1
|
Wang X, Yang T, Shi X. NK cell-based immunotherapy in hepatocellular carcinoma: An attractive therapeutic option for the next decade. Cell Signal 2024; 124:111405. [PMID: 39260532 DOI: 10.1016/j.cellsig.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC), a major subtype of liver cancer, poses significant therapeutic challenges due to its late diagnosis and rapid progression. The evolving landscape of immunotherapy offers a beacon of hope, with natural killer (NK) cells emerging as pivotal players in combating HCC. NK cells are unique cytotoxic lymphocytes that are essential in the fight against infections and malignancies. Phenotypic and functional NK cell abnormalities have been shown in HCC patients, indicating their significance as a component of the innate immune system against cancer. This review elucidates the critical role of NK cells in combating HCC, focusing on their interaction with the tumor microenvironment, the development of NK cell-based therapies, and the innovative strategies to enhance their efficacy in the immunosuppressive milieu of HCC. The review delves into the various therapeutic strategies, including autologous and allogeneic NK cell therapies, genetic engineering to improve NK cell resilience and targeting, and the integration of NK cells with other immunotherapeutic approaches like checkpoint inhibitors and oncolytic virotherapy. By highlighting recent advancements and the ongoing challenges in the field, this review sets the stage for future research directions that could unlock the full potential of NK cell-based immunotherapy for HCC, offering a beacon of hope for patients battling this formidable cancer.
Collapse
Affiliation(s)
- Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Tianye Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China; Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
2
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
3
|
Luo W, Hoang H, Zhu H, Miller K, Mo X, Eguchi S, Tian M, Liao Y, Ayello J, Rosenblum JM, Marcondes M, Currier M, Mardis E, Cripe T, Lee D, Cairo MS. Circumventing resistance within the Ewing sarcoma microenvironment by combinatorial innate immunotherapy. J Immunother Cancer 2024; 12:e009726. [PMID: 39266215 PMCID: PMC11404285 DOI: 10.1136/jitc-2024-009726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, New York, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Shiori Eguchi
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Mark Currier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
| | - Elaine Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Timothy Cripe
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Dean Lee
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Departments of Pathology, Immunology and Microbiology, Medicine, Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Mikhailova VA, Sokolov DI, Grebenkina PV, Bazhenov DO, Nikolaenkov IP, Kogan IY, Totolian AA. Apoptotic Receptors and CD107a Expression by NK Cells in an Interaction Model with Trophoblast Cells. Curr Issues Mol Biol 2024; 46:8945-8957. [PMID: 39194745 DOI: 10.3390/cimb46080528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Natural killer cells (NK cells) exert cytotoxicity towards target cells in several ways, including the expression of apoptosis-mediating ligands (TRAIL, FasL). In addition, NK cells themselves may be susceptible to apoptosis due to the expression of TRAIL receptors. These receptors include TRAIL-R1 (DR4), TRAIL-R2 (DR5), capable of inducing apoptosis, and TRAIL-R3 (DcR1), TRAIL-R4 (DcR2), the so-called "decoy receptors", which lack an intracellular domain initiating activation of caspases. Of particular interest is the interaction of uterine NK cells with cells of fetal origin, trophoblasts, which are potential targets for natural killer cells to carry out cytotoxicity. The aim of this work was to evaluate the expression of proapoptotic receptors and their ligands as well as CD107a expression by NK cells in a model of interaction with trophoblast cells. To evaluate NK cells, we used cells of the NK-92 line; cells of the JEG-3 line were used as target cells. The cytokines IL-1β, IL-15, IL-18, TNFα, IL-10, TGFβ and conditioned media (CM) of the first and third trimester chorionic villi explants were used as inducers. We established that cytokines changed the expression of apoptotic receptors by NK cells: in the presence of TNFα, the amount and intensity of Fas expression increased, while in the presence of TGFβ, the amount and intensity of expression of the DR5 receptor decreased. Soluble chorionic villi factors alter the expression of TRAIL and FasL by NK-92 cells, which can reflect the suppression of the TRAIL-dependent mechanism of apoptosis in the first trimester and stimulating the Fas-dependent mechanism in the third trimester. In the presence of trophoblast cells, the expression of TRAIL and DcR1 by NK cells was reduced compared to intact cells, indicating an inhibitory effect of trophoblast cells on NK cell cytotoxicity. In the presence of chorionic villi CM and trophoblast cells, a reduced number of NK-92 cells expressing DR4 and DR5 was found. Therefore, soluble factors secreted by chorionic villi cells regulate the resistance of NK cells to death by binding TRAIL, likely maintaining their activity at a certain level in case of contact with trophoblast cells.
Collapse
Affiliation(s)
- Valentina A Mikhailova
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Dmitry I Sokolov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Polina V Grebenkina
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Dmitry O Bazhenov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Igor P Nikolaenkov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Igor Yu Kogan
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Areg A Totolian
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Moinuddin A, Poznanski SM, Portillo AL, Monteiro JK, Ashkar AA. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol Rev 2024; 323:19-39. [PMID: 38459782 DOI: 10.1111/imr.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.
Collapse
Affiliation(s)
- Adnan Moinuddin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M Poznanski
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ana L Portillo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
7
|
Razmara AM, Gingrich AA, Toedebusch CM, Rebhun RB, Murphy WJ, Kent MS, Canter RJ. Improved characterization and translation of NK cells for canine immunotherapy. Front Vet Sci 2024; 11:1336158. [PMID: 38379924 PMCID: PMC10877038 DOI: 10.3389/fvets.2024.1336158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
The field of cancer immunology has seen a meteoric rise in interest and application due to the discovery of immunotherapies that target immune cells, often leading to dramatic anti-tumor effects. However, successful cellular immunotherapy for solid tumors remains a challenge, and the application of immunotherapy to dogs with naturally occurring cancers has emerged as a high yield large animal model to bridge the bench-to-bedside challenges of immunotherapies, including those based on natural killer (NK) cells. Here, we review recent developments in the characterization and understanding of canine NK cells, a critical springboard for future translational NK immunotherapy research. The characterization of canine NK cells is exceptionally pertinent given the ongoing challenges in defining them and contextualizing their similarities and differences compared to human and murine NK cells compounded by the limited availability of validated canine specific reagents. Additionally, we summarize the current landscape of the clinical and translational literature employing strategies to capitalize on endogenous and exogenous NK cell immunotherapy in canine cancer patients. The insights regarding efficacy and immune correlates from these trials provide a solid foundation to design and test novel combinational therapies to enhance NK cell activity with the added benefit of motivating comparative work to translate these findings to human cancers with extensive similarities to their canine counterparts. The compilation of knowledge from basic canine NK phenotype and function to applications in first-in-dog clinical trials will support the canine cancer model and enhance translational work to improve cancer outcomes for both dogs and humans.
