1
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Bowley G, Irving S, Hoefer I, Wilkinson R, Pasterkamp G, Darwish HMS, White S, Francis SE, Chico T, Noel E, Serbanovic-Canic J, Evans PC. Zebrafish model for functional screening of flow-responsive genes controlling endothelial cell proliferation. Sci Rep 2024; 14:30130. [PMID: 39627337 PMCID: PMC11615307 DOI: 10.1038/s41598-024-77370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Local haemodynamics control arterial homeostasis and dysfunction by generating wall shear stress (WSS) which regulates endothelial cell (EC) physiology. Here we use a zebrafish model to identify genes that regulate EC proliferation in response to flow. Suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) reduced EC proliferation in the intersegmental vessels (ISVs) compared to controls exposed to flow. The expression of candidate regulators of proliferation was analysed in EC isolated from zebrafish embryos by qRT-PCR. Genes shown to be expressed in EC were analysed for the ability to regulate proliferation in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. wnk1 negatively regulated proliferation in no-flow conditions, whereas fzd5, gsk3β, trpm7 and bmp2a promoted proliferation in EC exposed to flow. Immunofluorescent staining of mammalian arteries revealed that WNK1 is expressed at sites of low WSS in the murine aorta, and in EC overlying human atherosclerotic plaques. We conclude that WNK1 is expressed in EC at sites of low WSS and in diseased arteries and may influence vascular homeostasis by reducing EC proliferation.
Collapse
Affiliation(s)
- George Bowley
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Sophie Irving
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Imo Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | - Robert Wilkinson
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | - Hazem M S Darwish
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Stephen White
- Faculty of Medical Sciences, Biosciences Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Sheila E Francis
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tim Chico
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Emily Noel
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Paul C Evans
- Biochemical Pharmacology,William Harvey Research Institute, Barts & The London Faculty of Medicine &Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
3
|
Sun Q, Lei X, Meng X, Zha C, Yan L, Zhang W. Bioinformatics analysis identifies WNK1 gene as a potential biomarker for cholangiocarcinoma diagnosis and immune infiltration. J Genet Eng Biotechnol 2024; 22:100426. [PMID: 39674642 PMCID: PMC11465147 DOI: 10.1016/j.jgeb.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CHOL) is a malignant epithelial carcinoma of the digestive system with poor prognosis and high mortality. WNK lysine deficient protein kinase 1 (WNK1) is known to be associated with tumorigenesis in various cancers. However, the relationship between WNK1 and CHOL development, as well as the potential mechanisms involved, remains poorly understood. METHODS Microarray datasets of CHOL (GSE22633 and GSE32879) were retrieved from the Gene Expression Omnibus (GEO) database. Functional enrichment and immunoinfiltration analyses were performed for genes co-expressed with WNK1. GraphPad Prism 9 was utilized for statistical data analysis and the construction of receiver operating characteristic (ROC) curves. The impact of WNK1 on the CHOL tumor microenvironment was analyzed using Tumor Immune Estimation Resource (TIMER), Venn diagrams, STRING, and TISIDB database for information on WNK1-related chemokines and chemokine receptors. Protein-protein interaction (PPI) networks were used to predict transcription factors and microRNAs interacting with WNK1 and the associated hub genes. RESULTS Differential expression of WNK1 was observed between CHOL and normal samples, suggesting its diagnostic value. Functional analysis showed that WNK1 and its associated genes were primarily enriched in pathways such as leukocyte transendothelial migration and chemokine signaling. Neutrophils were the only type of infiltrating immune cells associated with WNK1 in the CHOL tumor microenvironment (TME). VEGFA and ALB were identified as hub genes, and X-C motif chemokine receptor 1 (XCR1) and C-X-C motif chemokine ligand 5 (CXCL5) were identified as core chemokines and chemokine receptors related to WNK1 and neutrophil infiltration in CHOL. CONCLUSIONS Based on network analysis and the summary of previous studies, it was proposed that CHOL tumor cells secrete CXCL5, leading to neutrophil recruitment to the tumor microenvironment. Vascular endothelial growth factor A (VEGFA) released by the infiltrating neutrophils is suggested to promote overexpression of WNK1 by tumor cells, activating the VEGFA downstream pathway to promote angiogenesis and tumor progression.
Collapse
Affiliation(s)
- Qi Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Heilong Jiang University of Chinese Medicine, Harbin, China
| | - Xianli Lei
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Xiangrong Meng
- Department of Laboratory Diagnosis, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caijun Zha
- Scientific Research Center of Baoshan People's Hospital, Baoshan, China
| | - Lei Yan
- Department of Laboratory Diagnosis, the Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Guo X, Du X, Zhao G, Liu C, Gao J, Huang Z, Dong W. OSR1 suppresses oral squamous cell carcinoma proliferation and migration via the AXIN2/β-catenin pathway. Oral Dis 2024. [PMID: 39286942 DOI: 10.1111/odi.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES The odd-skipped related transcription factor 1 (OSR1) gene exerts distinct regulatory effects on tumorigenesis and development in various cancer types. However, the precise role of OSR1 in oral squamous cell carcinoma (OSCC) remains to be elucidated. METHODS GEPIA 2 and TCGA databases were utilized to analyze the OSR1 expression in head and neck squamous cell carcinoma (HNSC) patients and its impact on prognosis. Hematoxylin-eosin staining, immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR were employed to detect the OSR1 expression in OSCC tissues and cells. Lentivirus transfection was utilized for overexpression and downexpression of OSR1 in OSCC. CCK8 cell proliferation assay, colony formation and cell scratch assay were conducted to investigate the effects of OSR1 on biological behavior of OSCC cells. Western blotting and RT-qPCR were applied to investigate the regulatory mechanism of OSR1 on AXIN2/β-catenin signaling pathway. RESULTS OSR1 expression was significantly decreased in HNSC patients, OSCC tissues and cells, leading to a decrease in 5-year survival rate. OSR1 overexpression inhibited the proliferation and migration of OSCC cells, and the AXIN2/β-catenin signaling pathway was inhibited. Silencing OSR1 had the opposite effect. CONCLUSIONS OSR1 functioned as a tumor suppressor gene in OSCC proliferation and migration by regulating the AXIN2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xintong Guo
