1
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Wu D, Sun Q, Tang H, Xiao H, Luo J, Ouyang L, Sun Q. Acquired resistance to tyrosine kinase targeted therapy: mechanism and tackling strategies. Drug Resist Updat 2025; 78:101176. [PMID: 39642660 DOI: 10.1016/j.drup.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Over the past two decades, tyrosine kinase inhibitors (TKIs) have rapidly emerged as pivotal targeted agents, offering promising therapeutic prospects for patients. However, as the cornerstone of targeted therapies, an increasing number of TKIs have been found to develop acquired resistance during treatment, making the challenge of overcoming this resistance a primary focus of current research. This review comprehensively examines the evolution of TKIs from multiple perspectives, with particular emphasis on the mechanisms underlying acquired resistance, innovative drug design strategies, inherent challenges, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxiang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Rijmers J, Sparidans RW, Acda M, Loos NHC, Epeslidou E, Bui V, Lebre MC, Tibben M, Beijnen JH, Schinkel AH. Brain Exposure to the Macrocyclic ALK Inhibitor Zotizalkib is Restricted by ABCB1, and Its Plasma Disposition is Affected by Mouse Carboxylesterase 1c. Mol Pharm 2024; 21:5159-5170. [PMID: 39312722 DOI: 10.1021/acs.molpharmaceut.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Zotizalkib (TPX-0131), a fourth-generation macrocyclic anaplastic lymphoma kinase (ALK) inhibitor, is designed to overcome resistance due to secondary ALK mutations in non-small cell lung cancer (NSCLC). We here evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux transporters, OATP1 influx transporters and the metabolizing enzymes CES1 and CYP3A in plasma and tissue disposition of zotizalkib after oral administration in relevant mouse models. Zotizalkib was efficiently transported by hABCB1 in vitro. In vivo, a significant ∼9-fold higher brain-to-plasma ratio was observed in Abcb1a/b-/- and Abcb1a/b;Abcg2-/- compared to wild-type mice. No change in brain disposition was observed in Abcg2-/- mice, suggesting that mAbcb1a/b markedly restricts the brain accumulation of zotizalkib. ABCB1-mediated efflux of zotizalkib was completely inhibited by elacridar, a dual ABCB1/ABCG2 inhibitor, increasing brain exposure without any signs of acute CNS-related toxicities. In Oatp1a/b-/- mice, no marked changes in plasma exposure or tissue-to-plasma ratios were observed, indicating that zotizalkib is not a substantial in vivo substrate for mOatp1a/b. Zotizalkib may further be metabolized by CYP3A4 but only noticeably at low plasma concentrations. In Ces1-/- mice, a 2.5-fold lower plasma exposure was seen compared to wild-type, without alterations in tissue distribution. This suggests increased plasma retention of zotizalkib by binding to the abundant mouse plasma Ces1c. Notably, the hepatic expression of human CES1 did not affect zotizalkib plasma exposure or tissue distribution. The obtained pharmacokinetic insights may be useful for the further development and optimization of therapeutic efficacy and safety of zotizalkib and related compact macrocyclic ALK inhibitors.
Collapse
MESH Headings
- Animals
- Mice
- Brain/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- Anaplastic Lymphoma Kinase/antagonists & inhibitors
- Anaplastic Lymphoma Kinase/metabolism
- Anaplastic Lymphoma Kinase/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Mice, Knockout
- Male
- Cytochrome P-450 CYP3A/metabolism
- Cytochrome P-450 CYP3A/genetics
- Humans
- Tissue Distribution
- Carboxylic Ester Hydrolases/metabolism
- Carboxylic Ester Hydrolases/genetics
- Carboxylic Ester Hydrolases/antagonists & inhibitors
- Carboxylesterase/metabolism
- Carboxylesterase/antagonists & inhibitors
- Carboxylesterase/genetics
- Administration, Oral
- Organic Anion Transport Protein 1/metabolism
- Organic Anion Transport Protein 1/genetics
- Organic Anion Transport Protein 1/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
Collapse
Affiliation(s)
- Jamie Rijmers
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Rolf W Sparidans
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Manon Acda
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Nancy H C Loos
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Emmanouela Epeslidou
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Viët Bui
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Matthijs Tibben
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht 3584 CS, The Netherlands
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
4
|
Suaiti LH, Faquin WC, Dias-Santagata D, Deschler DG, Juliano AF, Sadow PM, Alzumaili BA. Malignant Epithelioid Mesenchymal Neoplasm with FUS::CREM Gene Fusion Arising in the Tongue: A Case Report Detailing Clinicopathological, Imaging, and Molecular Features. Head Neck Pathol 2024; 18:70. [PMID: 39102073 DOI: 10.1007/s12105-024-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
FUS::CREM fusion is a distinct primary driver in rare neoplasms of the head and neck and other anatomic sites. Herein, we describe the clinicopathological, imaging, and molecular features of a malignant epithelioid mesenchymal neoplasm harboring FUS::CREM fusion, arising in the tongue of a 46-year-old male. Clinically, the patient presented with a left upper neck mass. Imaging revealed a 4.0 cm mass at the left base of tongue. Histologically, the tumor consisted of sheets of loosely cohesive, small round to ovoid cells with moderate cytoplasm, small nuclei with coarse chromatin, frequent nuclear pseudoinclusions, and dense peripheral lymphoplasmacytic and histiocytic infiltrates. Malignant features, including tumor necrosis, perineural invasion, and increased mitotic activity were observed; however, lymphovascular invasion was absent with no evidence metastatic disease in the examined lymph nodes. A comprehensive panel of immunohistochemical stains showed positivity for synaptophysin and ALK, with negative results for all other markers. RNA-based next-generation sequencing using anchored multiplex polymerase chain reaction (PCR) was performed and detected FUS::CREM fusion gene. The patient was treated by excision and postsurgical chemoradiation with no evidence of recurrence after four months. Additional cases supported by comprehensive clinical data collected over an extended period are necessary to precisely characterize epithelioid mesenchymal neoplasms harboring FUS::CREM fusion in the head and neck.
Collapse
Affiliation(s)
- Lubna H Suaiti
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel G Deschler
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Amy F Juliano
- Department of Radiology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bayan A Alzumaili
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Maione P, Palma V, Pucillo G, Gridelli C. Targeting ALK receptors in non-small cell lung cancer: what is the road ahead? Expert Opin Ther Targets 2024; 28:659-668. [PMID: 39160676 DOI: 10.1080/14728222.2024.2389192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) gene-rearrangements are identified in about 3-5% of non-small cell lung cancers (NSCLC), and ALK-rearranged NSCLC is to be considered an oncogene-addicted cancer with peculiar clinical characteristics. AREAS COVERED Several ALK inhibitors have been studied and approved for use in the treatment of advanced ALK-rearranged NSCLC with reported superiority in terms of efficacy and safety profile compared with chemotherapy. Second- and third-generation ALK inhibitors (alectinib, brigatinib, and lorlatinib) offer to NSCLC patients a clinically meaningful prolongment of survival with a very good quality of life profile. However, resistances to these agents always occur, with less satisfying options for second-line treatments. Direct comparisons among these agents are not available, and the choice among brigatinib, alectinib, and lorlatinib as first-line treatment remains challenging. Very recently, alectinib has been demonstrated to improve efficacy outcomes compared with chemotherapy also in resected stage IB-IIIA ALK-rearranged NSCLC, extending the clinical benefit offered by ALK inhibitors also to the adjuvant setting. EXPERT OPINION Future development of ALK inhibitors in NSCLC treatment includes the search for optimal management of acquired resistance to first-line treatments and the extension of use of ALK inhibitors also to neoadjuvant and preferably to perioperative setting.
Collapse
Affiliation(s)
- Paolo Maione
- Division of Medical Oncology, S.G. Moscati Hospital, Avellino, Italy
| | - Valentina Palma
- Division of Medical Oncology of S.G. Moscati Hospital,Università degli Studi della Campania Luigi Vanvitelli, Avellino, Italy
| | - Giuseppina Pucillo
- Division of Medical Oncology of S.G. Moscati Hospital,Università degli Studi della Campania Luigi Vanvitelli, Avellino, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, S.G. Moscati Hospital, Avellino, Italy
| |
Collapse
|
6
|
Brandea AI, Afkhami M, Klein MJ, Bell D. Osteoblastoma of the thumb with a novel PRSS44::ALK fusion and literature review of osteoblastoma of hands and feet bones. Genes Chromosomes Cancer 2024; 63:e23241. [PMID: 38738966 DOI: 10.1002/gcc.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/14/2024] [Accepted: 04/14/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblastomas (OBs) are benign neoplasms constituting approximately 1% of primary bone tumors with a predilection for the spine and sacrum. We describe an OB of the proximal phalanx of the left thumb in a 38-year-old female. MRI of left hand demonstrated a 29-mm mildly expansile enhancing lesion involving the entire proximal phalanx of the first digit. Histology displayed a bone-forming tumor consisting of trabeculae of remodeled woven bone framed by plump osteoblasts in a vascularized background. Next-generation sequencing analysis identified a PRSS44::ALK fusion gene.