Collapse
Affiliation(s)
- Aryana M. Razmara
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Alicia A. Gingrich
- MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Christine M. Toedebusch
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Michael S. Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J. Canter
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
8
|
Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY, Fantin VR. Natural killer cell therapies. Nature 2024; 626:727-736. [PMID: 38383621 DOI: 10.1038/s41586-023-06945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.
Collapse
Affiliation(s)
- Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| | - Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Stéphanie Cornen
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | |
Collapse
|
9
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Mikanik F, Izadpanah A, Parkhideh S, Shahbaz Ghasabeh A, Roshandel E, Hajifathali A, Gharehbaghian A. Cytokine-Induced Memory-Like NK Cells: Emerging strategy for AML immunotherapy. Biomed Pharmacother 2023; 168:115718. [PMID: 37857247 DOI: 10.1016/j.biopha.2023.115718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease developed from the malignant expansion of myeloid precursor cells in the bone marrow and peripheral blood. The implementation of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) has improved outcomes associated with AML, but relapse, along with suboptimal outcomes, is still a common scenario. In the past few years, exploring new therapeutic strategies to optimize treatment outcomes has occurred rapidly. In this regard, natural killer (NK) cell-based immunotherapy has attracted clinical interest due to its critical role in immunosurveillance and their capabilities to target AML blasts. NK cells are cytotoxic innate lymphoid cells that mediate anti-viral and anti-tumor responses by producing pro-inflammatory cytokines and directly inducing cytotoxicity. Although NK cells are well known as short-lived innate immune cells with non-specific responses that have limited their clinical applications, the discovery of cytokine-induced memory-like (CIML) NK cells could overcome these challenges. NK cells pre-activated with the cytokine combination IL-12/15/18 achieved a long-term life span with adaptive immunity characteristics, termed CIML-NK cells. Previous studies documented that using CIML-NK cells in cancer treatment is safe and results in promising outcomes. This review highlights the current application, challenges, and opportunities of CIML-NK cell-based therapy in AML.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Shahbaz Ghasabeh
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
11
|
Prados MD. Current Strategies for Management of Medulloblastoma. Diagnostics (Basel) 2023; 13:2622. [PMID: 37627881 PMCID: PMC10453892 DOI: 10.3390/diagnostics13162622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor of childhood, which includes multiple molecular subgroups (4) and subtypes (8 to 12), each with different outcomes and potential therapy options. Long-term survival remains poor for many of the subtypes, with high late mortality risks and poor health-related quality of life. Initial treatment strategies integrate molecular subgroup information with more standard clinical and phenotypic factors to risk stratify newly diagnosed patients. Clinical trials treating relapsed disease, often incurable, now include multiple new approaches in an attempt to improve progression-free and overall survival.
Collapse
Affiliation(s)
- Michael D Prados
- Charles B. Wilson Professor of Neurological Surgery and Professor of Pediatrics, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94150, USA
| |
Collapse
|
12
|
Mamola JA, Chen CY, Currier MA, Cassady K, Lee DA, Cripe TP. Opportunities and challenges of combining adoptive cellular therapy with oncolytic virotherapy. Mol Ther Oncolytics 2023; 29:118-124. [PMID: 37250971 PMCID: PMC10209482 DOI: 10.1016/j.omto.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The use of oncolytic viruses (OVs) and adoptive cell therapies (ACT) have independently emerged as promising approaches for cancer immunotherapy. More recently, the combination of such agents to obtain a synergistic anticancer effect has gained attention, particularly in solid tumors, where immune-suppressive barriers of the microenvironment remain a challenge for desirable therapeutic efficacy. While adoptive cell monotherapies may be restricted by an immunologically cold or suppressive tumor microenvironment (TME), OVs can serve to prime the TME by eliciting a wave of cancer-specific immunogenic cell death and inducing enhanced antitumor immunity. While OV/ACT synergy is an attractive approach, immune-suppressive barriers remain, and methods should be considered to optimize approaches for such combination therapy. In this review, we summarize current approaches that aim to overcome these barriers to enable optimal synergistic antitumor effects.
Collapse
Affiliation(s)
- Joseph A. Mamola
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mark A. Currier
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kevin Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
13
|
Early Stage Professionals Committee Proceedings from the International Society for Cell & Gene Therapy 2022 Annual Meeting. Cytotherapy 2023; 25:590-597. [PMID: 36906481 DOI: 10.1016/j.jcyt.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/12/2023]
Abstract
In this Committee Proceedings, representatives from the Early Stage Professional (ESP) committee highlight the innovative discoveries and key take-aways from oral presentations at the 2022 International Society for Cell and Gene Therapy (ISCT) Annual Meeting that cover the following subject categories: Immunotherapy, Exosomes and Extracellular Vesicles, HSC/Progenitor Cells and Engineering, Mesenchymal Stromal Cells, and ISCT Late-Breaking Abstracts.