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinyi Du
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Gaoye Zhao
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chongshen Liu
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Gao
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zunzhi Huang
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
5
|
Kim JS, Kehrl JH. Inhibition of WNK Kinases in NK Cells Disrupts Cellular Osmoregulation and Control of Tumor Metastasis. J Innate Immun 2024; 16:451-469. [PMID: 39265537 PMCID: PMC11521464 DOI: 10.1159/000540744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood. METHODS Using the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology. RESULTS WNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells. CONCLUSION The catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
Collapse
Affiliation(s)
- Ji Sung Kim
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Li L, Xie D, Yu S, Ma M, Fan K, Chen J, Xiu M, Xie K, Li Y, Gao Y. WNK1 Interaction with KEAP1 Promotes NRF2 Stabilization to Enhance the Oxidative Stress Response in Hepatocellular Carcinoma. Cancer Res 2024; 84:2776-2791. [PMID: 38885324 DOI: 10.1158/0008-5472.can-23-1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Cellular oxidative stress plays a key role in the development and progression of hepatocellular carcinoma (HCC). A better understanding of the processes that regulate reactive oxygen species (ROS) homeostasis could uncover improved strategies for treating HCC. Herein, we identified protein kinase with-no-lysine kinase 1 (WNK1) as an antioxidative factor and therapeutic target in HCC. In human HCC, WNK1 expression was increased and correlated with poor patient prognosis. WNK1 knockdown significantly inhibited cell proliferation and xenograft tumor growth. Mechanistically, WNK1 competed with nuclear factor erythroid 2-related factor 2 (NRF2) for binding with the partial Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), reducing NRF2 ubiquitination and promoting NRF2 accumulation and nuclear translocation to increase antioxidant response. WNK1 silencing increased H2O2-induced apoptosis and inhibited cell growth by elevating ROS levels, which could be rescued by treatment with the antioxidant N-acetylcysteine and NRF2 activator tert-butylhydroquinone. Liver-specific WNK1 knockout mouse models of HCC substantiated that WNK1 promoted HCC development by regulating ROS levels. WNK463, an inhibitor of the WNK kinase family, suppressed HCC progression and altered the redox status. These findings suggest that WNK1 plays a critical role in HCC development and progression and that the WNK1-oxidative stress axis may be a promising therapeutic target for HCC. Significance: Inhibiting WNK1 induces NRF2 degradation and reduces the oxidative stress response to suppress hepatocellular carcinoma growth, indicating that targeting the WNK1-KEAP1-NRF2 axis is a potential strategy to treat liver cancer.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dacheng Xie
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Muyuan Ma
- Center for Pancreatic Cancer Research, The South China University of Technology, Guangzhou, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengxi Xiu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology, Guangzhou, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jiang G, Cai Y, Cheng D, Wang H, Deng G, Xiang D. CYLD alleviates NLRP3 inflammasome-mediated pyroptosis in osteoporosis by deubiquitinating WNK1. J Orthop Surg Res 2024; 19:212. [PMID: 38561786 PMCID: PMC10983667 DOI: 10.1186/s13018-024-04675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is the result of bone mass reduction and bone structure disorder. Bone marrow mesenchymal stem cells (BMSCs) are the main source of osteogenic precursor cells involved in adult bone remodeling. The involvement of the deubiquitinating enzyme CYLD in OP has recently been discovered. However, the detailed role and mechanism of CYLD remain unknown. METHODS The OP mouse model was established by performing ovariectomy (OVX) on mice. Hematoxylin and eosin staining, Masson and Immunohistochemical staining were used to assess pathologic changes. Real-time quantitative PCR, Western blot, and immunofluorescence were employed to assess the expression levels of CYLD, WNK1, NLRP3 and osteogenesis-related molecules. The binding relationship between CYLD and WNK1 was validated through a co-immunoprecipitation assay. The osteogenic capacity of BMSCs was determined using Alkaline phosphatase (ALP) and alizarin red staining (ARS). Protein ubiquitination was evaluated by a ubiquitination assay. RESULTS The levels of both CYLD and WNK1 were decreased in bone tissues and BMSCs of OVX mice. Overexpression of CYLD or WNK1 induced osteogenic differentiation in BMSCs. Additionally, NLRP3 inflammation was activated in OVX mice, but its activation was attenuated upon overexpression of CYLD or WNK1. CYLD was observed to reduce the ubiquitination of WNK1, thereby enhancing its protein stability and leading to the inactivation of NLRP3 inflammation. However, the protective effects of CYLD on osteogenic differentiation and NLRP3 inflammation inactivation were diminished upon silencing of WNK1. CONCLUSION CYLD mitigates NLRP3 inflammasome-triggered pyroptosis in osteoporosis through its deubiquitination of WNK1.
Collapse
Affiliation(s)
- Guiyong Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 15th Floor, Surgery Building, Southern Hospital, No.1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, China
| | - Yu Cai
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Duo Cheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 15th Floor, Surgery Building, Southern Hospital, No.1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, China
| | - Hao Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 15th Floor, Surgery Building, Southern Hospital, No.1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, China
| | - Geyang Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 15th Floor, Surgery Building, Southern Hospital, No.1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, China
| | - Dayong Xiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 15th Floor, Surgery Building, Southern Hospital, No.1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
8
|
Hou W, Gad SA, Ding X, Dhanarajan A, Qiu W. Focal adhesion kinase confers lenvatinib resistance in hepatocellular carcinoma via the regulation of lysine-deficient kinase 1. Mol Carcinog 2024; 63:173-189. [PMID: 37787401 PMCID: PMC10842616 DOI: 10.1002/mc.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.