Collapse
Affiliation(s)
| | - Michelle Afkhami
- Division of Anatomic Pathology, City of Hope Cancer Center, Duarte, California, USA
- Division of Molecular Diagnostics and biomarkers, Laboratory Medicine, City of Hope Cancer Center, Duarte, California, USA
| | - Michael J Klein
- Department of Pathology, Hospital for Special Surgery, New York City, New York, USA
| | - Diana Bell
- Division of Anatomic Pathology, City of Hope Cancer Center, Duarte, California, USA
| |
Collapse
|
7
|
Yokoo H, Tsuji G, Inoue T, Naito M, Demizu Y, Ohoka N. Expansion of targeted degradation by Gilteritinib-Warheaded PROTACs to ALK fusion proteins. Bioorg Chem 2024; 145:107204. [PMID: 38377822 DOI: 10.1016/j.bioorg.2024.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) induce the ubiquitination and subsequent proteasomal degradation of targeted proteins. Numerous PROTACs have emerged as promising drug candidates for various disease-related proteins. This study investigates PROTACs targeted to degrade anaplastic lymphoma kinase (ALK) fusion proteins, which are implicated in diseases such as anaplastic large cell lymphoma and non-small cell lung cancer. We recently reported the development of a gilteritinib-warheaded PROTAC to target and degrade the Fms-like tyrosine kinase 3 (FLT3) protein. Gilteritinib is a tyrosine kinase inhibitor that targets FLT3, and recent studies have revealed that it also functions as an ALK inhibitor. We conducted a structure-activity relationship (SAR) study and expanded the range of target proteins for gilteritinib-warheaded PROTACs to include echinoderm microtubule-associated protein-like 4 (EML4)-ALK and nucleophosmin (NPM)-ALK, in addition to FLT3. Our SAR study utilized three types of ligands for E3 ligase- inhibitor of apoptosis protein (IAP), cereblon (CRBN), and von Hippel-Lindau (VHL)- in the PROTAC designs and we observed varied efficacy in the degradation of target proteins. The CRBN-based PROTAC effectively reduced the protein expression of FLT3, EML4-ALK, and NPM-ALK. The IAP-based PROTAC reduced expression of both FLT3 and EML4-ALK proteins but not that of NPM-ALK, while the VHL-based PROTAC was ineffective against all target proteins. Several ALK-targeted PROTACs have already been developed using CRBN or VHL as E3 ligase, but this is the first report of an IAP-based ALK degrader. The length of the linker structure utilized in PROTAC also had a significant effect on their efficacy and activity. PROTACs formed with shorter linkers demonstrated an enhanced degradation activity to target proteins compared with those formed with longer linkers. These findings provide valuable insight for the development of effective PROTACs to target and degrade ALK fusion proteins.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Genichiro Tsuji
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Takao Inoue
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 110-0033, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
| | - Nobumichi Ohoka
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| |
Collapse
|
8
|
Kim M, Ju HM, Song JY, Sampson J, Bayliss R, Choi J. HER3 overexpression: a predictive marker for poor prognosis in advanced ALK-positive non-small cell lung cancer treated with ALK inhibitors. Transl Lung Cancer Res 2024; 13:321-333. [PMID: 38496685 PMCID: PMC10938092 DOI: 10.21037/tlcr-23-804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
Background Anaplastic lymphoma kinase (ALK)-targeted tyrosine kinase inhibitors (TKIs) improve patient survival; however, some patients develop ALK-TKI resistance with unidentified mechanisms. We investigated ErbB family and c-MET expression in patients with ALK-positive non-small cell lung cancer (NSCLC) to understand their roles in the ALK-TKI response. Methods We studied 72 patients with advanced ALK-positive NSCLC with EML4-ALK fusion variant subtyping and immunostaining for c-MET, EGFR, HER2, and HER3 on tissue specimens both pre- (primary) and post-treatment (secondary) with ALK-TKI. We investigated the association of their expression with survival outcomes and assessed the effectiveness of combining ALK and EGFR inhibitors in ALK-positive NSCLC cell lines stimulated with the HER3-specific ligand HRG1. Results High expression of c-MET, EGFR, HER2, and HER3 was observed in 4.9%, 18.0%, 1.6%, and 25.8% of primary tumors, respectively, and 18.5%, 37.0%, 10.7%, and 35.7% of secondary tumors, respectively. HER3 overexpression in primary tumors showed inferior survival (P=0.132). In the subgroup with EML4-ALK variant 1/2 (V1/V2), HER3 overexpression was significantly associated with inferior survival in both primary and secondary tumors (P=0.022 and P=0.004, respectively). Combination treatment with lorlatinib and erlotinib significantly reduced HRG1-induced activation of RTK signaling in ALK-positive NSCLC cells. Conclusions HER3 overexpression has potential as a prognostic marker in ALK-positive NSCLCs, including ALK-TKI naïve and treated cases, especially those with EML4-ALK V1/V2. Assessing HER3 expression may be crucial for treatment planning and outcome prediction in these patients.
Collapse
Affiliation(s)
- Meejeong Kim
- Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-min Ju
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-young Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Josephina Sampson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the Potential of ALK-Targeted Therapies in Non-Small Cell Lung Cancer: Comprehensive Insights and Future Directions. Biomedicines 2024; 12:297. [PMID: 38397899 PMCID: PMC10887432 DOI: 10.3390/biomedicines12020297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objective: This review comprehensively explores the intricate landscape of anaplastic lymphoma kinase (ALK), focusing specifically on its pivotal role in non-small cell lung cancer (NSCLC). Tracing ALK's discovery, from its fusion with nucleolar phosphoprotein (NPM)-1 in anaplastic large cell non-Hodgkin's lymphoma (ALCL) in 1994, the review elucidates the subsequent impact of ALK gene alterations in various malignancies, including inflammatory myofibroblastoma and NSCLC. Approximately 3-5% of NSCLC patients exhibit complex ALK rearrangements, leading to the approval of six ALK-tyrosine kinase inhibitors (TKIs) by 2022, revolutionizing the treatment landscape for advanced metastatic ALK + NSCLC. Notably, second-generation TKIs such as alectinib, ceritinib, and brigatinib have emerged to address resistance issues initially associated with the pioneer ALK-TKI, crizotinib. Methods: To ensure comprehensiveness, we extensively reviewed clinical trials on ALK inhibitors for NSCLC by 2023. Additionally, we systematically searched PubMed, prioritizing studies where the terms "ALK" AND "non-small cell lung cancer" AND/OR "NSCLC" featured prominently in the titles. This approach aimed to encompass a spectrum of relevant research studies, ensuring our review incorporates the latest and most pertinent information on innovative and alternative therapeutics for ALK + NSCLC. Key Content and Findings: Beyond exploring the intricate details of ALK structure and signaling, the review explores the convergence of ALK-targeted therapy and immunotherapy, investigating the potential of immune checkpoint inhibitors in ALK-altered NSCLC tumors. Despite encouraging preclinical data, challenges observed in trials assessing combinations such as nivolumab-crizotinib, mainly due to severe hepatic toxicity, emphasize the necessity for cautious exploration of these novel approaches. Additionally, the review explores innovative directions such as ALK molecular diagnostics, ALK vaccines, and biosensors, shedding light on their promising potential within ALK-driven cancers. Conclusions: This comprehensive analysis covers molecular mechanisms, therapeutic strategies, and immune interactions associated with ALK-rearranged NSCLC. As a pivotal resource, the review guides future research and therapeutic interventions in ALK-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
| | - Ghazaal Roozitalab
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Fatemeh Golandam
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Department of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948974, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Parham Jabbarzadeh Kaboli
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 407, Taiwan
| |
Collapse
|
10
|
Kawasoe K, Watanabe T, Yoshida-Sakai N, Yamamoto Y, Kurahashi Y, Kidoguchi K, Ureshino H, Kamachi K, Fukuda-Kurahashi Y, Kimura S. A Combination of Alectinib and DNA-Demethylating Agents Synergistically Inhibits Anaplastic-Lymphoma-Kinase-Positive Anaplastic Large-Cell Lymphoma Cell Proliferation. Cancers (Basel) 2023; 15:5089. [PMID: 37894456 PMCID: PMC10605931 DOI: 10.3390/cancers15205089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The recent evolution of molecular targeted therapy has improved clinical outcomes in several human malignancies. The translocation of anaplastic lymphoma kinase (ALK) was originally identified in anaplastic large-cell lymphoma (ALCL) and subsequently in non-small cell lung carcinoma (NSCLC). Since ALK fusion gene products act as a driver of carcinogenesis in both ALCL and NSCLC, several ALK tyrosine kinase inhibitors (TKIs) have been developed. Crizotinib and alectinib are first- and second-generation ALK TKIs, respectively, approved for the treatment of ALK-positive ALCL (ALK+ ALCL) and ALK+ NSCLC. Although most ALK+ NSCLC patients respond to crizotinib and alectinib, they generally relapse after several years of treatment. We previously found that DNA-demethylating agents enhanced the efficacy of ABL TKIs in chronic myeloid leukemia cells. Moreover, aberrant DNA methylation has also been observed in ALCL cells. Thus, to improve the clinical outcomes of ALK+ ALCL therapy, we investigated the synergistic efficacy of the combination of alectinib and the DNA-demethylating agent azacytidine, decitabine, or OR-2100 (an orally bioavailable decitabine derivative). As expected, the combination of alectinib and DNA-demethylating agents synergistically suppressed ALK+ ALCL cell proliferation, concomitant with DNA hypomethylation and a reduction in STAT3 (a downstream target of ALK fusion proteins) phosphorylation. The combination of alectinib and OR-2100 markedly altered gene expression in ALCL cells, including that of genes implicated in apoptotic signaling, which possibly contributed to the synergistic anti-ALCL effects of this drug combination. Therefore, alectinib and OR-2100 combination therapy has the potential to improve the outcomes of patients with ALK+ ALCL.
