1
|
Thomas ME, Jie E, Kim AM, Mayberry TG, Cowan BC, Luechtefeld HD, Wakefield MR, Fang Y. Exploring the role of antigen-presenting cancer-associated fibroblasts and CD74 on the pancreatic ductal adenocarcinoma tumor microenvironment. Med Oncol 2024; 42:15. [PMID: 39585543 DOI: 10.1007/s12032-024-02564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has proven to be a formidable cancer primarily due to its tumor microenvironment (TME). This highly desmoplastic, hypoxic, and pro-inflammatory environment has not only been shown to facilitate the growth and metastasis of PDAC but has also displayed powerful immunosuppressive capabilities. A critical cell involved in the development of the PDAC TME is the fibroblast, specifically the antigen-presenting cancer-associated fibroblast (apCAF). The pro-inflammatory environment of PDAC induces the proliferation of apCAFs, promoting immunosuppression through immune cell inactivation, immune response regulation, and expression of CD74. In conjunction with apCAFs and tumor cells, CD74 serves as a versatile promoter of PDAC by preventing tumor antigen-expression on tumor cells, upregulating the expression of immunosuppressive chemical mediators, and activating proliferative pathways to induce PDAC malignancy. This review will highlight critical mediators and pathways that promote the PDAC stroma and TME with its hypoxic and immunosuppressive properties. Further, we will highlight the nature of apCAFs and CD74, their specific roles in the PDAC TME, and their potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Michael E Thomas
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA
| | - Emily Jie
- Department of Psychology, Iowa State University, Ames, IA, 50011, USA
| | - Austin M Kim
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA
| | - Trenton G Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Braydon C Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Harrison D Luechtefeld
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Pang N, Yang Z, Zhang W, Du Y, Zhang L, Li X, Peng Y, Qi X. Cancer-associated fibroblasts barrier breaking via TGF-β blockade paved way for docetaxel micelles delivery to treat pancreatic cancer. Int J Pharm 2024; 665:124706. [PMID: 39277152 DOI: 10.1016/j.ijpharm.2024.124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
TGF-β is a crucial regulator in tumor microenvironment (TME), especially for myofibroblastic cancer-associated fibroblasts (myCAFs). The myCAFs can be motivated by TGF-β signaling to erect pro-tumor TME, meanwhile, myCAFs overexpress TGF-β to mediate the crosstalk between tumor and stromal cells. The blockade of TGF-β can break cancer-associated fibroblasts barrier, consequently opening the access for drugs into tumor. The TGF-β is a promising target in anti-tumor therapy. Herein, we introduced a two-stage combination therapy (TC-Therapy), including TGF-β receptor I inhibitor SB525334 (SB) and cytotoxicity agent docetaxel micelle (DTX-M). We found that SB and DTX-M synergistically inhibited myCAFs proliferation and elevated p53 protein expression in BxPC-3/3T3 mixed cells. Gene and protein tests demonstrated that SB cut off TGF-β signaling via receptor blockade and it did not arouse TGF-β legend compensated internal autocrine. On the contrary, two agents combined decreased TGF-β secretion and inhibited myCAFs viability marked by α-SMA and FAPα. TC-Therapy was applied in BxPc-3/3T3 mixed tumor-bearing mice model. After TC-Therapy, the α-SMA+/ FAPα+ myCAFs faded increasingly and collagenous fibers mainly secreted by myCAFs decreased dramatically as well. More than that, the myCAFs barrier breaking helped to normalize micro-vessels and paved way for micelle penetration. The TGF-β protein level of TC-Therapy in TME was much lower than that of simplex DTX-M, which might account for TME restoration. In conclusion, TGF-β inhibitor acted as the pioneer before nano chemotherapeutic agents. The TC-Therapy of TGF-β signaling inhibition and anti-tumor agent DTX-M is a promising regimen without arising metastasis risk to treat pancreatic cancer. The therapeutic regimen focused on TGF-β related myCAFs reminds clinicians to have a comprehensive understanding of pancreatic cancer.
Collapse
Affiliation(s)
- Ning Pang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenjie Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lu Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Forsthuber A, Aschenbrenner B, Korosec A, Jacob T, Annusver K, Krajic N, Kholodniuk D, Frech S, Zhu S, Purkhauser K, Lipp K, Werner F, Nguyen V, Griss J, Bauer W, Soler Cardona A, Weber B, Weninger W, Gesslbauer B, Staud C, Nedomansky J, Radtke C, Wagner SN, Petzelbauer P, Kasper M, Lichtenberger BM. Cancer-associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy. Nat Commun 2024; 15:9678. [PMID: 39516494 PMCID: PMC11549091 DOI: 10.1038/s41467-024-53908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in cancer progression and treatment outcome. This study dissects the intra-tumoral diversity of CAFs in basal cell carcinoma, squamous cell carcinoma, and melanoma using molecular and spatial single-cell analysis. We identify three distinct CAF subtypes: myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs), and immunomodulatory CAFs (iCAFs). Large-cohort tissue analysis reveals significant shifts in CAF subtype patterns with increasing malignancy. Two CAF subtypes exhibit immunomodulatory properties via different mechanisms. mCAFs sythesize extracellular matrix and may restrict T cell invasion in low-grade tumors via ensheathing tumor nests, while iCAFs are enriched in late-stage tumors, and express high levels of cytokines and chemokines to aid immune cell recruitment and activation. This is supported by the induction of an iCAF-like phenotype with immunomodulatory functions in primary healthy fibroblasts exposed to skin cancer cell secretomes. Thus, targeting CAF variants holds promise to enhance immunotherapy efficacy in skin cancers.