Collapse
Affiliation(s)
- Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Shaimaa A. Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Egypt
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
9
|
Ansar SA, Aggarwal S, Arya S, Haq MA, Mittal V, Gared F. An intuitionistic approach for the predictability of anti-angiogenic inhibitors in cancer diagnosis. Sci Rep 2023; 13:7051. [PMID: 37120640 PMCID: PMC10148825 DOI: 10.1038/s41598-023-32850-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/03/2023] [Indexed: 05/01/2023] Open
Abstract
Malignant cancer angiogenesis has historically attracted enormous scientific attention. Although angiogenesis is requisite for a child's development and conducive to tissue homeostasis, it is deleterious when cancer lurks. Today, anti-angiogenic biomolecular receptor tyrosine kinase inhibitors (RTKIs) to target angiogenesis have been prolific in treating various carcinomas. Angiogenesis is a pivotal component in malignant transformation, oncogenesis, and metastasis that can be activated by a multiplicity of factors (e.g., VEGF (Vascular endothelial growth factor), (FGF) Fibroblast growth factor, (PDGF) Platelet-derived growth factor and others). The advent of RTKIs, which primarily target members of the VEGFR (VEGF Receptor) family of angiogenic receptors has greatly ameliorated the outlook for some cancer forms, including hepatocellular carcinoma, malignant tumors, and gastrointestinal carcinoma. Cancer therapeutics have evolved steadily with active metabolites and strong multi-targeted RTK inhibitors such as E7080, CHIR-258, SU 5402, etc. This research intends to determine the efficacious anti-angiogenesis inhibitors and rank them by using the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE- II) decision-making algorithm. The PROMETHEE-II approach assesses the influence of growth factors (GFs) in relation to the anti-angiogenesis inhibitors. Due to their capacity to cope with the frequently present vagueness while ranking alternatives, fuzzy models constitute the most suitable tools for producing results for analyzing qualitative information. This research's quantitative methodology focuses on ranking the inhibitors according to their significance concerning criteria. The evaluation findings indicate the most efficacious and idle alternative for inhibiting angiogenesis in cancer.
Collapse
Affiliation(s)
- Syed Anas Ansar
- Department of Computer Application, Babu Banarasi Das University, Lucknow, India
| | - Shruti Aggarwal
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Swati Arya
- Department of Computer Application, Babu Banarasi Das University, Lucknow, India
| | - Mohd Anul Haq
- Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al Majmaáh, Saudi Arabia
| | - Vikas Mittal
- Department of Electronics and Communication Engineering, Chandigarh University, Mohali, India
| | - Fikreselam Gared
- Faculty of Electrical and Computer Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| |
Collapse
|
10
|
Jiang H, Cheng X, Liang Y, Wang Y, Li Y, Li Y. Aberrant expression of WNK lysine deficient protein kinase 1 is associated with poor prognosis of colon adenocarcinoma. Ir J Med Sci 2023; 192:57-64. [PMID: 35138567 DOI: 10.1007/s11845-021-02916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS WNK1 (WNK lysine deficient protein kinase 1) is a kind of protein kinase and participates in angiogenesis, having a potent tumor promoting role. WNK1 is ubiquitously expressed, and its upregulated expression has been reported in several tumor types. AIMS Here, we aimed to investigate the correlation between WNK1 expression and colon adenocarcinoma (COAD) progression. METHODS In the current study, WNK1 expression was evaluated by immunohistochemically in adjacent normal colonic mucosae and primary adenocarcinomas. The effect of WNK1 on overall survival (OS) and its associations with the clinicopathological parameters were analyzed in a retrospective cohort of COAD patients (n = 185). The tumor-related effects of WNK1 in COAD were further tested via cellular and mice experiments. RESULTS According to our cohort, higher WNK1 expression was significantly associated with unfavorable prognostic factors, such as high pT stage, pN stage, as well as shorter OS. Moreover, WNK1 exhibited tumor promoting role in COAD cancer cell lines as well as in nude mice. Silencing WNK1 can significantly inhibit the proliferation of COAD both in vitro and in vivo. CONCLUSIONS In all, WNK1 acts as a tumor promoter and may be used as a COAD prognostic biomarker.
Collapse
Affiliation(s)
- Huiyuan Jiang
- Department of Colorectal & Anal Surgery, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Cheng
- Department of Gynecology, First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanjie Liang
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Wang
- Department of Aetiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiqun Li
- Department of Colorectal & Anal Surgery, Affiliated People's Hospital of Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, China
| | - Yaoping Li
- Department of Colorectal & Anal Surgery, Affiliated People's Hospital of Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, China.
| |
Collapse
|
11
|
Loss of WNK1 Suppressed the Malignant Behaviors of Hepatocellular Carcinoma Cells by Promoting Autophagy and Activating AMPK Pathway. DISEASE MARKERS 2022; 2022:6831224. [PMID: 36618969 PMCID: PMC9822739 DOI: 10.1155/2022/6831224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Background WNK lysine deficient protein kinase 1 (WNK1) has been shown to be highly expressed in hepatocellular carcinoma (HCC) samples and related to poor prognosis of HCC patients based on bioinformatics analysis. However, the specific function of WNK1 in HCC has not been analyzed. This study is aimed at exploring the function of WNK1 in HCC progression as well as its related molecular mechanism. Methods After knockdown of WNK1 by small interference RNA, cell counting kit-8, colony formation, western blot, Transwell, and wound healing assays were employed to evaluate the biological behaviors of HCC cells. Immunofluorescent staining was applied to detect the effect of WNK1 on LC3 II. GSK690693 or si-AMPK was applied to block AMPK pathway. The expression of autophagy and AMPK pathway related molecules was examined by western blot assay. Results WNK1 was highly expressed in HCC cell lines and loss of WNK1 inhibited HCC cell proliferation, cell cycle, migration, and invasion. Additionally, we demonstrated that loss of WNK1 promoted the autophagy and activated AMPK pathway in HCC cells. While, GSK690693 treatment or si-AMPK transfection suppressed the autophagy and promoted HCC cells proliferation. However, WNK1 knockdown counteracted the effect of GSK690693 or si-AMPK in regulating HCC cell proliferation. Finally, we demonstrated that WNK1 regulated the malignant behaviors of HCC cells by modulating autophagy and AMPK pathway. Conclusions The above results indicated that WNK1 may be a worthwhile target to be considered for therapy of HCC.