Collapse
Affiliation(s)
- Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
11
|
Li X, Zheng J, Li X, Chen Y, Liu K, Li F, Lu Z. Case Report: Ensartinib for gastric epithelioid inflammatory myofibrosarcoma with STRN-ALK fusion. Front Oncol 2023; 13:1252221. [PMID: 37869075 PMCID: PMC10585149 DOI: 10.3389/fonc.2023.1252221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is a highly aggressive malignant subtype of inflammatory myofibroblastoma (IMT) associated with poor prognosis. IMT can occur in various parts of the body, most frequently in the lungs, followed by the mesentery, omentum, retroperitoneum, and pelvis, among other areas; however, it is exceptionally rare in the stomach. Anaplastic lymphoma kinase (ALK) is a critical driver of lung cancer development and is currently the "gold standard" target for non-small cell lung cancer treatment. However, there are few reports on the use of ALK inhibitors for EIMS, necessitating further investigation. A male patient with postoperative inflammatory myofibroblastic sarcoma of the stomach received postoperative chemotherapy and had a stable outcome. However, a repeat CT scan performed 11 months later revealed disease progression. The patient later underwent immunohistochemistry testing that indicated ALK positivity, and next-generation sequencing revealed STRN-ALK fusion. Ensartinib 225 mg qd was administered as recommended, and the patient experienced only mild pruritus and no adverse effects such as rash. Eight months after CT follow-up, the patient's subseptal soft tissue nodules had decreased, and the outcome was assessed as a partial response. The findings of this case report introduce a novel strategy for treating ALK-positive EIMS that utilizes ensartinib, a drug with previously demonstrated success in the treatment of ALK-positive cancer.
Collapse
Affiliation(s)
- XiaoQing Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - JingFan Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - XinYi Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - YuYu Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Kang Liu
- Department of Oncology, Affiliated Hospital Of Weifang Medical University, Weifang, Shandong, China
| | - FangChao Li
- Department of Oncology, Affiliated Hospital Of Weifang Medical University, Weifang, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital Of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
12
|
Shreenivas A, Janku F, Gouda MA, Chen HZ, George B, Kato S, Kurzrock R. ALK fusions in the pan-cancer setting: another tumor-agnostic target? NPJ Precis Oncol 2023; 7:101. [PMID: 37773318 PMCID: PMC10542332 DOI: 10.1038/s41698-023-00449-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations (activating mutations, amplifications, and fusions/rearrangements) occur in ~3.3% of cancers. ALK fusions/rearrangements are discerned in >50% of inflammatory myofibroblastic tumors (IMTs) and anaplastic large cell lymphomas (ALCLs), but only in ~0.2% of other cancers outside of non-small cell lung cancer (NSCLC), a rate that may be below the viability threshold of even large-scale treatment trials. Five ALK inhibitors -alectinib, brigatinib, ceritinb, crizotinib, and lorlatinib-are FDA approved for ALK-aberrant NSCLCs, and crizotinib is also approved for ALK-aberrant IMTs and ALCL, including in children. Herein, we review the pharmacologic tractability of ALK alterations, focusing beyond NSCLC. Importantly, the hallmark of approved indications is the presence of ALK fusions/rearrangements, and response rates of ~50-85%. Moreover, there are numerous reports of ALK inhibitor activity in multiple solid and hematologic tumors (e.g., histiocytosis, leiomyosarcoma, lymphoma, myeloma, and colorectal, neuroendocrine, ovarian, pancreatic, renal, and thyroid cancer) bearing ALK fusions/rearrangements. Many reports used crizotinib or alectinib, but each of the approved ALK inhibitors have shown activity. ALK inhibitor activity is also seen in neuroblastoma, which bear ALK mutations (rather than fusions/rearrangements), but response rates are lower (~10-20%). Current data suggests that ALK inhibitors have tissue-agnostic activity in neoplasms bearing ALK fusions/rearrangements.
Collapse
Affiliation(s)
- Aditya Shreenivas
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
| | | | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Zi Chen
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Ben George
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin (MCW) Cancer Center, Milwaukee, WI, USA.
- University of Nebraska, Omaha, NE, USA.
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue, France.
| |
Collapse
|
13
|
Xu Y, Liu Y, Ge Y, Li H, Zhang Y, Wang L. Drug resistance mechanism and reversal strategy in lung cancer immunotherapy. Front Pharmacol 2023; 14:1230824. [PMID: 37795038 PMCID: PMC10546211 DOI: 10.3389/fphar.2023.1230824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Among all malignant tumors, lung cancer has the highest mortality and morbidity rates. The non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the most common histological subtypes. Although there are a number of internationally recognized lung cancer therapy regimens, their therapeutic effects remain inadequate. The outlook for individuals with lung carcinoma has ameliorated partly thanks to the intensive study of the tumor microenvironment and immune checkpoint inhibitors. Numerous cancers have been effectively treated with immunotherapy, which has had positive therapeutic results. Global clinical trials have validated that PD-1/PD-L1 inhibitors are effective and safe for treating lung cancer either independently or in combination, and they are gradually being recommended as systemic treatment medications by numerous guidelines. However, the immunotherapy resistance restricts the immunotherapy efficacy due to the formation of tumor immunosuppressive microenvironment and tumor mutations, and immunotherapy is only effective for a small percentage of lung cancer patients. To summarize, while tumor immunotherapy is benefiting an increasing number of lung cancer patients, most of them still develop natural or acquired resistance during immunotherapy. Consequently, a crucial and urgent topic is understanding and tackling drug resistance triggered by immunotherapy in lung cancer treatment. This review will outline the presently recognized mechanisms of immunotherapy resistance and reversal strategies in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yi Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Balbisi M, Sugár S, Schlosser G, Szeitz B, Fillinger J, Moldvay J, Drahos L, Szász AM, Tóth G, Turiák L. Inter- and intratumoral proteomics and glycosaminoglycan characterization of ALK rearranged lung adenocarcinoma tissues: a pilot study. Sci Rep 2023; 13:6268. [PMID: 37069213 PMCID: PMC10110559 DOI: 10.1038/s41598-023-33435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Lung cancer is one of the most common types of cancer with limited therapeutic options, therefore a detailed understanding of the underlying molecular changes is of utmost importance. In this pilot study, we investigated the proteomic and glycosaminoglycan (GAG) profile of ALK rearranged lung tumor tissue regions based on the morphological classification, mucin and stromal content. Principal component analysis and hierarchical clustering revealed that both the proteomic and GAG-omic profiles are highly dependent on mucin content and to a lesser extent on morphology. We found that differentially expressed proteins between morphologically different tumor types are primarily involved in the regulation of protein synthesis, whereas those between adjacent normal and different tumor regions take part in several other biological processes (e.g. extracellular matrix organization, oxidation-reduction processes, protein folding) as well. The total amount and the sulfation profile of heparan sulfate and chondroitin sulfate showed small differences based on morphology and larger differences based on mucin content of the tumor, while an increase was observed in both the total amount and the average rate of sulfation in tumors compared to adjacent normal regions.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös Loránd University, Pázmány Péter sétány 1, Budapest, 1117, Hungary
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - János Fillinger
- Department of Pathology, National Korányi Institute of Pulmonology, Korányi Frigyes út 1., Budapest, 1121, Hungary
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Korányi Frigyes út 1., Budapest, 1121, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary
| | - A Marcell Szász
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary.
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary.
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary.
| |
Collapse
|
16
|
Schneider JL, Lin JJ, Shaw AT. ALK-positive lung cancer: a moving target. NATURE CANCER 2023; 4:330-343. [PMID: 36797503 PMCID: PMC10754274 DOI: 10.1038/s43018-023-00515-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a potent oncogenic driver in lung cancer. ALK tyrosine kinase inhibitors yield significant benefit in patients with ALK fusion-positive (ALK+) lung cancers; yet the durability of response is limited by drug resistance. Elucidation of on-target resistance mechanisms has facilitated the development of next-generation ALK inhibitors, but overcoming ALK-independent resistance mechanisms remains a challenge. In this Review, we discuss the molecular underpinnings of acquired resistance to ALK-directed therapy and highlight new treatment approaches aimed at inducing long-term remission in ALK+ disease.
Collapse
Affiliation(s)
- Jaime L Schneider
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA.