Collapse
Affiliation(s)
- Agnes Forsthuber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bertram Aschenbrenner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ana Korosec
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Krajic
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Daria Kholodniuk
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophie Frech
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shaohua Zhu
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kim Purkhauser
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lipp
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Franziska Werner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vy Nguyen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ana Soler Cardona
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Weber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Gesslbauer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jakob Nedomansky
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan N Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Ding Y, Huang Z, Luo Y, Lin H, Wang J, Zeng Z, Zhang T, Chen Y, Gong Y, Zhang M, Zhao C. A fibroblast activation protein α-activatable nanoagent co-delivering diethyldithiocarbamate and copper for tumor therapy and imaging. Acta Biomater 2024; 187:316-327. [PMID: 39151666 DOI: 10.1016/j.actbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Disulfiram (DSF), an FDA-approved drug for treating alcoholism, has been verified with Cu2+-dependent anticancer activity by forming Cu(DTC)2, the complex of one of its metabolites diethyldithiocarbamate (DTC) and Cu2+. Nevertheless, the antitumor effect is limited by insufficient Cu(DTC)2 formation in suit and off-target system toxicity. Herein, we developed a fibroblast activation protein α (FAPα) activatable nanoagent (HfD-HID-Cu) for co-delivery of DTC polymeric prodrug and exogenous Cu2+ to achieve enhanced cancer-specific therapy and activatable in situ fluorescence imaging meanwhile. HfD-HID-Cu was simply constructed through the co-assembly of the DTC polymeric prodrug (HA-fap-DTC) and the copper-loaded IR808-conjugated polymer (HA-IR-DPA-Cu), which could serve as the "OFF-to-ON" switch for chemotherapy and fluorescence. With the high expression of FAPα in tumor tissues, HA-fap-DTC could be activated specifically to release DTC, while maintaining inactive in normal tissues. The liberated DTC within tumor tissues could contend for Cu2+ from HA-IR-DPA-Cu, resulting in the formation of highly cytotoxic Cu(DTC)2in situ for chemotherapy, concomitant with the fluorescence recovery of cyanine dye for tumor imaging. This work provides an effective strategy for co-delivery of DTC prodrug and Cu2+ for tumor theranostic with improved selectivity and minimal side effects. STATEMENT OF SIGNIFICANCE: DSF-based antitumor therapy is highly dependent on Cu2+. However, the non-synchronous distribution of DSF/DTC and Cu2+ in tumor tissues attenuates the antitumor efficacy. The insufficient Cu(DTC)2 formation in suit and off-target distribution greatly limit the anti-tumor application. This study provides a nanoagent for co-delivery of DTC polymeric prodrug and Cu2+ by simple co-assembly to achieve their synchronous tumor distribution. It can be selectively activated by FAPα, forming cytotoxic Cu(DTC)2in suit for tumor-specific chemotherapy and reducing the systemic toxicity. In addition to chemotherapy, the nanoagent can emit fluorescence under the sequential triggering of FAPα and released DTC for tumor imaging. Overall, this study renders a promising strategy for improved Cu(DTC)2-based antitumor therapy and imaging.
Collapse
Affiliation(s)
- Yaqing Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huanxin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jue Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yiwei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yujun Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Mingxia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
5
|
Li M, Freeman S, Franco-Barraza J, Cai KQ, Kim A, Jin S, Cukierman E, Ye K. A bioprinted sea-and-island multicellular model for dissecting human pancreatic tumor-stroma reciprocity and adaptive metabolism. Biomaterials 2024; 310:122631. [PMID: 38815457 PMCID: PMC11186049 DOI: 10.1016/j.biomaterials.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFβ) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Ming Li
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sebastian Freeman
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Amy Kim
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA.
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA.