Collapse
|
14
|
Pereira MSF, Sorathia K, Sezgin Y, Thakkar A, Maguire C, Collins PL, Mundy-Bosse BL, Lee DA, Naeimi Kararoudi M. Deletion of Glycogen Synthase Kinase 3 Beta Reprograms NK Cell Metabolism. Cancers (Basel) 2023; 15:705. [PMID: 36765663 PMCID: PMC9913837 DOI: 10.3390/cancers15030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Loss of cytotoxicity and defective metabolism are linked to glycogen synthase kinase 3 beta (GSK3β) overexpression in natural killer (NK) cells from patients with acute myeloid leukemia or from healthy donors after expansion ex vivo with IL-15. Drug inhibition of GSK3β in these NK cells improves their maturation and cytotoxic activity, but the mechanisms of GSK3β-mediated dysfunction have not been well studied. Here, we show that expansion of NK cells with feeder cells expressing membrane-bound IL-21 maintained normal GSK3β levels, allowing us to study GSK3β function using CRISPR gene editing. We deleted GSK3B and expanded paired-donor knockout and wild-type (WT) NK cells and then assessed transcriptional and functional alterations induced by loss of GSK3β. Surprisingly, our data showed that deletion of GSK3B did not alter cytotoxicity, cytokine production, or maturation (as determined by CD57 expression). However, GSK3B-KO cells demonstrated significant changes in expression of genes related to rRNA processing, cell proliferation, and metabolic function, suggesting possible metabolic reprogramming. Next, we found that key genes downregulated in GSK3B-KO NK cells were upregulated in GSK3β-overexpressing NK cells from AML patients, confirming this correlation in a clinical setting. Lastly, we measured cellular energetics and observed that GSK3B-KO NK cells exhibited 150% higher spare respiratory capacity, a marker of metabolic fitness. These findings suggest a role for GSK3β in regulating NK cell metabolism.
Collapse
Affiliation(s)
- Marcelo S. F. Pereira
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kinnari Sorathia
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Yasemin Sezgin
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Aarohi Thakkar
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Colin Maguire
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L. Mundy-Bosse
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Natural Killer Cell Recognition and Control of Epithelial Cancers. Cancer J 2022; 28:263-269. [PMID: 35880935 PMCID: PMC9336556 DOI: 10.1097/ppo.0000000000000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells possess an innate ability to recognize cancer and are key mediators of cytotoxic efficacy for anticancer antibodies. Recent advances in the ability to generate, qualify, and safely infuse NK cells have led to a wide variety of clinical trials in oncology. Although their efficacy is best established for liquid cancers, their potential application in solid cancers has received increased attention. Here, we provide general background across a disparate group of exemplary solid tumors for which there is evidence for an NK cell role, discuss NK cell recognition motifs specific to each and murine and human studies of each that are supportive of NK cell adoptive immunotherapy, and end with special considerations relevant to the solid tumor microenvironment.
Collapse
|
16
|
Naeimi Kararoudi M, Likhite S, Elmas E, Yamamoto K, Schwartz M, Sorathia K, de Souza Fernandes Pereira M, Sezgin Y, Devine RD, Lyberger JM, Behbehani GK, Chakravarti N, Moriarity BS, Meyer K, Lee DA. Optimization and validation of CAR transduction into human primary NK cells using CRISPR and AAV. CELL REPORTS METHODS 2022; 2:100236. [PMID: 35784645 PMCID: PMC9243630 DOI: 10.1016/j.crmeth.2022.100236] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/08/2021] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Human primary natural killer (NK) cells are being widely advanced for cancer immunotherapy. However, methods for gene editing of these cells have suffered low transduction rates, high cell death, and loss of transgene expression after expansion. Here, we developed a highly efficient method for site-specific gene insertion in NK cells using CRISPR (Cas9/RNP) and AAVs. We compared AAV vectors designed to mediate gene insertion by different DNA repair mechanisms, homology arm lengths, and virus concentrations. We then validated the method for site-directed gene insertion of CD33-specific CARs into primary human NK cells. CAR transduction was efficient, its expression remained stable after expansion, and it improved efficacy against AML targets.
Collapse
Affiliation(s)
- Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Shibi Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ezgi Elmas
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kenta Yamamoto
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kinnari Sorathia
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | - Yasemin Sezgin
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Raymond D. Devine
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Justin M. Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory K. Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nitin Chakravarti
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Kathrin Meyer
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Wong DCP, Lee EHC, Er J, Yow I, Koean RAG, Ang O, Xiao J, Low BC, Ding JL. Lung Cancer Induces NK Cell Contractility and Cytotoxicity Through Transcription Factor Nuclear Localization. Front Cell Dev Biol 2022; 10:871326. [PMID: 35652099 PMCID: PMC9149376 DOI: 10.3389/fcell.2022.871326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Actomyosin-mediated cellular contractility is highly conserved for mechanotransduction and signalling. While this phenomenon has been observed in adherent cell models, whether/how contractile forces regulate the function of suspension cells like natural killer (NK) cells during cancer surveillance, is unknown. Here, we demonstrated in coculture settings that the evolutionarily conserved NK cell transcription factor, Eomes, undergoes nuclear shuttling during lung cancer cell surveillance. Biophysical and biochemical analyses revealed mechanistic enhancement of NK cell actomyosin-mediated contractility, which is associated with nuclear flattening, thus enabling nuclear entry of Eomes associated with enhanced NK cytotoxicity. We found that NK cells responded to the presumed immunosuppressive TGFβ in the NK-lung cancer coculture medium to sustain its intracellular contractility through myosin light chain phosphorylation, thereby promoting Eomes nuclear localization. Therefore, our results demonstrate that lung cancer cells provoke NK cell contractility as an early phase activation mechanism and that Eomes is a plausible mechano-responsive protein for increased NK cytotoxicity. There is scope for strategic application of actomyosin-mediated contractility modulating drugs ex vivo, to reinvigorate NK cells prior to adoptive cancer immunotherapy in vivo (177 words).