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
17
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy of ALK Inhibitors for Treatment-Naïve ALK-Positive Advanced Non-Small Cell Lung Cancer with Central Nervous System Metastasis: A Network Meta-Analysis. Int J Mol Sci 2023; 24:2242. [PMID: 36768562 PMCID: PMC9917367 DOI: 10.3390/ijms24032242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Central nervous system (CNS) metastases and acquired resistance complicate the treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC). Thus, this review aimed to provide a comprehensive overview of brain metastasis, acquired resistance, and prospects for overcoming these challenges. A network meta-analysis of relevant phase III randomized controlled trials was performed to compare the efficacies of multiple ALK inhibitors by drug and generation in overall patients with ALK-p untreated advanced NSCLC and a subgroup of patients with CNS metastases. The primary endpoint was progression-free survival (PFS). Generation-specific comparison results showed that third-generation ALK inhibitors were significantly more effective than second-generation ALK inhibitors in prolonging the PFS of the subgroup of patients with CNS metastases. Drug-specific comparison results demonstrated that lorlatinib was the most effective in prolonging PFS, followed by brigatinib, alectinib, ensartinib, ceritinib, crizotinib, and chemotherapy. While lorlatinib was superior to brigatinib for PFS in the overall patient population, no significant difference between the two was found in the subgroup of patients with CNS metastases. These results can serve as a foundation for basic, clinical, and translational research and guide clinical oncologists in developing individualized treatment strategies for patients with ALK-p, ALK inhibitor-naive advanced NSCLC.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Advanced Cancer Translational Research Institute, Hatanodai Campus, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akihiko Tanaka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| |
Collapse
|
18
|
Wang Z, Han Y, Tao H, Xu M, Liu Z, Zhu J, Li W, Ma J, Liu Z, Wang W, Ma T. Molecular characterization of genomic breakpoints of ALK rearrangements in non-small cell lung cancer. Mol Oncol 2022; 17:765-778. [PMID: 36423218 PMCID: PMC10158786 DOI: 10.1002/1878-0261.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
ALK rearrangement is called the 'diamond mutation' in non-small cell lung cancer (NSCLC). Accurately identifying patients who are candidates for ALK inhibitors is a key step in making clinical treatment decisions. In this study, a total of 783 ALK rearrangement-positive NSCLC cases were identified by DNA-based next-generation sequencing (NGS), including 731 patients with EML4-ALK and 52 patients with other ALK rearrangements. Diverse genomic breakpoints of ALK rearrangements were identified. Approximately 94.4% (739/783) of the cases carried ALK rearrangements with genomic breakpoints in the introns of ALK and its partner genes, and 2.8% (21/739) of these cases resulted in frameshift transcripts of ALK. Meanwhile, 5.6% (44/783) of the ALK rearrangement-positive cases had breakpoints in the exons that would be expected to result in abnormal transcripts. RNA-based NGS was performed to analyse the aberrant fusions at the transcript level. Some of these rearranged DNAs were not transcribed, and the others were fixed by some mechanisms so that the fusion kinase proteins could be expressed. Altogether, these findings emphasize that, when using DNA-based NGS, functional RNA fusions should be confirmed in cases with uncommon/frameshift rearrangement by RNA-based assays.
Collapse
Affiliation(s)
- Zizong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, China
| | - Yushuai Han
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Mengxiang Xu
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Jianhua Zhu
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Wei Li
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Zhifang Liu
- Department of Clinical Pharmacology, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China
| | - Weiran Wang
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Tonghui Ma
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| |
Collapse
|
19
|
Therapeutic Advances of Rare ALK Fusions in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:7816-7831. [PMID: 36290895 PMCID: PMC9601201 DOI: 10.3390/curroncol29100618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 01/11/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and is the leading cause of cancer-related death. Despite advances in chemotherapy and immunotherapy, the prognosis for advanced patients remains poor. The discovery of oncogenic driver mutations, such as anaplastic lymphoma kinase (ALK) mutations, means that a subset of patients has opportunities for targeted therapy. With the improvement of genetic testing coverage, more and more ALK fusion subtypes and ALK partners have been discovered, and more than 90 rare ALK fusion subtypes have been found in NSCLC. However, unlike the common fusion, echinoderm microtubule-associated protein-like 4 (EML4)-ALK, some rare ALK fusions such as striatin (STRN)-ALK and huntingtin interacting protein 1 (HIP1)-ALK, etc., the large-scale clinical data related to its efficacy are still immature. The clinical application of ALK-tyrosine kinase inhibitors (ALK-TKIs) mainly depends on the positivity of the ALK gene, regardless of the molecular characteristics of the fusion partner. Recent clinical studies in the ALK-positive NSCLC population have demonstrated differences in progression-free survival (PFS) among patients based on different ALK fusion subtypes. This article will introduce the biological characteristics of ALK fusion kinase and common detection methods of ALK fusion and focus on summarizing the differential responses of several rare ALK fusions to ALK-TKIs, and propose corresponding treatment strategies, so as to better guide the application of ALK-TKIs in rare ALK fusion population.
Collapse
|
20
|
Garces de Los Fayos Alonso I, Zujo L, Wiest I, Kodajova P, Timelthaler G, Edtmayer S, Zrimšek M, Kollmann S, Giordano C, Kothmayer M, Neubauer HA, Dey S, Schlederer M, Schmalzbauer BS, Limberger T, Probst C, Pusch O, Högler S, Tangermann S, Merkel O, Schiefer AI, Kornauth C, Prutsch N, Zimmerman M, Abraham B, Anagnostopoulos J, Quintanilla-Martinez L, Mathas S, Wolf P, Stoiber D, Staber PB, Egger G, Klapper W, Woessmann W, Look TA, Gunning P, Turner SD, Moriggl R, Lagger S, Kenner L. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol Cancer 2022; 21:172. [PMID: 36045346 PMCID: PMC9434917 DOI: 10.1186/s12943-022-01640-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive. METHODS AND RESULTS In a transgenic mouse model that mimics PDGFRβ-driven human ALCL in vivo, we identify PDGFRβ as a driver of aggressive tumor growth. Mechanistically, PDGFRβ induces the pro-survival factor Bcl-xL and the growth-enhancing cytokine IL-10 via STAT5 activation. CRISPR/Cas9 deletion of both STAT5 gene products, STAT5A and STAT5B, results in the significant impairment of cell viability compared to deletion of STAT5A, STAT5B or STAT3 alone. Moreover, combined blockade of STAT3/5 activity with a selective SH2 domain inhibitor, AC-4-130, effectively obstructs tumor development in vivo. CONCLUSIONS We therefore propose PDGFRβ as a novel biomarker and introduce PDGFRβ-STAT3/5 signaling as an important axis in aggressive ALCL. Furthermore, we suggest that inhibition of PDGFRβ or STAT3/5 improve existing therapies for both previously untreated and relapsed/refractory ALK+ ALCL patients.
Collapse
Affiliation(s)
- I Garces de Los Fayos Alonso
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Zujo
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - I Wiest
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - P Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - G Timelthaler
- Center for Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - S Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - M Zrimšek
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - C Giordano
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Kothmayer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - H A Neubauer
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Dey
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria
| | - M Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - B S Schmalzbauer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - T Limberger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria
| | - C Probst
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - O Pusch
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - O Merkel
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - A I Schiefer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - C Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - N Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Anagnostopoulos
- Institute of Pathology, University of Wuerzburg, 97080, Würzburg, Germany
- Institute of Pathology, Charité-Medical University of Berlin, 10117, Berlin, Germany
| | - L Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Cluster of excellence iFIT, "Image-Guided and Functionally Instructed Tumor Therapy", University of Tübingen, 72076, Tübingen, Germany
| | - S Mathas
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Medical University of Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125, Berlin, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - D Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - P B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - G Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
- Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - W Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel/University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - W Woessmann
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - T A Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - S D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - R Moriggl
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria.
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria.