| |
Collapse
|
6
|
Poyia F, Neophytou CM, Christodoulou MI, Papageorgis P. The Role of Tumor Microenvironment in Pancreatic Cancer Immunotherapy: Current Status and Future Perspectives. Int J Mol Sci 2024; 25:9555. [PMID: 39273502 PMCID: PMC11395109 DOI: 10.3390/ijms25179555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic cancer comprises different subtypes, where most cases include ductal adenocarcinoma (PDAC). It is one of the deadliest tumor types, with a poor prognosis. In the majority of patients, the disease has already spread by the time of diagnosis, making full recovery unlikely and increasing mortality risk. Despite developments in its detection and management, including chemotherapy, radiotherapy, and targeted therapies as well as advances in immunotherapy, only in about 13% of PDAC patients does the overall survival exceed 5 years. This may be attributed, at least in part, to the highly desmoplastic tumor microenvironment (TME) that acts as a barrier limiting perfusion, drug delivery, and immune cell infiltration and contributes to the establishment of immunologically 'cold' conditions. Therefore, there is an urgent need to unravel the complexity of the TME that promotes PDAC progression and decipher the mechanisms of pancreatic tumors' resistance to immunotherapy. In this review, we provide an overview of the major cellular and non-cellular components of PDAC TME, as well as their biological interplays. We also discuss the current state of PDAC therapeutic treatments and focus on ongoing and future immunotherapy efforts and multimodal treatments aiming at remodeling the TME to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Fotini Poyia
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Christiana M Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
7
|
Lindeman SD, Booth OC, Tudi P, Schleinkofer TC, Moss JN, Kearney NB, Mukkamala R, Thompson LK, Modany MA, Srinivasarao M, Low PS. FAP Radioligand Linker Optimization Improves Tumor Dose and Tumor-to-Healthy Organ Ratios in 4T1 Syngeneic Model. J Med Chem 2024; 67:11827-11840. [PMID: 39013156 DOI: 10.1021/acs.jmedchem.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibroblast activation protein (FAP) has attracted considerable attention as a possible target for the radiotherapy of solid tumors. Unfortunately, initial efforts to treat solid tumors with FAP-targeted radionuclides have yielded only modest clinical responses, suggesting that further improvements in the molecular design of FAP-targeted radiopharmaceutical therapies (RPT) are warranted. In this study, we report several advances on the previously described FAP6 radioligand that increase tumor retention and accelerate healthy tissue clearance. Seven FAP6 derivatives with different linkers or albumin binders were synthesized, radiolabeled, and investigated for their effects on binding and cellular uptake. The radioligands were then characterized in 4T1 tumor-bearing Balb/c mice using both single-photon emission computed tomography (SPECT) and ex vivo biodistribution analyses to identify the conjugate with the best tumor retention and tumor-to-healthy organ ratios. The results reveal an optimized FAP6 radioligand that exhibits efficacy and safety properties that potentially justify its translation into the clinic.
Collapse
Affiliation(s)
- Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Owen C Booth
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pooja Tudi
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taylor C Schleinkofer
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson N Moss
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas B Kearney
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lauren K Thompson
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mollie A Modany
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
9
|
Cao LZ, Yang FH, Zhang H, Jia AM, Li SP, Wen HL. Asperuloside inhibits the activation of pancreatic cancer-associated fibroblasts via activating transcription factor 6. Discov Oncol 2024; 15:234. [PMID: 38896161 PMCID: PMC11187058 DOI: 10.1007/s12672-024-01095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer-associated fibroblasts (CAFs) play a crucial role in tumor progression and immune evasion. Asperuloside (ASP) is an iridoid glycoside with potential anti-tumor properties. This study aimed to explore the molecular mechanisms of ASP on CAFs, particularly focusing on its effects on activating transcription factor 6 (ATF6), a key regulator of endoplasmic reticulum stress. METHOD CAFs were treated with different concentrations of ASP (0, 1, 3, and 5 mM), and the role of ATF6 was investigated by over-expressing it in CAFs. Subsequently, western blot was used to detect ATF6, α-smooth muscle actin (α-SMA), fibroblast activating protein (FAP), and vimentin protein levels in CAFs. The collagen gel contraction assay and Transwell assay were applied to evaluate the contraction and migration ability of CAFs. In addition, the interleukin (IL)-6, C-C motif chemokine ligand (CCL)-2, and C-X-C motif chemokine ligand (CXCL)-10 levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS CAFs had significantly higher expression levels of α-SMA, FAP, and vimentin compared to normal fibroblasts (NFs). ASP significantly inhibited the activation, contraction, and migration of CAFs in a concentration-dependent manner. ASP treatment also reduced the expression of cytokines (IL-6, CCL2, and CXCL10) and down-regulated ATF6 levels. Over-expression of ATF6 mitigated the inhibitory effects of ASP. CONCLUSION ASP exerts its anti-tumor effects by down-regulating ATF6, thereby inhibiting the activation and function of pancreatic CAFs. These findings suggest that ASP could be a promising therapeutic agent for pancreatic cancer by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Ling-Zhi Cao
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Fan-Hui Yang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Hao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Ai-Min Jia
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Su-Ping Li
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| | - Hu-Ling Wen
- Department of Nuclear Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Foster DS. From Stroma to Scalpel: Celebrating a Mentor in Science and Surgery. Ann Surg Oncol 2024; 31:3626-3632. [PMID: 38436773 DOI: 10.1245/s10434-024-15082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Deshka S Foster
- Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, USA.
- Department of Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Poultsides GA, Kebebew E, Hawn MT. Festschrift for Dr. Jeffrey A. Norton, 12-13 October 2023, Stanford, CA, USA. Ann Surg Oncol 2024; 31:3591-3594. [PMID: 38488895 DOI: 10.1245/s10434-024-15160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Affiliation(s)
- George A Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Electron Kebebew
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary T Hawn
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
13
|
Aquino AF, Runa F, Shoma JF, Todd A, Wallace M, de Barros NR, Kelber JA. Multidimensional screening of pancreatic cancer spheroids reveals vulnerabilities in mitotic and cell-matrix adhesion signaling that associate with metastatic progression and decreased patient survival. Biochem Biophys Res Commun 2024; 703:149575. [PMID: 38382357 PMCID: PMC10983059 DOI: 10.1016/j.bbrc.2024.149575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.