Collapse
|
12
|
TRIB3 Interacts with STAT3 to Promote Cancer Angiogenesis. Curr Med Sci 2022; 42:932-940. [PMID: 36245025 DOI: 10.1007/s11596-022-2655-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis, which is a hallmark of cancer that promotes cancer growth and metastasis. It is of great significance to find new intervention targets and related regulatory mechanisms of VEGFA related angiogenesis for the treatment of tumors. This study focuses on the role of tribbles pseudokinase 3 (TRIB3)/signal transducer and activator of transcription 3 (STAT3)/VEGFA signaling axis in colon cancer angiogenesis. METHODS This study investigated the expression level of TRIB3 in colon cancer through database analysis and tissue microarray analysis. The effect of TRIB3 on proliferation, migration and tube formation ability of human umbilical vein endothelial cells (HUVECs) was further confirmed by CCK8 assay, scratch-wound assay/migration assay and tube formation assay respectively. The regulatory relationship of TRIB3/VEGFA signaling axis was identified by qPCR and Western blotting, which was further confirmed through animal experiments, and the specific regulatory mechanism was explored by immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) with colon cancer cell lines. RESULTS TRIB3 was increased in colon cancer tissues compared to normal tissues, and elevated TRIB3 expression indicated a poor prognosis in colon cancer patients. Moreover, it was found that silencing TRIB3 could inhibit cancer angiogenesis, whereas overexpressing TRIB3 promoted cancer angiogenesis in vitro and in vivo. Mechanistically, TRIB3 physically interacted with STAT3 and enhanced STAT3-mediated transcriptional activity. Furthermore, the function of TRIB3 in cancer angiogenesis was through cooperating with STAT3 to increase the VEGFA expression. CONCLUSION Our study provides insights into cancer angiogenesis and offers a potential therapeutic strategy for TRIB3-overexpressed cancer.
Collapse
|
13
|
Nersisyan S, Gorbonos A, Makhonin A, Zhiyanov A, Shkurnikov M, Tonevitsky A. isomiRTar: a comprehensive portal of pan-cancer 5'-isomiR targeting. PeerJ 2022; 10:e14205. [PMID: 36275459 PMCID: PMC9583861 DOI: 10.7717/peerj.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Inaccurate cleavage of pri- and pre-miRNA hairpins by Drosha and Dicer results in the generation of miRNA isoforms known as isomiRs. isomiRs with 5'-end variations (5'-isomiRs) create a new dimension in miRNA research since they have different seed regions and distinct targetomes. We developed isomiRTar (https://isomirtar.hse.ru)-a comprehensive portal that allows one to analyze expression profiles and targeting activity of 5'-isomiRs in cancer. Using the Cancer Genome Atlas sequencing data, we compiled the list of 1022 5'-isomiRs expressed in 9282 tumor samples across 31 cancer types. Sequences of these isomiRs were used to predict target genes with miRDB and TargetScan. The putative interactions were then subjected to the co-expression analysis in each cancer type to identify isomiR-target pairs supported by significant negative correlations. Downstream analysis of the data deposited in isomiRTar revealed both cancer-specific and cancer-conserved 5'-isomiR expression landscapes. Pairs of isomiRs differing in one nucleotide shift from 5'-end had poorly overlapping targetomes with the median Jaccard index of 0.06. The analysis of colorectal cancer 5'-isomiR-mediated regulatory networks revealed promising candidate tumor suppressor isomiRs: hsa-miR-203a-3p-+1, hsa-miR-192-5p-+1 and hsa-miR-148a-3p-0. In summary, we believe that isomiRTar will help researchers find novel mechanisms of isomiR-mediated gene silencing in different types of cancer.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia,Armenian Bioinformatics Institute (ABI), Yerevan, Armenia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Alexey Makhonin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Anton Zhiyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
14
|
Hou CY, Ma CY, Lin YJ, Huang CL, Wang HD, Yuh CH. WNK1–OSR1 Signaling Regulates Angiogenesis-Mediated Metastasis towards Developing a Combinatorial Anti-Cancer Strategy. Int J Mol Sci 2022; 23:ijms232012100. [PMID: 36292952 PMCID: PMC9602556 DOI: 10.3390/ijms232012100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53−/−] and [HBx,src,p53−/−,RPIA], while ppp2r1bb is downregulated in [tert x p53−/−]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53−/−,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1β expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated β-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1–OSR1–PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1–OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1–OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.
Collapse
Affiliation(s)
- Chia-Ying Hou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chung-Yung Ma
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Ju Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: (H.-D.W.); (C.-H.Y.); Tel.: +886-3-5742470 (H.-D.W.); +886-37-206166 (ext. 35338) (C.-H.Y.)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-D.W.); (C.-H.Y.); Tel.: +886-3-5742470 (H.-D.W.); +886-37-206166 (ext. 35338) (C.-H.Y.)
| |
Collapse
|
15
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
16
|
Kwiatkowska I, Hermanowicz JM, Iwinska Z, Kowalczuk K, Iwanowska J, Pawlak D. Zebrafish—An Optimal Model in Experimental Oncology. Molecules 2022; 27:molecules27134223. [PMID: 35807468 PMCID: PMC9268704 DOI: 10.3390/molecules27134223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/02/2023] Open
Abstract
A thorough understanding of cancer pathogenesis is a necessary step in the development of more effective and safer therapy. However, due to the complexity of the process and intricate interactions, studying tumor development is an extremely difficult and challenging task. In bringing this issue closer, different scientific models with various advancement levels are helpful. Cell cultures is a system that is too simple and does not allow for multidirectional research. On the other hand, rodent models, although commonly used, are burdened with several limitations. For this reason, new model organisms that will allow for the studying of carcinogenesis stages and factors reliably involved in them are urgently sought after. Danio rerio, an inconspicuous fish endowed with unique features, is gaining in importance in the world of scientific research. Including it in oncological research brings solutions to many challenges afflicting modern medicine. This article aims to illustrate the usefulness of Danio rerio as a model organism which turns out to be a powerful and unique tool for studying the stages of carcinogenesis and solving the hitherto incomprehensible processes that lead to the development of the disease.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Zaneta Iwinska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Jolanta Iwanowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| |
Collapse
|
17
|
Jung JU, Jaykumar AB, Cobb MH. WNK1 in Malignant Behaviors: A Potential Target for Cancer? Front Cell Dev Biol 2022; 10:935318. [PMID: 35813203 PMCID: PMC9257110 DOI: 10.3389/fcell.2022.935318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models and patient data have implicated the protein kinase WNK1 as one of a handful of genes uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely implicated in the regulation of ion co-transporters and in controlling cell responses to osmotic stress. In this review we will discuss its actions in tumor malignancy in human cancers and present evidence for its function in invasion, migration, angiogenesis and mesenchymal transition.
