD because it is a master regulator of cellular defense mechanism along with a regulator of numerous detoxifying and antioxidant enzymes gene expression. Fascinatingly, upregulation of the astrocytic Nrf2 signaling pathway attenuates the degeneration of nigrostriatal neurons, restores neuronal proliferation, rejuvenates astrocytic functions, and exhibits neuroprotective effects via numerous cellular and molecular mechanisms in the PD-like brain of the experimental animal. Here, we discuss the numerous in-vitro and in-vivo studies that evaluate the neuroprotective potential of the astrocytic Nrf2 signaling pathway against experimentally-induced PD-like manifestation. In conclusion, based on available preclinical reports, it can be assumed that the astrocytic Nrf2 signaling pathway could be an alternative target in the drug discovery process for the prevention, management, and treatment of PD.
Collapse
Affiliation(s)
- Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| |
Collapse
|
19
|
Luo Y, Liu J, Hong Y, Peng S, Meng S. Sevoflurane-induced hypotension causes cognitive dysfunction and hippocampal inflammation in mice. Behav Brain Res 2023; 455:114672. [PMID: 37716552 DOI: 10.1016/j.bbr.2023.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Sevoflurane commonly adopted for anesthetic in clinical practice, however, its influences on cerebral blood flow and cognitive function remain controversial. Herein, the sevoflurane-induced hypotension on arterial blood pressure, cerebral blood flow, cognitive function, and hippocampal inflammation was investigated in mice. A significant decrease in arterial blood pressure and cerebral blood flow was indicated by the sevoflurane anesthesia treatment. Moreover, sevoflurane-induced hypotension was associated with the impaired cognitive function and the increased levels of NLRP3 inflammasome activation and oxidative stress in hippocampus. These findings suggest that sevoflurane-induced hypotension may lead to the cognitive dysfunction and hippocampal inflammation.
Collapse
Affiliation(s)
- Yuelian Luo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiayi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|