Collapse
Affiliation(s)
- Albert-Fred Aquino
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | | | - Audrey Todd
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Matthew Wallace
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA, USA; Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
14
|
Picozzi VJ. Pancreatic cancer: new approaches to drug therapy. Int J Surg 2024; 110:01279778-990000000-01297. [PMID: 38573111 PMCID: PMC11486970 DOI: 10.1097/js9.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/22/2023] [Indexed: 04/05/2024]
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) remain poor due to a variety of biological, clinical, and societal factors. However, in recent years, PDAC has seen 1) increased precision of initial evaluation, 2) increased emphasis on supportive care, 3) deeper understanding of the translation biology of PDAC, especially as pertains to genomic alterations, and 4) foundational combination chemotherapy clinical trials across all disease stages. These advances have led to a wide range of new approaches to drug therapy for PDAC. Currently available drugs are showing added benefit, both by resequencing them with each other and also with respect to other therapeutic modalities. Molecular strategies are being developed to predict response to known therapeutic agents and to identify others. Additionally, a wide range of new drugs for PDAC are under development, including drugs which inhibit critical molecular pathways, drugs which attempt to capitalize on homologous repair deficiencies, immunotherapeutic approaches, antimetabolic agents, and drugs which attack the extracellular matrix which supports PDAC growth. These new approaches offer the promise of improved survival for future PDAC patients.
Collapse
|
15
|
Hu X, Peng X, Zhang Y, Fan S, Liu X, Song Y, Ren S, Chen L, Chen Y, Wang R, Peng J, Shen X, Chen Y. Shikonin reverses cancer-associated fibroblast-induced gemcitabine resistance in pancreatic cancer cells by suppressing monocarboxylate transporter 4-mediated reverse Warburg effect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155214. [PMID: 38134861 DOI: 10.1016/j.phymed.2023.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.
Collapse
Affiliation(s)
- Xiaoxia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Xiaoyu Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Yue Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Shuangqin Fan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Xing Liu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Yuxuan Song
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Shuang Ren
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Lin Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Rong Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China.
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China.
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China.
| |
Collapse
|
16
|
Karbhari A, Mosessian S, Trivedi KH, Valla F, Jacobson M, Truty MJ, Patnam NG, Simeone DM, Zan E, Brennan T, Chen H, Kuo PH, Herrmann K, Goenka AH. Gallium-68-labeled fibroblast activation protein inhibitor-46 PET in patients with resectable or borderline resectable pancreatic ductal adenocarcinoma: A phase 2, multicenter, single arm, open label non-randomized study protocol. PLoS One 2023; 18:e0294564. [PMID: 38011131 PMCID: PMC10681241 DOI: 10.1371/journal.pone.0294564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease prone to widespread metastatic dissemination and characterized by a desmoplastic stroma that contributes to poor outcomes. Fibroblast activation protein (FAP)-expressing Cancer-Associated Fibroblasts (CAFs) are crucial components of the tumor stroma, influencing carcinogenesis, fibrosis, tumor growth, metastases, and treatment resistance. Non-invasive tools to profile CAF identity and function are essential for overcoming CAF-mediated therapy resistance, developing innovative targeted therapies, and improved patient outcomes. We present the design of a multicenter phase 2 study (clinicaltrials.gov identifier NCT05262855) of [68Ga]FAPI-46 PET to image FAP-expressing CAFs in resectable or borderline resectable PDAC. METHODS We will enroll up to 60 adult treatment-naïve patients with confirmed PDAC. These patients will be eligible for curative surgical resection, either without prior treatment (Cohort 1) or after neoadjuvant therapy (NAT) (Cohort 2). A baseline PET scan will be conducted from the vertex to mid-thighs approximately 15 minutes after administering 5 mCi (±2) of [68Ga]FAPI-46 intravenously. Cohort 2 patients will undergo an additional PET after completing NAT but before surgery. Histopathology and FAP immunohistochemistry (IHC) of initial diagnostic biopsy and resected tumor samples will serve as the truth standards. Primary objective is to assess the sensitivity, specificity, and accuracy of [68Ga]FAPI-46 PET for detecting FAP-expressing CAFs. Secondary objectives will assess predictive values and safety profile validation. Exploratory objectives are comparison of diagnostic performance of [68Ga]FAPI-46 PET to standard-of-care imaging, and comparison of pre- versus post-NAT [68Ga]FAPI-46 PET in Cohort 2. CONCLUSION To facilitate the clinical translation of [68Ga]FAPI-46 in PDAC, the current study seeks to implement a coherent strategy to mitigate risks and increase the probability of meeting FDA requirements and stakeholder expectations. The findings from this study could potentially serve as a foundation for a New Drug Application to the FDA. TRIAL REGISTRATION @ClinicalTrials.gov identifier NCT05262855.