Collapse
Affiliation(s)
| | | | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
18
|
Jung JU, Ghosh A, Earnest S, Deaton SL, Cobb MH. UBR5 is a novel regulator of WNK1 stability. Am J Physiol Cell Physiol 2022; 322:C1176-C1186. [PMID: 35442829 DOI: 10.1152/ajpcell.00417.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The with no lysine (K) 1 (WNK1) protein kinase maintains cellular ion homeostasis in many tissues through actions on ion cotransporters and channels. Increased accumulation of WNK1 protein leads to pseudohypoaldosteronism type II (PHAII), a form of familial hypertension. WNK1 can be degraded via its adaptor-dependent recruitment to the Cullin3-RBX1 E3 ligase complex by the ubiquitin-proteasome system. Disruption of this process also leads to disease. To determine if this is the primary mechanism of WNK1 turnover, we examined WNK1 protein stability and degradation by measuring its rate of decay after blockade of translation. Here, we show that WNK1 protein degradation exhibits atypical kinetics in Hela cells. Consistent with this apparent complexity, we found that multiple degradative pathways can modulate cellular WNK1 protein amount. WNK1 protein is degraded not only by the proteasome, but also by the lysosome. Non-lysosomal cysteine proteases calpain and caspases also influence WNK1 degradation, as inhibitors of these proteases modestly increased WNK1 protein expression. Importantly, we discovered that the E3 ubiquitin ligase UBR5 interacts with WNK1 and its deficiency results in increased WNK1 protein. Our results further demonstrate that increased WNK1 in UBR5-depleted cells is attributable to reduced lysosomal degradation of WNK1 protein. Taken together, our findings provide insights into the multiplicity of degradative pathways involved in WNK1 turnover and uncover UBR5 as a previously unknown regulator of WNK1 protein stability that leads to lysosomal degradation of WNK1 protein.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anwesha Ghosh
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Staci L Deaton
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
19
|
Zhao Y, Song Q, Xu F, Zhou Y, Zuo X, Zhang Z. Pyroptosis-Related Risk Signature Exhibits Distinct Prognostic, Immune, and Therapeutic Landscapes in Hepatocellular Carcinoma. Front Genet 2022; 13:823443. [PMID: 35368686 PMCID: PMC8965507 DOI: 10.3389/fgene.2022.823443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common abdominal cancer. The existing therapeutic approaches often fail to achieve satisfactory results. Pyroptosis, an inflammatory form of programmed cell death, provides new ideas for anticancer treatment. However, the roles of pyroptosis-related (PR) genes (PRGs) in HCC remain elusive. Methods: Differentially expressed genes (DEGs) (n = 22) were screened out using TCGA and GTEx databases. A novel PR risk signature was constructed through Lasso regression analysis. Its prognostic value was evaluated through a series of survival analyses and was tested in ICGC and GSE14520 cohorts. CIBERSORT, ssGSEA, and ESTIMATE methods were employed to determine the effects of the PR risk score on the tumor immune microenvironment (TIM). The TIDE scoring system, IMvigor210 cohort, GSE109211 dataset, and GSDC database were applied to explore the associations of the PR risk score with therapeutic effects. The biofunctions of WNK1 in hepatocellular cancer (HC) cells were confirmed through qPCR, colony formation, and Transwell assays. Results: Overall, 22 of 45 PRGs (48.9%) were abnormally expressed in HCC samples. Then, a PR risk signature consisting of eight PRGs was constructed. A high PR risk score led to an unfavorable prognosis. The PR risk score was identified as an independent prognostic factor of HCC and could increase the decision-making benefit of the traditional TNM model. In addition, we established a nomogram containing the clinical stage and PR risk score to predict the survival rates of HCC patients. The prognostic value of the PR model was successfully validated in ICGC and GSE14520 cohorts. Moreover, high PR risk conferred the decreased infiltration level of CD8+ T cells and weakened the activities of "cytolytic activity" pathways. As for therapeutic correlation, a high PR risk score seemed to imply a poor efficacy of PD-1/L1 inhibitors and sorafenib. Finally, the overexpression of WNK1 could promote the proliferation, migration, and invasion of HC cells. Conclusions: The PR risk score was closely related to the prognosis, antitumor immune process, therapeutic outcomes, and malignant progression of HCC. WNK1, the core regulator of pyroptosis, possesses pro-oncogenic abilities, showing promise as a novel treatment target.