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Junzhi Er
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ivan Yow
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | | | - Owen Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
- University Scholars Programme, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Razmara AM, Judge SJ, Gingrich AA, Cruz SM, Culp WTN, Kent MS, Rebhun RB, Canter RJ. Natural Killer and T Cell Infiltration in Canine Osteosarcoma: Clinical Implications and Translational Relevance. Front Vet Sci 2021; 8:771737. [PMID: 34869744 PMCID: PMC8635198 DOI: 10.3389/fvets.2021.771737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Metastatic osteosarcoma has a bleak prognosis in both humans and dogs, and there have been minimal therapeutic advances in recent decades to improve outcomes. Naturally occurring osteosarcoma in dogs is shown to be a highly suitable model for human osteosarcoma, and limited data suggest the similarities between species extend into immune responses to cancer. Studies show that immune infiltrates in canine osteosarcoma resemble those of human osteosarcoma, and the analysis of tumor immune constituents as predictors of therapeutic response is a promising direction for future research. Additionally, clinical studies in dogs have piloted the use of NK transfer to treat osteosarcoma and can serve as valuable precursors to clinical trials in humans. Cytotoxic lymphocytes in dogs and humans with osteosarcoma have increased activation and exhaustion markers within tumors compared with blood. Accordingly, NK and T cells have complex interactions among cancer cells and other immune cells, which can lead to changes in pathways that work both for and against the tumor. Studies focused on NK and T cell interactions within the tumor microenvironment can open the door to targeted therapies, such as checkpoint inhibitors. Specifically, PD-1/PD-L1 checkpoint expression is conserved across tumors in both species, but further characterization of PD-L1 in canine osteosarcoma is needed to assess its prognostic significance compared with humans. Ultimately, a comparative understanding of T and NK cells in the osteosarcoma tumor microenvironment in both dogs and humans can be a platform for translational studies that improve outcomes in both dogs and humans with this frequently aggressive disease.
Collapse
Affiliation(s)
- Aryana M Razmara
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sean J Judge
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alicia A Gingrich
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sylvia M Cruz
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - William T N Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J Canter
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
20
|
Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021; 12:734551. [PMID: 34594338 PMCID: PMC8476995 DOI: 10.3389/fimmu.2021.734551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells which play a key role in shaping the immune response against cancer. Initially hailed for their potential to recognise and eliminate tumour cells, their application has been greatly hindered by the immunosuppressive tumour microenvironment (TME) which suppresses NK functions (e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes such as upregulation of inhibitory receptors and downregulation of activating receptors, forms the basis of what many researchers have referred to as ‘exhausted’ NK cells. However, there is no consensus on whether these phenotypes are sufficient to define an exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to show promise in early-stage pre-clinical studies, much remains to be fully explored and understood in the context of the TME. The TME is where the NK cells are subjected to interaction with various cell types and soluble factors, which could exert an inhibitory effect on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell exhaustion viz, the surface activating and inhibitory receptors. We also highlight the potential role of T-box transcription factors in characterising such a dysfunctional state and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating NK cell function. These aspects may further contribute to NK exhaustion or NK revival in cancer and may open new avenues to explore cancer treatment strategies.
Collapse
Affiliation(s)
- E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Beckmann ND, Comella PH, Cheng E, Lepow L, Beckmann AG, Tyler SR, Mouskas K, Simons NW, Hoffman GE, Francoeur NJ, Del Valle DM, Kang G, Do A, Moya E, Wilkins L, Le Berichel J, Chang C, Marvin R, Calorossi S, Lansky A, Walker L, Yi N, Yu A, Chung J, Hartnett M, Eaton M, Hatem S, Jamal H, Akyatan A, Tabachnikova A, Liharska LE, Cotter L, Fennessy B, Vaid A, Barturen G, Shah H, Wang YC, Sridhar SH, Soto J, Bose S, Madrid K, Ellis E, Merzier E, Vlachos K, Fishman N, Tin M, Smith M, Xie H, Patel M, Nie K, Argueta K, Harris J, Karekar N, Batchelor C, Lacunza J, Yishak M, Tuballes K, Scott I, Kumar A, Jaladanki S, Agashe C, Thompson R, Clark E, Losic B, Peters L, Roussos P, Zhu J, Wang W, Kasarskis A, Glicksberg BS, Nadkarni G, Bogunovic D, Elaiho C, Gangadharan S, Ofori-Amanfo G, Alesso-Carra K, Onel K, Wilson KM, Argmann C, Bunyavanich S, Alarcón-Riquelme ME, Marron TU, Rahman A, Kim-Schulze S, Gnjatic S, Gelb BD, Merad M, Sebra R, Schadt EE, Charney AW. Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nat Commun 2021; 12:4854. [PMID: 34381049 PMCID: PMC8357784 DOI: 10.1038/s41467-021-24981-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.
Collapse
Affiliation(s)
- Noam D Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
| | - Phillip H Comella
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aviva G Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantinos Mouskas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole W Simons
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy J Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | | | - Gurpawan Kang
- Department of Medicine, Division of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anh Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Emily Moya
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lillian Wilkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie Chang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Marvin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharlene Calorossi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alona Lansky
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Walker
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy Yi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Chung
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Melody Eaton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Hatem
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hajra Jamal
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alara Akyatan
- Department of of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lora E Liharska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cotter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fennessy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akhil Vaid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guillermo Barturen
- Department of Medical Genomics, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government (GENYO), Granada, Spain
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shwetha Hara Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Swaroop Bose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Elyze Merzier
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Konstantinos Vlachos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Nataly Fishman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Manying Tin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Hui Xie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimberly Argueta
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocelyn Harris
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig Batchelor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Lacunza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahlet Yishak
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ieisha Scott
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arvind Kumar
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suraj Jaladanki
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charuta Agashe
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Thompson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Evan Clark
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panagiotis Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenhui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish Nadkarni
- Mount Sinai COVID Informatics Center, New York, NY, USA
- Department of Medicine, Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Dusan Bogunovic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cordelia Elaiho
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep Gangadharan
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Ofori-Amanfo
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey Alesso-Carra
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen M Wilson
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta E Alarcón-Riquelme
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U Marron
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Black Family Stem Cell Institute, New York, NY, USA
- Sema4, a Mount Sinai Venture, Stamford, CT, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
- Sema4, a Mount Sinai Venture, Stamford, CT, USA.