Collapse
Affiliation(s)
- Aashna Karbhari
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sherly Mosessian
- Clinical Development, Sofie Biosciences, Dulles, Virginia, United States of America
| | - Kamaxi H. Trivedi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Frank Valla
- Radiopharmaceutical and Contract Manufacturing, Sofie Biosciences, Dulles, Virginia, United States of America
| | - Mark Jacobson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark J. Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nandakumar G. Patnam
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diane M. Simeone
- Departments of Surgery and Pathology, NYU Langone Health, New York, New York, United States of America
| | - Elcin Zan
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| | - Tracy Brennan
- Discovery Life Sciences, Newtown, Pennsylvania, United States of America
| | - Hongli Chen
- Discovery Life Sciences, Newtown, Pennsylvania, United States of America
| | - Phillip H. Kuo
- Departments of Medical Imaging, Medicine and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ajit H. Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
17
|
Zhou X, Zhang P, Liu N, Zhang X, Lv H, Xu W, Huo M. Enhancing chemotherapy for pancreatic cancer through efficient and sustained tumor microenvironment remodeling with a fibroblast-targeted nanosystem. J Control Release 2023; 361:161-177. [PMID: 37536546 DOI: 10.1016/j.jconrel.2023.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Pancreatic cancer (PC) carries a poor prognosis among all malignancies and poses great challenges to clinical drug accessibility due to the severely fibrotic and hypoxic tumor microenvironment (TME). Therein, cancer-associated fibroblasts (CAFs), which are extremely abundant in PC, play a key role in forming the complex PC microenvironment. Therefore, a highly efficient TME reprogramming therapeutic paradigm that can specifically inhibit CAF function is urgently needed. Herein, we successfully developed a novel CAF-tailored nanosystem (Dex-GP-DOCA, DPD) loaded with a potent anti-fibrosis flavonoid compound (Quercetin, QUE), which possesses biological responsiveness to fibroblast activation protein alpha (FAP-α), prolonged TME remodeling and enhancement of clinical chemotherapeutics. Specifically, DPD/QUE allowed for extracellular matrix (ECM) reduction, vessel normalization, hypoxia-induced drug resistance reversal, and blockade of Wnt16 paracrine in CAFs. More importantly, this chemotherapy conducive microenvironment persisted for at least 8 days following treatment with DPD/QUE. It should also be noted that the effective and prolonged microenvironment modulation induced by DPD/QUE significantly improved the chemotherapy sensitivity of Abraxane and gemcitabine, the first-line chemotherapeutic drugs for PC, with inhibition rates increasing from 37.5% and 40.0% to 87.5% and 85.2%, respectively. Overall, our CAFs-targeted nanosystem showed promising prospects for remodeling the TME and facilitating chemotherapy for refractory pancreatic cancer.
Collapse
Affiliation(s)
- Xinyuan Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Pan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao Zhang
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China
| | - Hui Lv
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China
| | - Wei Xu
- Department of clinical pharmacy, Qianfoshan Hospital, The First Hospital Affiliation with Shandong First Medical University, Jinan 250012, People's Republic of China.
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
18
|
Mun K, Han J, Roh P, Park J, Kim G, Hur W, Jang J, Choi J, Yoon S, You Y, Choi H, Sung P. Isolation and characterization of cancer-associated fibroblasts in the tumor microenvironment of hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:341-349. [PMID: 37488925 PMCID: PMC10565539 DOI: 10.17998/jlc.2023.04.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND/AIM Cancer-associated fibroblasts (CAFs) play an immunosuppressive role in the tumor microenvironment (TME) of human cancers; however, their characteristics and role in hepatocellular carcinoma (HCC) remain to be elucidated. METHODS Nine tumor and surrounding liver tissue samples from patients with HCC who underwent surgery were used to isolate patient-derived CAFs. Cell morphology was observed using an optical microscope after culture, and cell phenotypes were evaluated using flow cytometry and immunoblotting. Cytokines secreted by CAFs into culture medium were quantified using a multiplex cytokine assay. RESULTS CAFs were abundant in the TME of HCC and were adjacent to immune cells. After culture, the CAFs and non-tumor fibroblasts exhibited spindle shapes. We observed a robust expression of alpha-smooth muscle actin and fibroblast activation protein in CAFs, whereas alpha-fetoprotein, epithelial cell adhesion molecule, platelet/endothelial cell adhesion molecule-1, and E-cadherin were not expressed in CAFs. Furthermore, CAFs showed high secretion of various cytokines, namely C-X-C motif chemokine ligand 12, interleukin (IL)-6, IL-8, and C-C motif chemokine ligand 2. CONCLUSIONS CAFs are abundant in the TME of HCC and play a crucial role in tumor progression. These fibroblasts secrete cytokines that promote tumor growth and metastasis.