- Christian Doppler Laboratory of Applied Metabolomics, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Lei Y, Lei Y, Shi X, Wang J. EML4‑ALK fusion gene in non‑small cell lung cancer (Review). Oncol Lett 2022; 24:277. [PMID: 35928804 PMCID: PMC9344266 DOI: 10.3892/ol.2022.13397] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with a high morbidity and mortality rate that is a threat to human health. With the development of molecular targeted research, breakthroughs have been made on the molecular mechanism of lung cancer. The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene is one of the most important pathogenic driver genes of NSCLC discovered thus far. Four generations of targeted drugs for EML4-ALK have been developed, with patients benefiting significantly from these drugs. Therefore, EML4-ALK has become a research hotspot in NSCLC. The aim of the present study is to introduce the current research progress of EML4-ALK and its association with NSCLC.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Yan Lei
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingjing Wang
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
22
|
Kreutmair S, Lippert LJ, Klingeberg C, Albers-Leischner C, Yacob S, Shlyakhto V, Mueller T, Mueller-Rudorf A, Yu C, Gorantla SP, Miething C, Duyster J, Illert AL. NIPA (Nuclear Interaction Partner of ALK) Is Crucial for Effective NPM-ALK Mediated Lymphomagenesis. Front Oncol 2022; 12:875117. [PMID: 35646639 PMCID: PMC9137267 DOI: 10.3389/fonc.2022.875117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The NPM-ALK fusion kinase is expressed in 60% of systemic anaplastic large-cell lymphomas (ALCL). A Nuclear Interaction Partner of ALK (NIPA) was identified as a binding partner of NPM-ALK. To identify the precise role of NIPA for NPM-ALK-driven lymphomagenesis, we investigated various NPM-ALK+ cell lines and mouse models. Nipa deletion in primary mouse embryonic fibroblasts resulted in reduced transformation ability and colony formation upon NPM-ALK expression. Downregulating NIPA in murine NPM-ALK+ Ba/F3 and human ALCL cells decreased their proliferation ability and demonstrated synergistic effects of ALK inhibition and NIPA knockdown. Comprehensive in vivo analyses using short- and long-latency transplantation mouse models with NPM-ALK+ bone marrow (BM) revealed that Nipa deletion inhibited NPM-ALK-induced tumorigenesis with prolonged survival and reduced spleen colonies. To avoid off-target effects, we combined Nipa deletion and NPM-ALK expression exclusively in T cells using a lineage-restricted murine ALCL-like model resembling human disease: control mice died from neoplastic T-cell infiltration, whereas mice transplanted with Lck-CreTG/wtNipaflox/flox NPM-ALK+ BM showed significantly prolonged survival. Immunophenotypic analyses indicated a characteristic ALCL-like phenotype in all recipients but revealed fewer “stem-cell-like” features of Nipa-deficient lymphomas compared to controls. Our results identify NIPA as a crucial player in effective NPM-ALK-driven ALCL-like disease in clinically relevant murine and cell-based models.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Lena Johanna Lippert
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cathrin Klingeberg
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Corinna Albers-Leischner
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Salome Yacob
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valeria Shlyakhto
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony Mueller
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department I of Internal Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alina Mueller-Rudorf
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chuanjiang Yu
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sivahari Prasad Gorantla
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Cornelius Miething
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Anna Lena Illert
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
- *Correspondence: Anna Lena Illert,
| |
Collapse
|
23
|
TABBÒ F, DE FILIPPIS M, JACOBS F, NOVELLO S. Strengths and pitfalls of brigatinib in non-small cell lung cancer patients' management. Minerva Med 2022; 113:315-332. [DOI: 10.23736/s0026-4806.21.07693-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Quantification of Minimal Disease by Digital PCR in ALK-Positive Anaplastic Large Cell Lymphoma: A Step towards Risk Stratification in International Trials? Cancers (Basel) 2022; 14:cancers14071703. [PMID: 35406475 PMCID: PMC8996924 DOI: 10.3390/cancers14071703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Minimal disseminated and residual disease (MDD/MRD) analyzed by qualitative PCR for NPM-ALK fusion transcripts are validated prognostic factors in pediatric ALK-positive anaplastic large cell lymphoma (ALCL). Although potentially promising, MDD quantification by quantitative real-time PCR in international trials is technically challenging. Quantification of early MRD might further improve risk stratification. We aimed to assess droplet digital PCR for quantification of minimal disease in an inter-laboratory setting in a large cohort of 208 uniformly treated ALCL patients. Inter-laboratory quality control showed high concordance. Using a previously described cut-off of 30 copies NPM-ALK/104 copies ABL1 (NCN) in bone marrow and peripheral blood, MDD quantification allowed identification of very high-risk patients (5-year PFS% 34 ± 5 for patients with ≥30 NCN compared to 74 ± 6 and 76 ± 5 for patients with negative or <30 NCN, respectively, p < 0.0001). While MRD positivity was confirmed as a prognostic marker for the detection of very high-risk patients in this large study, quantification of MRD fusion transcripts did not improve stratification. PFS% was 80 ± 5 and 73 ± 6 for MDD- and MRD-negative patients, respectively, versus 35 ± 10 and 16 ± 8 for MRD-positive patients with <30 and ≥30 NCN, p < 0.0001. Our results suggest that MDD quantification by dPCR enables improved patient stratification in international clinical studies and patient selection for early clinical trials already at diagnosis.
Collapse
|
25
|
Anaplastic Large Cell Lymphoma: Molecular Pathogenesis and Treatment. Cancers (Basel) 2022; 14:cancers14071650. [PMID: 35406421 PMCID: PMC8997054 DOI: 10.3390/cancers14071650] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma is a rare type of disease that occurs throughout the world and has four subtypes. A summary and comparison of these subtypes can assist with advancing our knowledge of the mechanism and treatment of ALCL, which is helpful in making progress in this field. Abstract Anaplastic large cell lymphoma (ALCL) is an uncommon type of non-Hodgkin’s lymphoma (NHL), as well as one of the subtypes of T cell lymphoma, accounting for 1 to 3% of non-Hodgkin’s lymphomas and around 15% of T cell lymphomas. In 2016, the World Health Organization (WHO) classified anaplastic large cell lymphoma into four categories: ALK-positive ALCL (ALK+ALCL), ALK-negative ALCL (ALK−ALCL), primary cutaneous ALCL (pcALCL), and breast-implant-associated ALCL (BIA-ALCL), respectively. Clinical symptoms, gene changes, prognoses, and therapy differ among the four types. Large lymphoid cells with copious cytoplasm and pleomorphic characteristics with horseshoe-shaped or reniform nuclei, for example, are found in both ALK+ and ALK−ALCL. However, their epidemiology and pathogenetic origins are distinct. BIA-ALCL is currently recognized as a new provisional entity, which is a noninvasive disease with favorable results. In this review, we focus on molecular pathogenesis and management of anaplastic large cell lymphoma.
Collapse
|
26
|
ALK, NUT, and TRK Do Not Play Relevant Roles in Gastric Cancer—Results of an Immunohistochemical Study in a Large Series. Diagnostics (Basel) 2022; 12:diagnostics12020429. [PMID: 35204520 PMCID: PMC8870766 DOI: 10.3390/diagnostics12020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
ALK, NUT, and TRK are rare molecular aberrations that are pathognomonic for specific rare tumors. In low frequencies, however, they are found in a wide range of other tumor entities. This study aimed to investigate the frequency, association with clinicopathological characteristics, and prognosis of the immunohistochemical expressions of ALK, NUT, and TRK in 477 adenocarcinomas of the stomach and gastroesophageal junction. Seven cases (1.5%) showed an expression of TRK. In NGS, no NTRK fusion was confirmed. No case with ALK or NUT expression was detected. ALK, NUT, and NTRK expression does not seem to play an important role in gastric carcinomas.
Collapse
|
27
|
Shen E, Van Swearingen AED, Price MJ, Bulsara K, Verhaak RGW, Baëta C, Painter BD, Reitman ZJ, Salama AKS, Clarke JM, Anders CK, Fecci PE, Goodwin CR, Walsh KM. A Need for More Molecular Profiling in Brain Metastases. Front Oncol 2022; 11:785064. [PMID: 35145903 PMCID: PMC8821807 DOI: 10.3389/fonc.2021.785064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
As local disease control improves, the public health impact of brain metastases (BrM) continues to grow. Molecular features are frequently different between primary and metastatic tumors as a result of clonal evolution during neoplasm migration, selective pressures imposed by systemic treatments, and differences in the local microenvironment. However, biomarker information in BrM is not routinely obtained despite emerging evidence of its clinical value. We review evidence of discordance in clinically actionable biomarkers between primary tumors, extracranial metastases, and BrM. Although BrM biopsy/resection imposes clinical risks, these risks must be weighed against the potential benefits of assessing biomarkers in BrM. First, new treatment targets unique to a patient's BrM may be identified. Second, as BrM may occur late in a patient's disease course, resistance to initial targeted therapies and/or loss of previously identified biomarkers can occur by the time of occult BrM, rendering initial and other targeted therapies ineffective. Thus, current biomarker data can inform real-time treatment options. Third, biomarker information in BrM may provide useful prognostic information for patients. Appreciating the importance of biomarker analyses in BrM tissue, including how it may identify specific drivers of BrM, is critical for the development of more effective treatment strategies to improve outcomes for this growing patient population.
Collapse
Affiliation(s)
- Erica Shen
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Farmington, CT, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Amanda E. D. Van Swearingen
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Meghan J. Price
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Ketan Bulsara
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Farmington, CT, United States
| | - Roeland G. W. Verhaak
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Farmington, CT, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam Universitair Medische Centra (UMC), Vrije Universiteit Amsterdam (VU) University Medical Center (VUmc), Amsterdam, Netherlands
| | - César Baëta
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Brice D. Painter
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Zachary J. Reitman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - April K. S. Salama
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey M. Clarke
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Carey K. Anders
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Peter E. Fecci
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - C. Rory Goodwin
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Kyle M. Walsh
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
28
|
Garland GD, Ducray SP, Jahangiri L, Pucci P, Amos Burke GA, Monahan J, Lai R, Merkel O, Schiefer AI, Kenner L, Bannister AJ, Turner SD. BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL. Cancers (Basel) 2021; 14:151. [PMID: 35008316 PMCID: PMC8750310 DOI: 10.3390/cancers14010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy driven in many cases by the product of a chromosomal translocation, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK activates a plethora of pathways that drive the hallmarks of cancer, largely signalling pathways normally associated with cytokine and/or T-cell receptor-induced signalling. However, NPM-ALK is also located in the nucleus and its functions in this cellular compartment for the most part remain to be determined. We show that ALCL cell lines and primary patient tumours express the transcriptional activator BRG1 in a NPM-ALK-dependent manner. NPM-ALK regulates expression of BRG1 by post-translational mechanisms dependent on its kinase activity, protecting it from proteasomal degradation. Furthermore, we show that BRG1 drives a transcriptional programme associated with cell cycle progression. In turn, inhibition of BRG1 expression with specific shRNA decreases cell viability, suggesting that it may represent a key therapeutic target for the treatment of ALCL.