| | - Alexander W Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mount Sinai COVID Informatics Center, New York, NY, USA.
| |
Collapse
|
22
|
Kisseberth WC, Lee DA. Adoptive Natural Killer Cell Immunotherapy for Canine Osteosarcoma. Front Vet Sci 2021; 8:672361. [PMID: 34164452 PMCID: PMC8215197 DOI: 10.3389/fvets.2021.672361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in both humans and dogs. It is a highly metastatic cancer and therapy has not improved significantly since the inclusion of adjuvant chemotherapy into disease treatment strategies. Osteosarcoma is an immunogenic tumor, and thus development of immunotherapies for its treatment, especially treatment of microscopic pulmonary metastases might improve outcomes. NK cells are lymphocytes of the innate immune system and can recognize a variety of stressed cells, including cancer cells, in the absence of major histocompatibility complex (MHC)-restricted receptor ligand interactions. NK cells have a role in controlling tumor progression and metastasis and are important mediators of different therapeutic interventions. The core hypothesis of adoptive natural killer (NK) cell therapy is there exists a natural defect in innate immunity (a combination of cancer-induced reduction in NK cell numbers and immunosuppressive mechanisms resulting in suppressed function) that can be restored by adoptive transfer of NK cells. Here, we review the rationale for adoptive NK cell immunotherapy, NK cell biology, TGFβ and the immunosuppressive microenvironment in osteosarcoma, manufacturing of ex vivo expanded NK cells for the dog and provide perspective on the present and future clinical applications of adoptive NK cell immunotherapy in spontaneous osteosarcoma and other cancers in the dog.
Collapse
Affiliation(s)
- William C Kisseberth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | - Dean A Lee
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
23
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
24
|
Cellular Immunotherapy-Highlights from TCT 2021. Transplant Cell Ther 2021; 27:527-532. [PMID: 33915324 DOI: 10.1016/j.jtct.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/21/2022]
|
25
|
Khatua S, Cooper LJN, Sandberg DI, Ketonen L, Johnson JM, Rytting ME, Liu DD, Meador H, Trikha P, Nakkula RJ, Behbehani GK, Ragoonanan D, Gupta S, Kotrotsou A, Idris T, Shpall EJ, Rezvani K, Colen R, Zaky W, Lee DA, Gopalakrishnan V. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol 2021; 22:1214-1225. [PMID: 32152626 DOI: 10.1093/neuonc/noaa047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recurrent pediatric medulloblastoma and ependymoma have a grim prognosis. We report a first-in-human, phase I study of intraventricular infusions of ex vivo expanded autologous natural killer (NK) cells in these tumors, with correlative studies. METHODS Twelve patients were enrolled, 9 received protocol therapy up to 3 infusions weekly, in escalating doses from 3 × 106 to 3 × 108 NK cells/m2/infusion, for up to 3 cycles. Cerebrospinal fluid (CSF) was obtained for cellular profile, persistence, and phenotypic analysis of NK cells. Radiomic characterization on pretreatment MRI scans was performed in 7 patients, to develop a non-invasive imaging-based signature. RESULTS Primary objectives of NK cell harvest, expansion, release, and safety of 112 intraventricular infusions of NK cells were achieved in all 9 patients. There were no dose-limiting toxicities. All patients showed progressive disease (PD), except 1 patient showed stable disease for one month at end of study follow-up. Another patient had transient radiographic response of the intraventricular tumor after 5 infusions of NK cell before progressing to PD. At higher dose levels, NK cells increased in the CSF during treatment with repetitive infusions (mean 11.6-fold). Frequent infusions of NK cells resulted in CSF pleocytosis. Radiomic signatures were profiled in 7 patients, evaluating ability to predict upfront radiographic changes, although they did not attain statistical significance. CONCLUSIONS This study demonstrated feasibility of production and safety of intraventricular infusions of autologous NK cells. These findings support further investigation of locoregional NK cell infusions in children with brain malignancies.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | | | - David I Sandberg
- Department of Neurosurgery, MD Anderson Cancer Center, Houston.,Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center, Houston
| | - Leena Ketonen
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston
| | - Jason M Johnson
- Department of Diagnostic Imaging, MD Anderson Cancer Center, Houston
| | | | - Diane D Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer center
| | - Heather Meador
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | - Prashant Trikha
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Robin J Nakkula
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gregory K Behbehani
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Sumit Gupta
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | | | - Tagwa Idris
- Department of Radiology, Harvard Medical School
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Rivka Colen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston
| | - Dean A Lee
- Department of Hematology, Oncology and BMT, Nationwide Children's Hospital, Columbus, Ohio and Department of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
26
|
Lamb MG, Rangarajan HG, Tullius BP, Lee DA. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther 2021; 12:211. [PMID: 33766099 PMCID: PMC7992329 DOI: 10.1186/s13287-021-02277-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy, radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against these diseases.
Collapse
Affiliation(s)
- Margaret G Lamb
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA. .,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA.
| | - Hemalatha G Rangarajan
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Brian P Tullius
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Dean A Lee
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|
27
|
Naeimi Kararoudi M, Tullius BP, Chakravarti N, Pomeroy EJ, Moriarity BS, Beland K, Colamartino ABL, Haddad E, Chu Y, Cairo MS, Lee DA. Genetic and epigenetic modification of human primary NK cells for enhanced antitumor activity. Semin Hematol 2020; 57:201-212. [PMID: 33256913 PMCID: PMC7809645 DOI: 10.1053/j.seminhematol.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy using genetically modified immune cells such as those expressing chimeric antigen receptors has shown dramatic outcomes in patients with refractory and relapsed malignancies. Natural killer (NK) cells as a member of the innate immune system, possessing both anticancer (cytotoxic) and proinflammatory (cytokine) responses to cancers and rare off-target toxicities have great potential for a wide range of cancer therapeutic settings. Therefore, improving NK cell antitumor activity through genetic modification is of high interest in the field of cancer immunotherapy. However, gene manipulation in primary NK cells has been challenging because of broad resistance to many genetic modification methods that work well in T cells. Here we review recent successful approaches for genetic and epigenetic modification of NK cells including epigenetic remodeling, transposons, mRNA-mediated gene delivery, lentiviruses, and CRISPR gene targeting.