Collapse
Affiliation(s)
- Yidi Zhao
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingya Song
- Xi'an Medical Emergency Center, Xi'an, China
| | - Fangshi Xu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhou
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Zuo
- Department of Orthopedics, Second Affiliated Hospital of Xi'a Jiaotong University, Xi'an, China
| | - Zhengliang Zhang
- Department of Emergency, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Oxidative Stress and AKT-Associated Angiogenesis in a Zebrafish Model and Its Potential Application for Withanolides. Cells 2022; 11:cells11060961. [PMID: 35326412 PMCID: PMC8946239 DOI: 10.3390/cells11060961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the AKT serine/threonine kinase (AKT) signaling pathway are essential regulators in cellular migration, metastasis, and angiogenesis. More than 300 withanolides were discovered from the plant family Solanaceae, exhibiting diverse functions. Notably, the relationship between oxidative stress, AKT signaling, and angiogenesis in withanolide treatments lacks comprehensive understanding. Here, we summarize connecting evidence related to oxidative stress, AKT signaling, and angiogenesis in the zebrafish model. A convenient vertebrate model monitored the in vivo effects of developmental and tumor xenograft angiogenesis using zebrafish embryos. The oxidative stress and AKT-signaling-modulating abilities of withanolides were highlighted in cancer treatments, which indicated that further assessments of their angiogenesis-modulating potential are necessary in the future. Moreover, targeting AKT for inhibiting AKT and its AKT signaling shows the potential for anti-migration and anti-angiogenesis purposes for future application to withanolides. This particularly holds for investigating the anti-angiogenetic effects mediated by the oxidative stress and AKT signaling pathways in withanolide-based cancer therapy in the future.
Collapse
|
21
|
Lin HD, Tseng YK, Yuh CH, Chen SC. Low concentrations of 4-ABP promote liver carcinogenesis in human liver cells and a zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126954. [PMID: 34474361 DOI: 10.1016/j.jhazmat.2021.126954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
4-Aminobiphenyl (4-ABP) is a human bladder cancer carcinogen found in the manufacture of azo dyes and the composition of cigarette smoke in the environment. To determine whether low concentrations of 4-ABP induced or promote liver carcinogenesis and investigate the underlying mechanism, we have established the liver cell carcinogenesis model in human liver cell lines and zebrafish to evaluate liver cancer development associated with long-term exposure to low concentrations of 4-ABP. Results show that repeated 4-ABP exposure promoted cellular proliferation and migration via the involvement of ROS in Ras/MEK/ERK pathway in vitro. Also, 4-ABP (1, 10, and 100 nM) induces hepatocellular carcinoma (HCC) formation in HBx, Src (p53-/-) transgenic zebrafish at four months of age and in wild-type zebrafish at seven months of age. In addition, we observed a correlation between the Ras-ERK pathway and 4-ABP-induced HCC in vitro and in vivo. Our finding suggests low concentrations of 4-ABP repeated exposure is a potential risk factor for liver cancer. To our knowledge, this is the first report on the promotion of liver carcinogenesis in human liver cells and zebrafish following 4-ABP exposure.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan; Department of Biological Science & Technology, National Chiao Tung University, Hsinchu, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Song H, Ruan C, Xu Y, Xu T, Fan R, Jiang T, Cao M, Song J. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Exp Biol Med (Maywood) 2021; 247:898-909. [PMID: 34904882 DOI: 10.1177/15353702211065010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prognosis stratification in colorectal cancer helps to address cancer heterogeneity and contributes to the improvement of tailored treatments for colorectal cancer patients. In this study, an autoencoder-based model was implemented to predict the prognosis of colorectal cancer via the integration of multi-omics data. DNA methylation, RNA-seq, and miRNA-seq data from The Cancer Genome Atlas (TCGA) database were integrated as input for the autoencoder, and 175 transformed features were produced. The survival-related features were used to cluster the samples using k-means clustering. The autoencoder-based strategy was compared to the principal component analysis (PCA)-, t-distributed random neighbor embedded (t-SNE)-, non-negative matrix factorization (NMF)-, or individual Cox proportional hazards (Cox-PH)-based strategies. Using the 175 transformed features, tumor samples were clustered into two groups (G1 and G2) with significantly different survival rates. The autoencoder-based strategy performed better at identifying survival-related features than the other transformation strategies. Further, the two survival groups were robustly validated using "hold-out" validation and five validation cohorts. Gene expression profiles, miRNA profiles, DNA methylation, and signaling pathway profiles varied from the poor prognosis group (G2) to the good prognosis group (G1). miRNA-mRNA networks were constructed using six differentially expressed miRNAs (let-7c, mir-34c, mir-133b, let-7e, mir-144, and mir-106a) and 19 predicted target genes. The autoencoder-based computational framework could distinguish good prognosis samples from bad prognosis samples and facilitate a better understanding of the molecular biology of colorectal cancer.
Collapse
Affiliation(s)
- Hu Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Chengwei Ruan
- Department of Anorectal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yixin Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Teng Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ruizhi Fan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Tao Jiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Meng Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jun Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| |
Collapse
|
23
|
Targen S, Konu O. Zebrafish Xenotransplantation Models for Studying Gene Function and Drug Treatment in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1248-1265. [PMID: 35031971 DOI: 10.1007/s12029-021-00782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Zebrafish is a promising model organism for human disease including hepatocellular cancer (HCC). Recently, zebrafish has emerged also as a host for xenograft studies of liver cancer cell lines and patient derived tumors of HCC. Zebrafish embryos enable drug screening and gene function studies of xenografted cells via ease of microinjection and visualization of tumor growth and metastasis. OBJECTIVES In this review, we aimed to overview zebrafish HCC and liver cancer xenotransplantation studies focusing on 'gene functional analysis' and 'drug/chemical screening'. METHODS Herein, a comprehensive literature search was performed for liver and HCC xenografts in zebrafish on PubMed using different key words and filters for molecular modifications or drug exposure. RESULTS Our literature search revealed around 250 studies which were filtered and summarized in a table (Table 1) revealing comprehensive collection of experimental and technical details on microinjection, injected cell lines, molecular modifications of injected cells, types and doses of drug treatments as well as biological assessments. CONCLUSION This review provides a platform for HCC and liver xenografts and highlights studies performed to understand gene functionality and drug efficacy in vivo in zebrafish.