Collapse
Affiliation(s)
- Gavin D. Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (G.D.G.); (S.P.D.); (L.J.); (P.P.)
| | - Stephen P. Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (G.D.G.); (S.P.D.); (L.J.); (P.P.)
| | - Leila Jahangiri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (G.D.G.); (S.P.D.); (L.J.); (P.P.)
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (G.D.G.); (S.P.D.); (L.J.); (P.P.)
| | - G. A. Amos Burke
- Department of Paediatric Oncology, Cambridge University Hospital NHS Trust, Cambridge CB5 8PD, UK;
| | - Jack Monahan
- The European Bioinformatics Institute (EMBL EBI), Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Olaf Merkel
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (O.M.); (A.-I.S.); (L.K.)
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (O.M.); (A.-I.S.); (L.K.)
| | - Lukas Kenner
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (O.M.); (A.-I.S.); (L.K.)
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- CBMed, 8010 Graz, Austria
- Christian Doppler Laboratory of Applied Metabolomics (CDL-AM), Medical University Vienna, 1090 Vienna, Austria
| | | | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (G.D.G.); (S.P.D.); (L.J.); (P.P.)
- Central European Institute of Technology (CEITEC), Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
29
|
Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med 2021; 9:20503121211067083. [PMID: 34992782 PMCID: PMC8725032 DOI: 10.1177/20503121211067083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in cancer diagnosis, prevention, detection, as well as management, the disease is expected to be the top cause of death globally. The chemotherapy approach for cancer has become more advanced in its design, yet no medication can cure enough against all types of cancer and its stage. Thus, this review aimed to summarize a recent development of new therapeutic agents and novel drug targets for the treatment of cancer. Several obstacles stand in the way of effective cancer treatment and drug development, including inaccessibility of tumor site by appropriate drug concentration, debilitating untoward effects caused by non-selective tissue distribution of chemotherapeutic agents, and occurrence of drug resistance, which leads to cross-resistance to a variety of drugs. Resistance to treatment with anticancer drugs results from multiple factors and the most common reason for acquiring drug resistance is marking and expelling drugs that prevent cancer cells to be targeted by chemotherapeutic agents. Moreover, insensitivity to drug-induced apoptosis, alteration, and mutation of drug target and interference/change of DNA replication are other main causes of treatment failure.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Meklit Tadele
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Eyerusalem Alemu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tadele Gedamu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
30
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
31
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
32
|
Kang J, Deng QM, Peng KC, Li P, Zhu BT, Wang P, Chu XP, Zhong WZ, Chen HJ, Wang WX, Chen HF, Rao CZ, Xu CW, Yang JJ. Clinicopathological features and resistance mechanisms in HIP1-ALK-rearranged lung cancer: A multicenter study. Genes Chromosomes Cancer 2021; 61:177-186. [PMID: 34687488 DOI: 10.1002/gcc.23005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) respond well to ALK tyrosine kinase inhibitors (TKIs), and echinoderm microtubule-associated protein-like 4 (EML4)-ALK-rearranged NSCLC accounts for the majority of those patients. However, few studies have evaluated ALK-TKIs treatment for patients with huntingtin-interacting protein 1 (HIP1)-ALK fusions. This retrospective study evaluated the clinicopathological characteristics, genomic features, response to ALK-TKIs, and resistance mechanisms in 11 cases with HIP1-ALK fusions from five Chinese centers. Patients who received crizotinib at the Chinese centers had an objective response rate of 90% [9/10 cases, 95% confident index (CI): 54.1%-99.5%], median progression-free survival of 17.9 months (95% CI: 5.8-NA months), and median overall survival of 58.8 months (95% CI: 24.7-NA months). One patient who received first-line lorlatinib treatment achieved partial response for > 26.5 months. Despite the small sample size, HIP1-ALK (H21:A20) variant was the most common variant (four of 11 cases, 36.4%) and associated with better outcomes. Among the 11 cases, there were eight patients having available specimens for genetic testing before ALK-TKIs treatment and four patients undergoing biopsy after ALK-TKIs failure. The most common coexisting gene was TP53 among 11 patients and two of four patients after crizotinib failure harbored acquired ALK mutations (e.g., L1152V/Q1146K and L1196M). Brigatinib treatment appeared to be effective for a patient who failed crizotinib treatment because of the L1152V/Q1146K mutations, which might be related to increased binding affinity to these mutants. Although HIP1-ALK-rearranged NSCLC appears to initially respond well to ALK-TKIs, crizotinib resistance may be correlated with the AKAP9-BRAF fusion, ALK compound mutations (L1152V/Q1146K), and the ALK L1196M mutation. Larger studies are needed to evaluate the significance of HIP1-ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Southern Medical University, Guangzhou, Guangdong, China
| | - Qiu-Mei Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Kai-Cheng Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiang-Peng Chu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Southern Medical University, Guangzhou, Guangdong, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wen-Xian Wang
- Department of Medical Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Hua-Fei Chen
- Department of Thoracic Disease Center, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Chuang-Zhou Rao
- Department of Radiation and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chun-Wei Xu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Osman HM, Tuncbilek M. Entrectinib: A new Selective Tyrosine Kinase Inhibitor Approved for the Treatment of Pediatric and Adult Patients with NTRK Fusion-positive, Recurrent or Advanced Solid Tumors. Curr Med Chem 2021; 29:2602-2616. [PMID: 34521321 DOI: 10.2174/0929867328666210914121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Entrectinib is a highly potent ATP-competitive and selective inhibitor of tyrosine kinases - Trk A B C, ALK, and ROS1. It was developed by Roche and initially approved in Japan in 2019 for the treatment of pediatric and adult patients with NTRK fusion-positive, recurrent, or advanced solid tumors. In August 2019, entrectinib received accelerated approval by the U.S FDA for this indication. It is also the first FDA-approved drug designed to target both NTRK and ROS1. OBJECTIVE We aim to summarize recent studies related to the synthesis, mechanism of action, and clinical trials of the newly approved selective tyrosine kinase inhibitor entrectinib. METHOD We conduct a literature review of the research studies on the new highly-potent small-molecule entrectinib. CONCLUSION Entrectinib, based on three clinical studies (ALKA, STARTRK-1, and STARTRK-2), was well tolerated, with a manageable safety profile. It induced clinically meaningful responses in recurrent or advanced solid tumors associated with NTRK fusion-positive or ROS1+ NSCLC. It demonstrated substantial efficacy in patients with CNS metastases.
Collapse
Affiliation(s)
- Hind M Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara. Turkey
| | - Meral Tuncbilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara. Turkey
| |
Collapse
|
34
|
Lu B, Jiang R, Xie B, Wu W, Zhao Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis 2021; 12:783. [PMID: 34381020 PMCID: PMC8357806 DOI: 10.1038/s41419-021-04065-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Gene fusions are thought to be driver mutations in multiple cancers and are an important factor for poor patient prognosis. Most of them appear in specific cancers, thus satisfactory strategies can be developed for the precise treatment of these types of cancer. Currently, there are few targeted drugs to treat gynecologic tumors, and patients with gynecologic cancer often have a poor prognosis because of tumor progression or recurrence. With the application of massively parallel sequencing, a large number of fusion genes have been discovered in gynecologic tumors, and some fusions have been confirmed to be involved in the biological process of tumor progression. To this end, the present article reviews the current research status of all confirmed fusion genes in gynecologic tumors, including their rearrangement mechanism and frequency in ovarian cancer, endometrial cancer, endometrial stromal sarcoma, and other types of uterine tumors. We also describe the mechanisms by which fusion genes are generated and their oncogenic mechanism. Finally, we discuss the prospect of fusion genes as therapeutic targets in gynecologic tumors.