Collapse
Affiliation(s)
- Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, OH
| | - Brian P Tullius
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, OH
| | - Nitin Chakravarti
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Emily J Pomeroy
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN
| | | | - Kathie Beland
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | | | - Elie Haddad
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Dean A Lee
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, OH.
| |
Collapse
|
28
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
29
|
Beckmann ND, Comella PH, Cheng E, Lepow L, Beckmann AG, Mouskas K, Simons NW, Hoffman GE, Francoeur NJ, Del Valle DM, Kang G, Moya E, Wilkins L, Le Berichel J, Chang C, Marvin R, Calorossi S, Lansky A, Walker L, Yi N, Yu A, Hartnett M, Eaton M, Hatem S, Jamal H, Akyatan A, Tabachnikova A, Liharska LE, Cotter L, Fennessey B, Vaid A, Barturen G, Tyler SR, Shah H, Wang YC, Sridhar SH, Soto J, Bose S, Madrid K, Ellis E, Merzier E, Vlachos K, Fishman N, Tin M, Smith M, Xie H, Patel M, Argueta K, Harris J, Karekar N, Batchelor C, Lacunza J, Yishak M, Tuballes K, Scott L, Kumar A, Jaladanki S, Thompson R, Clark E, Losic B, Zhu J, Wang W, Kasarskis A, Glicksberg BS, Nadkarni G, Bogunovic D, Elaiho C, Gangadharan S, Ofori-Amanfo G, Alesso-Carra K, Onel K, Wilson KM, Argmann C, Alarcón-Riquelme ME, Marron TU, Rahman A, Kim-Schulze S, Gnjatic S, Gelb BD, Merad M, Sebra R, Schadt EE, Charney AW. Cytotoxic lymphocytes are dysregulated in multisystem inflammatory syndrome in children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.29.20182899. [PMID: 32909006 PMCID: PMC7480058 DOI: 10.1101/2020.08.29.20182899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and multiple organ involvement in individuals under 21 years following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To identify genes, pathways and cell types driving MIS-C, we sequenced the blood transcriptomes of MIS-C cases, pediatric cases of coronavirus disease 2019, and healthy controls. We define a MIS-C transcriptional signature partially shared with the transcriptional response to SARS-CoV-2 infection and with the signature of Kawasaki disease, a clinically similar condition. By projecting the MIS-C signature onto a co-expression network, we identified disease gene modules and found genes downregulated in MIS-C clustered in a module enriched for the transcriptional signatures of exhausted CD8 + T-cells and CD56 dim CD57 + NK cells. Bayesian network analyses revealed nine key regulators of this module, including TBX21 , a central coordinator of exhausted CD8 + T-cell differentiation. Together, these findings suggest dysregulated cytotoxic lymphocyte response to SARS-Cov-2 infection in MIS-C.
Collapse
Affiliation(s)
- Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Phillip H. Comella
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aviva G. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Konstantinos Mouskas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole W. Simons
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel E. Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Diane Marie Del Valle
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gurpawan Kang
- Department of Medicine, division of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Le Berichel
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christie Chang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Marvin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sharlene Calorossi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alona Lansky
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laura Walker
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nancy Yi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alex Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew Hartnett
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melody Eaton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sandra Hatem
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hajra Jamal
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alara Akyatan
- Department of of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexandra Tabachnikova
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E. Liharska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Liam Cotter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Akhil Vaid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Guillermo Barturen
- Department of Medical Genomics, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government (GENYO), 18007 Urb. los Vergeles, Granada, Spain
| | - Scott R. Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ying-chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shwetha Hara Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Swaroop Bose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Elyze Merzier
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Konstantinos Vlachos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Nataly Fishman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Manying Tin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Hui Xie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimberly Argueta
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jocelyn Harris
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neha Karekar
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Craig Batchelor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jose Lacunza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mahlet Yishak
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leisha Scott
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arvind Kumar
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Suraj Jaladanki
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan Thompson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
| | - Evan Clark
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Zhu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenhui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Kasarskis
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin S. Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Girish Nadkarni
- Mount Sinai COVID Informatics Center, New York, NY 10029, USA
- Department of Medicine, Mount Sinai, New York, NY 10029, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, New York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, New York, NY 10029, USA
| | - Dusan Bogunovic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cordelia Elaiho
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandeep Gangadharan
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - George Ofori-Amanfo
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kasey Alesso-Carra
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen M. Wilson
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marta E. Alarcón-Riquelme
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas U. Marron
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adeeb Rahman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
- Black Family Stem Cell Institute, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford CT, 06902, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
- Sema4, a Mount Sinai venture, Stamford CT, 06902, USA
| | - Alexander W. Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai COVID Informatics Center, New York, NY 10029, USA
| |
Collapse
|
30
|
Natural Killer Cell Immunotherapy for Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:141-154. [PMID: 32483737 DOI: 10.1007/978-3-030-43032-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that have the ability to recognize malignant cells through balanced recognition of cell-surface indicators of stress and danger. Once activated through such recognition, NK cells release cytokines and induce target cell lysis through multiple mechanisms. NK cells are increasingly recognized for their role in controlling tumor progression and metastasis and as important mediators of immunotherapeutic modalities such as cytokines, antibodies, immunomodulating drugs, and stem cell transplantation. Recent advances in manipulating NK cell number, function, and genetic modification have caused renewed interest in their potential for adoptive immunotherapies, which are actively being tested in clinical trials. Here, we summarize the evidence for NK cell recognition of osteosarcoma, discuss immune therapies that are directly or indirectly dependent on NK cell function, and describe potential approaches for manipulating NK cell number and function to enhance therapy against osteosarcoma.