Collapse
Affiliation(s)
- Kyoungdo Mun
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
| | - Jiwon Han
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pureun Roh
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
| | - Jonggeun Park
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
| | - Gahee Kim
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Cheongju, Korea
| | - Wonhee Hur
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Cheongju, Korea
| | - Jeongwon Jang
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jongyoung Choi
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seungkew Yoon
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngkyoung You
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hojoong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pilsoo Sung
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
19
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Morgan A, Griffin M, Kameni L, Wan DC, Longaker MT, Norton JA. Medical Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. BIOLOGY 2023; 12:1044. [PMID: 37626931 PMCID: PMC10451924 DOI: 10.3390/biology12081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a variety of surface markers and performing a wide range of tumor promoting and inhibiting functions. Single-cell transcriptomic analyses have revealed a high degree of specialization among CAFs. Some examples of CAF subpopulations include myofibrotic CAFs (myCAFs), which exhibit a matrix-producing contractile phenotype; inflammatory CAFs (iCAF) that are classified by their immunomodulating, secretory phenotype; and antigen-presenting CAFs (apCAFs), which have antigen-presenting capabilities and express Major Histocompatibility Complex II (MHC II). Over the last several years, various attempts have been undertaken to describe the mechanisms of CAF-tumor cell interaction, as well as CAF-immune cell interaction, that contribute to tumor proliferation, invasion, and metastasis. Although our understanding of CAF biology in cancer has steadily increased, the extent of CAFs heterogeneity and their role in the pathobiology of pancreatic cancer remains elusive. In this regard, it becomes increasingly evident that further research on CAFs in pancreatic cancer is necessary.
Collapse
Affiliation(s)
- Annah Morgan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey A. Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Lu M, Zou Y, Fu P, Li Y, Wang P, Li G, Luo S, Chen Y, Guan G, Zhang S, Chen L. The tumor-stroma ratio and the immune microenvironment improve the prognostic prediction of pancreatic ductal adenocarcinoma. Discov Oncol 2023; 14:124. [PMID: 37405518 DOI: 10.1007/s12672-023-00744-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
Tumor-infiltrating immune cells and fibroblasts are significant components of the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC), and they participate in tumor progression as closely as tumor cells. However, the relationship between the features of the TME and patient outcomes and the interactions among TME components are still unclear. In this study, we evaluated the PDAC TME in terms of the quantity and location of cluster of differentiation (CD)4+ T cells, CD8+ T cells, macrophages, stromal maturity, and tumor-stroma ratio (TSR), as evaluated by immunohistochemical staining of serial whole-tissue sections from 116 patients with PDAC. The density of T cells and macrophages (mainly activated macrophages) was significantly higher at the invasive margins (IMs) than at the tumor center (TC). CD4+ T cells were significantly association with all the other tumor-associated immune cells (TAIs) including CD8, CD68 and CD206 positive cells. Tumors of the non-mature (intermediate and immature) stroma type harbored significantly more CD8+ T cells at the IMs and more CD68+ macrophages at the IMs and the TC. The density of CD4+, CD8+, and CD206+ cells at the TC; CD206+ cells at the IMs; and tumor-node-metastasis (TNM) staging were independent risk factors for patient outcomes, and the c-index of the risk nomogram for predicting the survival probability based on the TME features and TNM staging was 0.772 (95% confidence interval: 0.713-0.832). PDAC harbored a significantly immunosuppressive TME, of which the IMs were the hot zones for TAIs, while cells at the TC were more predictive of prognosis. Our results indicated that the model based on the features of the TME and TNM staging could predict patient outcomes.
Collapse
Affiliation(s)
- Mei Lu
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, Fujian, China
| | - Yi Zou
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peiling Fu
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yuyang Li
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Pengcheng Wang
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guoping Li
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Sheng Luo
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yupeng Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guoping Guan
- Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, Fujian, China
| | - Sheng Zhang
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Translational Research in Cancer and Nurodegernerative Diseases, Fuzhou, Fujian, China.
| |
Collapse
|
22
|
Mercanti L, Sindaco M, Mazzone M, Di Marcantonio MC, Piscione M, Muraro R, Mincione G. PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies. Cancers (Basel) 2023; 15:2923. [PMID: 37296886 PMCID: PMC10251917 DOI: 10.3390/cancers15112923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of death by cancer in the world. What makes this pathological condition particularly lethal is a combination of clinical and molecular heterogeneity, lack of early diagnostic indexes, and underwhelming results from current therapeutic protocols. A major cause of PDAC chemoresistance seems to lie in the ability of cancer cells to spread out and fill the pancreatic parenchyma, exchanging nutrients, substrates, and even genetic material with cells from the surrounding tumor microenvironment (TME). Several components can be found in the TME ultrastructure, including collagen fibers, cancer-associated fibroblasts, macrophages, neutrophils, mast cells, and lymphocytes. Cross-talk between PDAC and TME cells results in the latter being converted into cancer-favoring phenotypes; this behavior could be compared to an influencer guiding followers into supporting his activity. Moreover, TME could be a potential target for some of the newest therapeutic strategies; these include the use of pegvorhyaluronidase-α and CAR-T lymphocytes against HER2, FAP, CEA, MLSN, PSCA, and CD133. Other experimental therapy options are being currently studied, aiming to interfere with the KRAS pathway, DNA-repairing proteins, and apoptosis resistance in PDAC cells. Hopefully these new approaches will grant better clinical outcomes in future patients.