Collapse
Affiliation(s)
- Bingfeng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruqi Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bumin Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy and Safety of Lorlatinib and Alectinib for ALK-Rearrangement Positive Advanced Non-Small Cell Lung Cancer in Asian and Non-Asian Patients: A Systematic Review and Network Meta-Analysis. Cancers (Basel) 2021; 13:cancers13153704. [PMID: 34359604 PMCID: PMC8345181 DOI: 10.3390/cancers13153704] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC) remains a challenge. We compared the safety and efficacy of lorlatinib and alectinib in patients with ALK-p ALK-inhibitor‒naïve advanced NSCLC (in overall participants and in the Asian and non-Asian subgroups). The results showed that in the overall participant group, the efficacy of lorlatinib and alectinib was not significantly different in terms of progression-free survival (PFS) and overall survival (OS). Although in the Asian subgroup, PFS was not significantly different upon treatment with lorlatinib or alectinib, in the non-Asian subgroup, PFS was significantly better in response to lorlatinib than with alectinib. Grade 3 or higher adverse events in the overall participant group were significantly more frequent with lorlatinib than with alectinib. These results will provide valuable information that would enable the improvement of treatment strategies for ALK-p ALK-inhibitor‒naïve advanced NSCLC. Abstract To date, there have been no head-to-head randomized controlled trials (RCTs) comparing the safety and efficacy of lorlatinib and alectinib in anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) ALK-inhibitor‒naïve advanced non-small cell lung cancer (NSCLC). We performed a network meta-analysis comparing six treatment arms (lorlatinib, brigatinib, alectinib, ceritinib, crizotinib, and platinum-based chemotherapy) in overall participants and in Asian and non-Asian subgroups. Primary endpoints were progression-free survival (PFS), overall survival (OS), and grade 3 or higher adverse events (G3-AEs). There were no significant differences between lorlatinib and alectinib in overall participants for both PFS (hazard ratio [HR], 0.742; 95% credible interval [CrI], 0.466–1.180) and OS (HR, 1.180; 95% CrI, 0.590–2.354). In the Asian subgroup, there were no significant differences in PFS between lorlatinib and alectinib (HR, 1.423; 95% CrI, 0.748–2.708); however, in the non-Asian subgroup, PFS was significantly better with lorlatinib than with alectinib (HR, 0.388; 95% CrI, 0.195–0.769). The incidence of G3-AEs in overall participants was significantly higher with lorlatinib than with alectinib (risk ratio, 1.918; 95% CrI, 1.486–2.475). These results provide valuable information regarding the safety and efficacy of lorlatinib in ALK-p ALK-inhibitor‒naïve advanced NSCLC. Larger head-to-head RCTs are needed to validate the study results.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
- Correspondence: ; Tel.: +81-3-3784-8532
| | - Ryo Manabe
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Yasunari Kishino
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Sojiro Kusumoto
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Tohru Ohmori
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| |
Collapse
|
36
|
Chen BR, Deshpande A, Barbosa K, Kleppe M, Lei X, Yeddula N, Vela PS, Campos AR, Wechsler-Reya RJ, Bagchi A, Meshinchi S, Eaves C, Jeremias I, Haferlach T, Frank DA, Ronai Z, Chanda S, Armstrong SA, Adams PD, Levine RL, Deshpande AJ. A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood 2021; 137:3403-3415. [PMID: 33690798 PMCID: PMC8212510 DOI: 10.1182/blood.2020009023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Leukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia. Specifically, we report that AF10 fusions activate a cascade of JAK/STAT-mediated inflammatory signaling through direct recruitment of JAK1 kinase. Inhibition of the JAK/STAT signaling by genetic Jak1 deletion or through pharmacological JAK/STAT inhibition elicited potent antioncogenic effects in mouse and human models of AF10 fusion AML. Collectively, our study identifies JAK1 as a tractable therapeutic target in AF10-rearranged leukemias.
Collapse
Affiliation(s)
- Bo-Rui Chen
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xue Lei
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Narayana Yeddula
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center and
| | - Pablo Sánchez Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexandre Rosa Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | | | | | - Ze'ev Ronai
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Sumit Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center and
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
37
|
Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 2021; 40:4079-4093. [PMID: 34079087 DOI: 10.1038/s41388-021-01841-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Collapse
|
38
|
Antoni D, Burckel H, Noel G. Combining Radiation Therapy with ALK Inhibitors in Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer (NSCLC): A Clinical and Preclinical Overview. Cancers (Basel) 2021; 13:2394. [PMID: 34063424 PMCID: PMC8156706 DOI: 10.3390/cancers13102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the past years, the identification of genetic alterations in oncogenic drivers in non-small cell lung cancer (NSCLC) has significantly and favorably transformed the outcome of patients who can benefit from targeted therapies such as tyrosine kinase inhibitors. Among these genetic alterations, anaplastic lymphoma kinase (ALK) rearrangements were discovered in 2007 and are present in 3-5% of patients with NSCLC. In addition, radiotherapy remains one of the cornerstones of NSCLC treatment. Moreover, improvements in the field of radiotherapy with the use of hypofractionated or ablative stereotactic radiotherapy have led to a better outcome for localized or oligometastatic NSCLC. To date, the effects of the combination of ALK inhibitors and radiotherapy are unclear in terms of safety and efficacy but could potently improve treatment. In this manuscript, we provide a clinical and preclinical overview of combining radiation therapy with ALK inhibitors in anaplastic lymphoma kinase-positive non-small cell lung cancer.
Collapse
Affiliation(s)
- Delphine Antoni
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
| | - Georges Noel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| |
Collapse
|
39
|
Wiśniewska M, Wiśniewski M, Lewandowska MA. Personalized and targeted therapies. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biomarker is defined as indicator of normal or pathogenic biological process or response to an intervention or exposure. There are several categories of biomarkers but predictive biomarkers play the most important role in the treatment of neoplasms. In some cancers there may be more than one potential biomarker, and their identification determines the treatment of the patient. Identification of predictive biomarkers allows the development of novel targeted therapies resulting in tailored treatment. In this chapter we discuss most important predictive biomarkers used in contemporary oncology for which there is approved therapies.
Collapse
Affiliation(s)
- Magdalena Wiśniewska
- Department of Oncology and Brachytherapy , Collegium Medicum Bydgoszcz, Nicolaus Copernicus University , Toruń , Poland
- Department of Clinical Oncology , Oncology Centre , Bydgoszcz , Poland
| | - Michał Wiśniewski
- Outpatient Chemotherapy Department , Oncology Centre , Bydgoszcz , Poland
| | - Marzena A. Lewandowska
- Department of Thoracic Surgery and Tumors , Collegium Medicum Bydgoszcz, Nicolaus Copernicus University , Toruń , Poland
- Oncology Centre , Bydgoszcz , Poland
- Department of Molecular Oncology and Genetics , Innovative Medical Forum Oncology Centre , Bydgoszcz , Poland
| |
Collapse
|
40
|
Non-secretory multiple myeloma with unusual TFG-ALK fusion showed dramatic response to ALK inhibition. NPJ Genom Med 2021; 6:23. [PMID: 33731690 PMCID: PMC7969947 DOI: 10.1038/s41525-021-00186-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
Non-secretory multiple myeloma (NSMM) constitutes a distinct entity of multiple myeloma characterized by the absence of detectable monoclonal protein and rarely an absence of free light chains in the serum and urine. Given its rarity, the genomic landscape, clinical course, and prognosis of NSSM are not well characterized. Here, we report a case of a patient with relapsed and refractory NSMM with brain metastasis harboring a TFG-ALK fusion showing a dramatic and durable (over two years) response to commercially available anaplastic lymphoma kinase (ALK) inhibitors. The case emphasizes the beneficial role of molecular profiling in this target-poor disease.
Collapse
|
41
|
Wen Z, Xiong D, Zhang S, Liu J, Li B, Li R, Zhang H. Case Report: RAB10-ALK: A Novel ALK Fusion in a Patient With Gastric Cancer. Front Oncol 2021; 11:645370. [PMID: 33692962 PMCID: PMC7938725 DOI: 10.3389/fonc.2021.645370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Gastric cancer is one of the most common cancers, while the current treatment options for gastric cancer are relatively scarce due to insufficient understanding of molecular characteristics and subtypes of gastric cancer. Different gene rearrangements of anaplastic lymphocyte kinase (ALK) have been reported in several types of cancer, especially in NSCLC. The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib, second-generation (ceritinib, alectinib, and brigatinib) and third-generation (lorlatinib) ALK-TKIs have been widely used for NSCLC patients with ALK rearrangement. However, little was reported about ALK mutation in gastric cancer (GC). Here we identified a novel form of ALK fusion, a case of GC with RAB10-ALK fusion, and this is the first report of ALK fusion in gastric cancer.