Collapse
Affiliation(s)
- Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
24
|
Saddhe AA, Karle SB, Aftab T, Kumar K. With no lysine kinases: the key regulatory networks and phytohormone cross talk in plant growth, development and stress response. PLANT CELL REPORTS 2021; 40:2097-2109. [PMID: 34110446 DOI: 10.1007/s00299-021-02728-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 05/25/2023]
Abstract
With No Lysine kinases (WNKs) are a distinct family of Serine/Threonine protein kinase with unique arrangement of catalytic residues in kinase domain. In WNK, an essential catalytic lysine requisite for attaching ATP and phosphorylation reaction is located in subdomain I, instead of subdomain II, which is essentially a typical feature of other Ser/Thr kinases. WNKs are identified in diverse organisms including multicellular and unicellular organisms. Mammalian WNKs are well characterized at structural and functional level, while plant WNKs are not explored much except few recent studies. Plant WNKs role in various physiological processes viz. ion maintenance, osmotic stress, pH homeostasis, circadian rhythms, regulation of flowering time, proliferation and organ development, and abiotic stresses are known, but the mechanisms involved are unclear. Plant WNKs are known to be involved in enhanced drought and salt stress response via ABA-signaling pathway, but the complete signaling cascade is yet to be elucidated. The current review will discuss the interplay between WNKs and growth regulators and their cross talks in plant growth and development. We have also highlighted the link between the stress phytohormones and WNK members in regulating abiotic stress responses in plants. The present review will provide an overall known mechanism on the involvement of WNKs in plant growth and development and abiotic stress response and highlight its role/applications in the development of stress-tolerant plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Suhas Balasaheb Karle
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202 002, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India.
| |
Collapse
|
25
|
Li Z, Fu Y, Shen J, Liang J. Upstream Open Reading Frame Mediated Translation of WNK8 Is Required for ABA Response in Arabidopsis. Int J Mol Sci 2021; 22:ijms221910683. [PMID: 34639024 PMCID: PMC8509022 DOI: 10.3390/ijms221910683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
With no lysine (K) (WNK) kinases comprise a family of serine/threonine kinases belonging to an evolutionary branch of the eukaryotic kinome. These special kinases contain a unique active site and are found in a wide range of eukaryotes. The model plant Arabidopsis has been reported to have 11 WNK members, of which WNK8 functions as a negative regulator of abscisic acid (ABA) signaling. Here, we found that the expression of WNK8 is post-transcriptionally regulated through an upstream open reading frame (uORF) found in its 5′ untranslated region (5′-UTR). This uORF has been predicted to encode a conserved peptide named CPuORF58 in both monocotyledons and dicotyledons. The analysis of the published ribosome footprinting studies and the study of the frameshift CPuORF58 peptide with altered repression capability suggested that this uORF causes ribosome stalling. Plants transformed with the native WNK8 promoter driving WNK8 expression were comparable with wild-type plants, whereas the plants transformed with a similar construct with mutated CPuORF58 start codon were less sensitive to ABA. In addition, WNK8 and its downstream target RACK1 were found to synergistically coordinate ABA signaling rather than antagonistically modulating glucose response and flowering in plants. Collectively, these results suggest that the WNK8 expression must be tightly regulated to fulfill the demands of ABA response in plants.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (Z.L.); (J.L.)
| | - Yajuan Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
| | - Jinyu Shen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; (Y.F.); (J.S.)
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (Z.L.); (J.L.)
| |
Collapse
|
26
|
Mayes-Hopfinger L, Enache A, Xie J, Huang CL, Köchl R, Tybulewicz VLJ, Fernandes-Alnemri T, Alnemri ES. Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun 2021; 12:4546. [PMID: 34315884 PMCID: PMC8316491 DOI: 10.1038/s41467-021-24784-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
The NLRP3 inflammasome mediates the production of proinflammatory cytokines and initiates inflammatory cell death. Although NLRP3 is essential for innate immunity, aberrant NLRP3 inflammasome activation contributes to a wide variety of inflammatory diseases. Understanding the pathways that control NLRP3 activation will help develop strategies to treat these diseases. Here we identify WNK1 as a negative regulator of the NLRP3 inflammasome. Macrophages deficient in WNK1 protein or kinase activity have increased NLRP3 activation and pyroptosis compared with control macrophages. Mice with conditional knockout of WNK1 in macrophages have increased IL-1β production in response to NLRP3 stimulation compared with control mice. Mechanistically, WNK1 tempers NLRP3 activation by balancing intracellular Cl- and K+ concentrations during NLRP3 activation. Collectively, this work shows that the WNK1 pathway has a critical function in suppressing NLRP3 activation and suggests that pharmacological inhibition of this pathway to treat hypertension might have negative clinical implications.
Collapse
Affiliation(s)
- Lindsey Mayes-Hopfinger
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aura Enache
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert Köchl
- The Francis Crick Institute, London, UK
- Kings College London, London, UK
| | | | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
28
|
Schiapparelli P, Pirman NL, Mohler K, Miranda-Herrera PA, Zarco N, Kilic O, Miller C, Shah SR, Rogulina S, Hungerford W, Abriola L, Hoyer D, Turk BE, Guerrero-Cázares H, Isaacs FJ, Quiñones-Hinojosa A, Levchenko A, Rinehart J. Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Rep 2021; 36:109416. [PMID: 34289367 PMCID: PMC8379681 DOI: 10.1016/j.celrep.2021.109416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/23/2020] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery.