Collapse
Affiliation(s)
- Leonardo Mercanti
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Sindaco
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | | | - Raffaella Muraro
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| |
Collapse
|
23
|
Mijit M, Boner M, Cordova RA, Gampala S, Kpenu E, Klunk AJ, Zhang C, Kelley MR, Staschke KA, Fishel ML. Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment. Front Med (Lausanne) 2023; 10:1146115. [PMID: 37181357 PMCID: PMC10174294 DOI: 10.3389/fmed.2023.1146115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan Boner
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Ricardo A Cordova
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eyram Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Angela J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - MarK R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kirk A Staschke
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
25
|
Heinrich MA, Uboldi I, Kuninty PR, Ankone MJ, van Baarlen J, Zhang YS, Jain K, Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact Mater 2023; 22:18-33. [PMID: 36203956 PMCID: PMC9516389 DOI: 10.1016/j.bioactmat.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 10/26/2022] Open
Abstract
Fibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds. Here, a multi-layered vascularized 3D PDAC model consisting of primary human pancreatic stellate cells (PSCs) embedded in collagen/fibrinogen (Col/Fib), mimicking tumor tissue within adjunct healthy tissue, is presented to study the fibrosis-induced compression of vasculature in PDAC. It is demonstrated how the mechanical and biological stimulation induce PSC activation, extracellular matrix production and eventually vessel compression. The clinical relevance is confirmed by correlating with patient transcriptomic data. Furthermore, the effects of gradual vessel compression on the fluid dynamics occurring within the channel is evaluated in silico. Finally, it is demonstrated how cancer-associated fibroblast (CAF)-modulatory therapeutics can inhibit the cell-mediated compression of blood vessels in PDAC in vitro, in silico and in vivo. It is envisioned that this 3D model is used to improve the understanding of mechanical characteristics in tumors and for evaluating novel anti-desmoplastic therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Irene Uboldi
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Praneeth Reddy Kuninty
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Marc J.K. Ankone
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Joop van Baarlen
- Laboratorium Pathologie Oost-Nederland (LabPON), 7550 AM, Hengelo, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, Biofluid Dynamics Section, University of Twente, 7500 AE Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
26
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
27
|
Melzer MK, Resheq Y, Navaee F, Kleger A. The application of pancreatic cancer organoids for novel drug discovery. Expert Opin Drug Discov 2023; 18:429-444. [PMID: 36945198 DOI: 10.1080/17460441.2023.2194627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma presents with a dismal prognosis. Personalized therapy is urgently warranted to overcome the treatment limitations of the "one-size-fits-all" scheme. Organoids have emerged as fundamental novel tools to study tumor biology and heterogeneity, hence overcoming limitations of other model systems by better-reflecting tissue heterogeneity and recapitulating in-vivo processes. Besides their crucial role in basic research, they have evolved as tools for translational drug discovery and patient stratification. AREAS COVERED This review highlights the achievements of an organoid-based drug investigation and discovery. The authors present an overview of studies using organoids for drug testing. Further, they pinpoint studies correlating the in vitro prediction of organoids to the actual patient`s response. Furthermore, the authors describe novel model systems and take a thorough overlook of microfluidic chips, synthetic matrices, multicellular systems, bioprinting, and stem cell-derived pancreatic organoid systems. EXPERT OPINION Organoid systems promise great potential for future clinical applications. Indeed, they may be implemented into informed decision-making for guiding therapies. However, validation by randomized trials is mandatory. Additionally, organoids in combination with other cellular compartments may be exploited for drug discovery by studying niche-tumor interaction. Yet, several precautions must be kept in mind, such as standardization and reproducibility.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Yazid Resheq
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Fatemeh Navaee
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
- Core Facility Organoids, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Hung J, Perez SM, Dasa SSK, Hall SP, Heckert DB, Murphy BP, Crawford HC, Kelly KA, Brinton LT. A Bitter Taste Receptor as a Novel Molecular Target on Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2023; 16:389. [PMID: 36986488 PMCID: PMC10058050 DOI: 10.3390/ph16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) execute diverse and complex functions in cancer progression. While reprogramming the crosstalk between CAFs and cancer epithelial cells is a promising avenue to evade the adverse effects of stromal depletion, drugs are limited by their suboptimal pharmacokinetics and off-target effects. Thus, there is a need to elucidate CAF-selective cell surface markers that can improve drug delivery and efficacy. Here, functional proteomic pulldown with mass spectrometry was used to identify taste receptor type 2 member 9 (TAS2R9) as a CAF target. TAS2R9 target characterization included binding assays, immunofluorescence, flow cytometry, and database mining. Liposomes conjugated to a TAS2R9-specific peptide were generated, characterized, and compared to naked liposomes in a murine pancreatic xenograft model. Proof-of-concept drug delivery experiments demonstrate that TAS2R9-targeted liposomes bind with high specificity to TAS2R9 recombinant protein and exhibit stromal colocalization in a pancreatic cancer xenograft model. Furthermore, the delivery of a CXCR2 inhibitor by TAS2R9-targeted liposomes significantly reduced cancer cell proliferation and constrained tumor growth through the inhibition of the CXCL-CXCR2 axis. Taken together, TAS2R9 is a novel cell-surface CAF-selective target that can be leveraged to facilitate small-molecule drug delivery to CAFs, paving the way for new stromal therapies.