Collapse
Affiliation(s)
- Zhengqi Wen
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dun Xiong
- Department of Oncology, The People’s Hospital of Puer City, Puer, China
| | - Shurong Zhang
- Department of Gastroenterology, The 920th Hospital of the Joint Logistics Support Force, PLA, Kunming, China
| | - Jiankun Liu
- Department of Gastroenterology, The 920th Hospital of the Joint Logistics Support Force, PLA, Kunming, China
| | - Bitao Li
- Department of Prevention and Health Care, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Raomei Li
- Department of Gastroenterology, The 920th Hospital of the Joint Logistics Support Force, PLA, Kunming, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| |
Collapse
|
42
|
Cheng YW, Meyer A, Jakubowski MA, Keenan SO, Brock JE, Azzato EM, Weindel M, Farkas DH, Rubin BP. Gene Fusion Identification Using Anchor-Based Multiplex PCR and Next-Generation Sequencing. J Appl Lab Med 2021; 6:917-930. [PMID: 33537766 DOI: 10.1093/jalm/jfaa230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Methods for identifying gene fusion events, such as fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and transcriptome analysis, are either single gene approaches or require bioinformatics expertise not generally available in clinical laboratories. We analytically validated a customized next-generation sequencing (NGS) panel targeting fusion events in 34 genes involving soft-tissue sarcomas. METHODS Specimens included 87 formalin-fixed paraffin-embedded (FFPE) tissues with known gene fusion status. Isolated total nucleic acid was used to identify fusion events at the RNA level. The potential fusions were targeted by gene-specific primers, followed by primer extension and nested PCR to enrich for fusion candidates with subsequent bioinformatics analysis. RESULTS The study generated results using the following quality metrics for fusion detection: (a) ≥100 ng total nucleic acid, (b) RNA average unique start sites per gene-specific primer control ≥10, (c) quantitative PCR assessing input RNA quality had a crossing point <30, (d) total RNA percentage ≥30%, and (e) total sequencing fragments ≥500 000. CONCLUSIONS The test validation study demonstrated analytical sensitivity of 98.7% and analytical specificity of 90.0%. The NGS-based panel generated highly concordant results compared to alternative testing methods.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Anders Meyer
- Department of Pathology and Laboratory Medicine, The University of Kansas, Kansas City, KS.,Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Maureen A Jakubowski
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Sean O Keenan
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH.,CellNetix Pathology & Laboratories, Seattle, WA
| | - Jay E Brock
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth M Azzato
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Michael Weindel
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel H Farkas
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Brian P Rubin
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
43
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
44
|
Murumägi A, Ungureanu D, Arjama M, Bützow R, Lohi J, Sariola H, Kanerva J, Koskenvuo M, Kallioniemi O. STRN-ALK rearranged pediatric malignant peritoneal mesothelioma - Functional testing of 527 cancer drugs in patient-derived cancer cells. Transl Oncol 2021; 14:101027. [PMID: 33530027 PMCID: PMC7851186 DOI: 10.1016/j.tranon.2021.101027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
First study to establish in real-time STRN-ALK fusion positive pediatric patient-derived cancer cells (PDCs). Ex vivo sensitivity testing of PDCs to 527 oncology drugs was analysed by high-throughput drug testing. Comparison of efficacies of eight ALK inhibitors towards PDCs both in 2D and 3D. Drug combination synergies identified between ALK and MEK and ALK and PI3K/mTOR inhibitors. Our precision medicine platform supported successful clinical use of crizotinib in patient treatment.
Genetic rearrangements involving the anaplastic lymphoma kinase (ALK) gene create oncogenic drivers for several cancers, including malignant peritoneal mesothelioma (MPeM). Here, we report genomic and functional precision oncology profiling on a rare case of a 5-year old patient diagnosed with wide-spread and aggressive MPeM, driven by STRN-ALK rearrangement. We established genomically representative patient-derived cancer cells (PDCs) from the tumor sample and performed high-throughput drug sensitivity testing with 527 oncology compounds to identify potent inhibitors. As expected, the PDCs were overall sensitive to the ALK inhibitors, although the eight different inhibitors tested had variable efficacy. We also discovered other effective inhibitors, such as MEK/ERK inhibitors and those targeting pathways downstream of ALK as well as Bcl-xl inhibitors. In contrast, most cytotoxic drugs were not very effective. ALK inhibitors synergized with MEK and PI3K/mTOR inhibitors, highlighting potential combinatorial strategies to enhance drug efficacy and tackle drug resistance. Based on genomic data and associated functional validation, the patient was treated with the ALK inhibitor crizotinib in combination with conventional chemotherapy (cisplatin and gemcitabine). A complete disease remission was reached, lasting now for over 3 years. Our results illustrate a rare pediatric cancer case, and highlight the potential of functional precision oncology to discover pathogenetic drivers, validate dependency on driver signals, compare different inhibitors against each other and potentially enhance targeted treatments by drug combinations. Such real-time implementation of functional precision oncology could pave the way towards safer and more effective personalized cancer therapies for individual pediatric cancer patients with rare tumors.
Collapse
Affiliation(s)
- Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland.
| | - Daniela Ungureanu
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine and Health Sciences, University of Helsinki, Finland and Tampere University, Tampere, Finland
| | - Mariliina Arjama
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Hannu Sariola
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka Kanerva
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital and Helsinki University Central Hospital, Helsinki, Finland
| | - Minna Koskenvuo
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital and Helsinki University Central Hospital, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland; Science for Life Laboratory (SciLifeLab), Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
45
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
46
|
Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL, Huang P, Chang S. Kinase gene fusions: roles and therapeutic value in progressive and refractory papillary thyroid cancer. J Cancer Res Clin Oncol 2021; 147:323-337. [PMID: 33387037 DOI: 10.1007/s00432-020-03491-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
The incidence of papillary thyroid cancer (PTC), the major type of thyroid cancer, is increasing rapidly around the world, and its pathogenesis is still unclear. There is poor prognosis for PTC involved in rapidly progressive tumors and resistance to radioiodine therapy. Kinase gene fusions have been discovered to be present in a wide variety of malignant tumors, and an increasing number of novel types have been detected in PTC, especially progressive tumors. As a tumor-driving event, kinase fusions are constitutively activated or overexpress their kinase function, conferring oncogenic potential, and their frequency is second only to BRAFV600E mutation in PTC. Diverse forms of kinase fusions have been observed and are associated with specific pathological features of PTC (usually at an advanced stage), and clinical trials of therapeutic strategies targeting kinase gene fusions are feasible for radioiodine-resistant PTC. This review summarizes the roles of kinase gene fusions in PTC and the value of clinical therapy of targeting fusions in progressive or refractory PTC, and discusses the future perspectives and challenges related to kinase gene fusions in PTC patients.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hui-Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Deng-Jie Ou-Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rooh-Afza Khushbu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
47
|
Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci 2020; 21:E8529. [PMID: 33198314 PMCID: PMC7696731 DOI: 10.3390/ijms21228529] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase receptors (TKR) comprise more than 60 molecules that play an essential role in the molecular pathways, leading to cell survival and differentiation. Consequently, genetic alterations of TKRs may lead to tumorigenesis and, therefore, cancer development. The discovery and improvement of tyrosine kinase inhibitors (TKI) against TKRs have entailed an important step in the knowledge-expansion of tumor physiopathology as well as an improvement in the cancer treatment based on molecular alterations over many tumor types. The purpose of this review is to provide a comprehensive review of the different families of TKRs and their role in the expansion of tumor cells and how TKIs can stop these pathways to tumorigenesis, in combination or not with other therapies. The increasing growth of this landscape is driving us to strengthen the development of precision oncology with clinical trials based on molecular-based therapy over a histology-based one, with promising preliminary results.
Collapse
Affiliation(s)
- Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Juan José Soto-Castillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Inmaculada Orejana-Martín
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| |
Collapse
|
48
|
Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020; 13:49. [PMID: 33168103 PMCID: PMC7654176 DOI: 10.1186/s13072-020-00371-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Ling-Yu Li
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
49
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 422] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
50
|
Sasaki E, Masago K, Fujita S, Suzuki H, Hanai N, Hosoda W. Salivary Secretory Carcinoma Harboring a Novel ALK Fusion: Expanding the Molecular Characterization of Carcinomas Beyond the ETV6 Gene. Am J Surg Pathol 2020; 44:962-969. [PMID: 32205481 DOI: 10.1097/pas.0000000000001471] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory carcinoma (SC) of the salivary glands is a low-grade carcinoma characterized by a well-defined morphology and immunohistochemical features. ETV6-NTRK3 fusions are detected in the great majority of SCs. Recently, other partners fused to ETV6 have been documented in a small portion of SCs, suggesting the presence of alternative genetic fusion. In this study, we examined the genetic fusion of 9 SCs using fluorescence in situ hybridization, reverse transcription-polymerase chain reaction, and next-generation sequencing (ArcherDx). Classic ETV6 exon 5-NTRK3 exon 15 fusion was detected in 8 of 9 SCs. The remaining tumor was negative for the ETV6-NTRK3 fusion but harbored a novel fusion, CTNNA1 exon 11-ALK in exon 20. Immunohistochemically, pan-TRK was positive in 8 tumors with ETV6-NTRK3 fusion but negative in an ALK-rearranged SC, while ALK was positive only in the ALK-rearranged tumor. Histologically, the ALK-rearranged tumor showed dominant macrocystic architecture. In conclusion, we found a case of SC with CTNNA1-ALK fusion. Because ALK fusion after exon 20 on the ALK side (upstream of the tyrosine kinase domain) has been reported to activate a carcinogenic kinase in various ALK-rearranged tumors, ALK inhibitors may be a possible therapeutic option for ALK-rearranged SC. In addition, ALK immunohistochemistry can be a screening tool for ALK-rearranged SC. This study also expands the molecular spectrum of this tumor beyond the ETV6 gene.
Collapse
Affiliation(s)
| | | | - Shiro Fujita
- Departments of Pathology and Molecular Diagnostics
| | - Hidenori Suzuki
- Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi Prefecture, Japan
| | - Nobuhiro Hanai
- Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi Prefecture, Japan
| | - Waki Hosoda
- Departments of Pathology and Molecular Diagnostics
| |
Collapse
|