Collapse
|
31
|
Sarkar S, Kang W, Jiang S, Li K, Ray S, Luther E, Ivanov AR, Fu Y, Konry T. Machine learning-aided quantification of antibody-based cancer immunotherapy by natural killer cells in microfluidic droplets. LAB ON A CHIP 2020; 20:2317-2327. [PMID: 32458907 PMCID: PMC7938931 DOI: 10.1039/d0lc00158a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Natural killer (NK) cells have emerged as an effective alternative option to T cell-based immunotherapies, particularly against liquid (hematologic) tumors. However, the effectiveness of NK cell therapy has been less than optimal for solid tumors, partly due to the heterogeneity in target interaction leading to variable anti-tumor cytotoxicity. This paper describes a microfluidic droplet-based cytotoxicity assay for quantitative comparison of immunotherapeutic NK-92 cell interaction with various types of target cells. Machine learning algorithms were developed to assess the dynamics of individual effector-target cell pair conjugation and target death in droplets in a semi-automated manner. Our results showed that while short contacts were sufficient to induce potent killing of hematological cancer cells, long-lasting stable conjugation with NK-92 cells was unable to kill HER2+ solid tumor cells (SKOV3, SKBR3) significantly. NK-92 cells that were engineered to express FcγRIII (CD16) mediated antibody-dependent cellular cytotoxicity (ADCC) selectively against HER2+ cells upon addition of Herceptin (trastuzumab). The requirement of CD16, Herceptin and specific pre-incubation temperature served as three inputs to generate a molecular logic function with HER2+ cell death as the output. Mass proteomic analysis of the two effector cell lines suggested differential changes in adhesion, exocytosis, metabolism, transport and activation of upstream regulators and cytotoxicity mediators, which can be utilized to regulate specific functionalities of NK-92 cells in future. These results suggest that this semi-automated single cell assay can reveal the variability and functional potency of NK cells and may be used to optimize immunotherapeutic efficacy for preclinical analyses.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Evaluation of serum-free media formulations in feeder cell-stimulated expansion of natural killer cells. Cytotherapy 2020; 22:322-328. [PMID: 32278551 DOI: 10.1016/j.jcyt.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Optimal expansion of therapeutic natural killer (NK) cell products has required media supplementation with human or fetal bovine serum, which raises safety and regulatory concerns for clinical manufacturing. Serum-free media (SFM) have been optimized for T-cell expansion, but few SFM systems have been developed for NK cells. Here, we compare six commercial clinical-grade SFM with our standard fetal bovine serum-containing medium for their ability to support NK cell expansion and function. METHODS Human peripheral blood NK cells were expanded in selected media by recursive weekly stimulation with K562-based feeder cells expressing membrane-bound interleukin-21 and CD137L. Expansion was the primary readout, and the best-performing SFM was then compared with standard medium for cytotoxicity, phenotype, degranulation and cytokine secretion. Multiple lots were compared for consistency, and media was analyzed throughout for nutrient consumption and metabolic byproducts. RESULTS TexMACS, OpTmizer, SCGM, ABS-001 and StemXVivo demonstrated equal or inferior NK cell expansion kinetics compared with standard medium, but expansion was markedly superior with AIM V + 5% Immune Cell Serum Replacement (ICSR; mean 5448 vs. 2621-fold expansion in 14 days). Surprisingly, NK cells expanded in AIM V + ICSR also showed increased cytotoxicity, tumor necrosis factor α secretion and DNAM-1, NKG2D, NKp30, FasL, granzyme B and perforin expression. Lot-to-lot variability was minimal. Glucose and glutamine consumption were inversely related to lactate and ammonia production. DISCUSSION The AIM V + ICSR SFM system supports excellent ex vivo expansion of clinical-grade NK cells with the phenotype and function needed for adoptive immunotherapy.
Collapse
|
33
|
Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK Cell Function Regulation by TGF-β-Induced Epigenetic Mechanisms. Front Immunol 2020; 11:311. [PMID: 32161594 PMCID: PMC7052483 DOI: 10.3389/fimmu.2020.00311] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
TGF-β is a potent immunosuppressive cytokine that severely affects the function of NK cells. Tumor cells can take advantage of this ability, enriching their surrounding microenvironment with TGF-β. TGF-β can alter the expression of effector molecules and of activating and chemokine receptors, influence metabolism, induce the NK cell conversion toward the less cytolytic ILC1s. These and other changes possibly occur by the induction of complex gene expression programs, involving epigenetic mechanisms. While most of these programs are at present unexplored, the role of certain transcription factors, microRNAs and chromatin changes determined by TGF-β in NK cells start to be elucidated in human and/or mouse NK cells. The deep understanding of these mechanisms will be useful to design therapies contributing to restore the full NK function.
Collapse
Affiliation(s)
- Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Fabio Caliendo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, CEBR, University of Genoa, Genoa, Italy
| |
Collapse
|
34
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
35
|
Hutzen B, Paudel SN, Naeimi Kararoudi M, Cassady KA, Lee DA, Cripe TP. Immunotherapies for pediatric cancer: current landscape and future perspectives. Cancer Metastasis Rev 2019; 38:573-594. [PMID: 31828566 PMCID: PMC6994452 DOI: 10.1007/s10555-019-09819-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The advent of immunotherapy has revolutionized how we manage and treat cancer. While the majority of immunotherapy-related studies performed to date have focused on adult malignancies, a handful of these therapies have also recently found success within the pediatric space. In this review, we examine the immunotherapeutic agents that have achieved the approval of the US Food and Drug Administration for treating childhood cancers, highlighting their development, mechanisms of action, and the lessons learned from the seminal clinical trials that ultimately led to their approval. We also shine a spotlight on several emerging immunotherapeutic modalities that we believe are poised to have a positive impact on the treatment of pediatric malignancies in the near future.