Collapse
Affiliation(s)
| | - Natasha L Pirman
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kyle Mohler
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | | | - Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chad Miller
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Svetlana Rogulina
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - William Hungerford
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Denton Hoyer
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Andre Levchenko
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
29
|
Ho YJ, Chang J, Yeh KT, Gong Z, Lin YM, Lu JW. Prognostic and Clinical Implications of WNK Lysine Deficient Protein Kinase 1 Expression in Patients With Hepatocellular Carcinoma. In Vivo 2021; 34:2631-2640. [PMID: 32871793 DOI: 10.21873/invivo.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is a particularly malignant form of cancer prevalent throughout the world; however, there is a pressing need for HCC biomarkers to facilitate prognosis and risk assessment. PATIENTS AND METHODS This paper reports on the potential prognostic value of WNK lysine deficient protein kinase 1 (WNK1) in cases of HCC. We analyzed the expression of WNK1 at the mRNA level using omics data from the UALCAN database. We then verified our findings through the immunohistochemical (IHC) staining of various human cancer tissue as well as 59 HCC samples paired with corresponding normal tissues. The prognostic value of mRNA or protein expression by WNK1 was evaluated using the Kaplan-Meier method. RESULTS Initial screening results revealed significantly higher WNK1 expression levels in HCC tissue compared to normal tissue. Verification using the paired HCC samples confirmed that the expression of WNK1 was indeed significantly higher in HCC tissue samples than in adjacent normal tissues. High WNK1 expression levels were significantly correlated with clinicopathological variables, including gender and histologic grade. Kaplan-Meier survival analysis revealed that high WNK1 expression levels were associated with poor HCC prognosis. Finally, univariate and multivariate analysis identified WNK1 as a prognostic factor for TNM stage in cases of HCC. CONCLUSION In summary, WNK1 is overexpressed at the mRNA and protein levels, and correlated with poor prognosis. Thus, WNK1 expression could potentially be used as a biomarker in HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
31
|
Cardon T, Ozcan B, Aboulouard S, Kobeissy F, Duhamel M, Rodet F, Fournier I, Salzet M. Epigenetic Studies Revealed a Ghost Proteome in PC1/3 KD Macrophages under Antitumoral Resistance Induced by IL-10. ACS OMEGA 2020; 5:27774-27782. [PMID: 33163760 PMCID: PMC7643081 DOI: 10.1021/acsomega.0c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Our previous investigation on macrophages has allowed us to show that the inhibition of the enzyme proprotein convertase (PC1/3) controls the activation of macrophages. We demonstrated that PC1/3 knockdown (KD) in macrophages exhibits an increased secretion of proinflammatory and antitumoral factors. In this biological context, we assessed the presence of histone modifications and the presence and contribution of a "ghost proteome" in these macrophages. We identified a set of alternative proteins (AltProts) that have a key role in the regulation of various signaling pathways. In this study, to further investigate the underlying mechanisms involved in the resistance of PC1/3-KD macrophages to anti-inflammatory stimuli, we have conducted a proteomic system biology study to assess the epigenome variation, focusing on histone modifications. Results from our study have indicated the presence of significant variations in histone modifications along with the identification of 28 AltProts, which can be correlated with antitumoral resistance under IL-10 stimulation. These findings highlight a key role of altered epigenome histone modifications in driving resistance and indicate that like the reference proteins, AltProts can have a major impact in the field of epigenetics and regulation of gene expression, as shown in our results.
Collapse
Affiliation(s)
- Tristan Cardon
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Bilgehan Ozcan
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Soulaimane Aboulouard
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Firas Kobeissy
- Department
of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Marie Duhamel
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Franck Rodet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Isabelle Fournier
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| | - Michel Salzet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| |
Collapse
|
32
|
Wu SY, Yang WY, Cheng CC, Hsiao MC, Tsai SL, Lin HK, Lin KH, Yuh CH. Low Molecular Weight Fucoidan Prevents Radiation-Induced Fibrosis and Secondary Tumors in a Zebrafish Model. Cancers (Basel) 2020; 12:cancers12061608. [PMID: 32570707 PMCID: PMC7353073 DOI: 10.3390/cancers12061608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy often causes unwanted side effects such as radiation-induced fibrosis and second malignancies. Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has many biological effects including anti-inflammation and anti-tumor. In the present study, we investigated the radioprotective effect of Oligo-Fucoidan (OF) using a zebrafish animal model. Adult zebrafish of wild-type and transgenic fish with hepatocellular carcinoma were orally fed with Oligo-Fucoidan before irradiation. Quantitative PCR, Sirius red stain, hematoxylin, and eosin stain were used for molecular and pathological analysis. Whole genomic microarrays were used to discover the global program of gene expression after Oligo-Fucoidan treatment and identified distinct classes of up- and downregulated genes/pathways during this process. Using Oligo-Fucoidan oral gavage in adult wild-type zebrafish, we found Oligo-Fucoidan pretreatment decreased irradiation-induced fibrosis in hepatocyte. Using hepatitis B virus X antigen (HBx), Src and HBx, Src, p53−/+ transgenic zebrafish liver cancer model, we found that Oligo-Fucoidan pretreatment before irradiation could lower the expression of lipogenic factors and enzymes, fibrosis, and cell cycle/proliferation markers, which eventually reduced formation of liver cancer compared to irradiation alone. Gene ontology analysis revealed that Oligo-Fucoidan pretreatment increased the expression of genes involved in oxidoreductase activity in zebrafish irradiation. Oligo-Fucoidan also decreased the expression of genes involved in transferase activity in wild-type fish without irradiation (WT), nuclear outer membrane-endoplasmic reticulum membrane network, and non-homologous end-joining (NHEJ) in hepatocellular carcinoma (HCC) transgenic fish. Rescue of those genes can prevent liver cancer formation. Conclusions: Our results provide evidence for the ability of Oligo-Fucoidan to prevent radiation-induced fibrosis and second malignancies in zebrafish.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung 42354, Taiwan;
- Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Yu Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (W.-Y.Y.); (C.-C.C.); (S.-L.T.); (H.-K.L.); (K.-H.L.)
| | - Chun-Chia Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (W.-Y.Y.); (C.-C.C.); (S.-L.T.); (H.-K.L.); (K.-H.L.)
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
| | - Ming-Chen Hsiao
- Research and Development Center, Hi-Q Marine Biotech International Ltd., Songshan District, Taipei 10561, Taiwan;
| | - Shin-Lin Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (W.-Y.Y.); (C.-C.C.); (S.-L.T.); (H.-K.L.); (K.-H.L.)
| | - Hua-Kuo Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (W.-Y.Y.); (C.-C.C.); (S.-L.T.); (H.-K.L.); (K.-H.L.)
| | - Kuan-Hao Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (W.-Y.Y.); (C.-C.C.); (S.-L.T.); (H.-K.L.); (K.-H.L.)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (W.-Y.Y.); (C.-C.C.); (S.-L.T.); (H.-K.L.); (K.-H.L.)
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science & Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246-166 (ext. 3538); Fax: +886-37-586-459
| |
Collapse
|
33
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|