Collapse
Affiliation(s)
- Brian Hutzen
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Siddhi Nath Paudel
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Kevin A Cassady
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Dean A Lee
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Timothy P Cripe
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA.
- Ohio State University Wexner College of Medicine, Columbus, OH, USA.
| |
Collapse
|
36
|
Vranjkovic A, Deonarine F, Kaka S, Angel JB, Cooper CL, Crawley AM. Direct-Acting Antiviral Treatment of HCV Infection Does Not Resolve the Dysfunction of Circulating CD8 + T-Cells in Advanced Liver Disease. Front Immunol 2019; 10:1926. [PMID: 31456810 PMCID: PMC6700371 DOI: 10.3389/fimmu.2019.01926] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection disrupts immune functions, including that of cytotoxic CD8+ T-cells which are important mediators of immune response. While HCV cure aims to eliminate long term sequelae of infection, whether direct-acting antiviral (DAA) treatment results in immune reconstitution remains unclear. We and others have reported generalized CD8+ T-cell dysfunction in chronic HCV infection and our research suggests that the degree of liver damage is a factor in this process. Our recent research indicates that liver fibrosis is not readily reversed after DAA-mediated clearance of chronic HCV infection. We therefore examined the function of circulating CD8+ T-cell subsets in chronic HCV infection in the context of liver fibrosis severity, determined by ultrasound elastography and Metavir F-score system. We observed progressive shifts in CD8+ T-cell subset distribution in HCV-infected individuals with advanced liver fibrosis (F4) compared to minimal fibrosis (F0-1) or uninfected controls, and this remained unchanged after viral cure. Impaired CD8+ T-cell function was observed as a reduced proportion of CD107+ and perforin+ late effector memory cells in HCV+(F4) and HCV+(F0-1) individuals, respectively. In HCV+(F4) individuals, nearly all CD8+ T-cell subsets had an elevated proportion of perforin+ cells while naïve cells had increased proportions of IFN-γ+ and CD107+ cells. These exaggerated CD8+ T-cell activities were not resolved when evaluated 24 weeks after completion of DAA therapy and HCV clearance. This was further supported by sustained, high levels of cell proliferation and cytolytic activity. Furthermore, DAA therapy had no effect on elevated concentrations of systemic inflammatory cytokines and decreased levels of inhibitory TGF-β in the plasma of HCV+(F4) individuals, suggesting HCV infection and advanced liver disease result in a long-lasting immune activating microenvironment. These data demonstrate that in chronic HCV infection, liver fibrosis severity is associated with generalized hyperfunctional CD8+ T-cells, particularly with perforin production and cytotoxicity, and this persists after viral clearance. Whether DAA therapy will eliminate other related long-term sequelae in HCV+(F4) individuals remains an important research question.
Collapse
Affiliation(s)
- Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Felicia Deonarine
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Shaima Kaka
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada
| | - Curtis L Cooper
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Angela M Crawley
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
37
|
Harmon C, Jameson G, Almuaili D, Houlihan DD, Hoti E, Geoghegan J, Robinson MW, O'Farrelly C. Liver-Derived TGF-β Maintains the Eomes hiTbet lo Phenotype of Liver Resident Natural Killer Cells. Front Immunol 2019; 10:1502. [PMID: 31333651 PMCID: PMC6616151 DOI: 10.3389/fimmu.2019.01502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
The adult human liver hosts a complex repertoire of liver resident and transient natural killer (NK) cell populations with diverse phenotypes and functions. Liver resident NK cells are CD56bright NK cells defined by a unique expression profile of transcription factors and cell surface markers (EomeshiTbetloTIGIT+CD69+CXCR6+CD49e−). Despite extensive characterization of the phenotype of liver resident NK cells, it remains unclear how factors within the liver microenvironment induce and maintain this unique phenotype. In this study, we have explored the factors regulating the phenotype of liver resident NK cells. Isolation of healthy liver resident NK cells from donor liver perfusate and in vitro culture results in the gradual loss of the characteristic Tbetlo phenotype, with the cells increasing Tbet expression significantly at day 7. This phenotypic loss could be halted through the dose-dependent addition of liver conditioned media (LCM), generated from the ex vivo culture of liver biopsies from healthy organ donors. TGF-β, but not IL-10, replicated the Tbet suppressive effects of LCM in both liver resident and peripheral blood NK cells. Furthermore, blocking TGF-β receptor signaling using the inhibitor SB431542, reversed the effect of LCM treatment on liver resident NK cells, causing the loss of tissue resident Eomeshi Tbetlo phenotype. Our findings identify liver-derived TGF-β as an important component of the liver microenvironment, which acts to regulate and maintain the phenotype of liver resident NK cells.
Collapse
Affiliation(s)
- Cathal Harmon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Dalal Almuaili
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Emir Hoti
- Liver Unit, St. Vincent's University Hospital, Dublin, Ireland
| | | | - Mark W Robinson
- School of Medicine, Trinity College Dublin, Dublin, Ireland.,Department of Biology, Maynooth University, Maynooth, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Sabry M, Zubiak A, Hood SP, Simmonds P, Arellano-Ballestero H, Cournoyer E, Mashar M, Pockley AG, Lowdell MW. Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 2019; 14:e0218674. [PMID: 31242243 PMCID: PMC6594622 DOI: 10.1371/journal.pone.0218674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or “priming,” of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /β and IL-1β/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of Haematology, University College London, London, United Kingdom
| | - Agnieszka Zubiak
- Department of Haematology, University College London, London, United Kingdom
| | - Simon P. Hood
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Simmonds
- Department of Haematology, University College London, London, United Kingdom
| | | | - Eily Cournoyer
- Department of Haematology, University College London, London, United Kingdom
| | - Meghavi Mashar
- Department of Haematology, University College London, London, United Kingdom
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark W. Lowdell
- Department of Haematology, University College London, London, United Kingdom
- InmuneBio Inc., La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|