Collapse
Affiliation(s)
- Jessica Hung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Siva Sai Krishna Dasa
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, MI 48202, USA
| | - Kimberly A. Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- ZielBio Inc., Charlottesville, VA 22902, USA
| | - Lindsey T. Brinton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- ZielBio Inc., Charlottesville, VA 22902, USA
| |
Collapse
|
29
|
COL12A1 Acts as a Novel Prognosis Biomarker and Activates Cancer-Associated Fibroblasts in Pancreatic Cancer through Bioinformatics and Experimental Validation. Cancers (Basel) 2023; 15:cancers15051480. [PMID: 36900272 PMCID: PMC10000532 DOI: 10.3390/cancers15051480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Pancreatic cancer remains one of the most challenging malignancies to date and is associated with poor survival. Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that play a crucial role in tumor progression in pancreatic cancer. Thus, uncovering the key genes involved in CAF progression and determining their prognostic value is critically important. Herein, we report our discoveries in this research area. Analysis of The Cancer Genome Atlas (TCGA) dataset and investigation of our clinical tissue samples indicated that COL12A1 expression was aberrantly highly expressed in pancreatic cancer. Survival and COX regression analyses revealed the significant clinical prognostic value of COL12A1 expression in pancreatic cancer. COL12A1 was mainly expressed in CAFs but not in tumor cells. This was verified with our PCR analysis in cancer cells and CAFs. The knocking down of COL12A1 decreased the proliferation and migration of CAFs and down-regulated the expression of CAF activation markers actin alpha 2 (ACTA2), fibroblast activation protein (FAP), and fibroblast-specific protein 1 (FSP1). Meanwhile, the interleukin 6 (IL6), CXC chemokine Ligand-5 (CXCL5), and CXC chemokine Ligand-10 (CXCL10) expressions were inhibited, and the cancer-promoting effect was reversed by COL12A1 knockdown. Therefore, we demonstrated the potential prognostic and target therapy value of COL12A1 expression in pancreatic cancer and elucidated the molecular mechanism underlying its role in CAFs. The findings of this study might provide new opportunities for TME-targeted therapies in pancreatic cancer.
Collapse
|
30
|
Hong E, Barczak W, Park S, Heo JS, Ooshima A, Munro S, Hong CP, Park J, An H, Park JO, Park SH, La Thangue NB, Kim SJ. Combination treatment of T1-44, a PRMT5 inhibitor with Vactosertib, an inhibitor of TGF-β signaling, inhibits invasion and prolongs survival in a mouse model of pancreatic tumors. Cell Death Dis 2023; 14:93. [PMID: 36765032 PMCID: PMC9918730 DOI: 10.1038/s41419-023-05630-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-β1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-β1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Shonagh Munro
- Argonaut Therapeutics Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK
| | | | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Nick B La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
31
|
Aziz HM, Saida L, de Koning W, Stubbs AP, Li Y, Sideras K, Palacios E, Feliu J, Mendiola M, van Eijck CHJ, Mustafa DAM. Spatial genomics reveals a high number and specific location of B cells in the pancreatic ductal adenocarcinoma microenvironment of long-term survivors. Front Immunol 2023; 13:995715. [PMID: 36685537 PMCID: PMC9846531 DOI: 10.3389/fimmu.2022.995715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/04/2022] [Indexed: 01/06/2023] Open
Abstract
Background and aim Only 10% of pancreatic ductal adenocarcinoma (PDAC) patients survive longer than five years. Factors underlining long-term survivorship in PDAC are not well understood. Therefore, we aimed to identify the key players in the tumor immune microenvironment (TIME) associated with long-term survivorship in PDAC patients. Methods The immune-related gene expression profiles of resected PDAC tumors of patients who survived and remained recurrence-free of disease for ≥36 months (long-term survivors, n=10) were compared to patients who had survived ≤6 months (short-term survivors, n=10) due to tumor recurrence. Validation was performed by the spatial protein expression profile of immune cells using the GeoMx™ Digital Spatial Profiler. An independent cohort of samples consisting of 12 long-term survivors and 10 short-term survivors, was used for additional validation. The independent validation was performed by combining qualitative immunohistochemistry and quantitative protein expression profiling. Results B cells were found to be significantly increased in the TIME of long-term survivors by gene expression profiling (p=0.018). The high tumor infiltration of B cells was confirmed by spatial protein profiling in the discovery and the validation cohorts (p=0.002 and p=0.01, respectively). The higher number of infiltrated B cells was found mainly in the stromal compartments of PDAC samples and was exclusively found within tumor cells in long-term survivors. Conclusion This is the first comprehensive study that connects the immune landscape of gene expression profiles and protein spatial infiltration with the survivorship of PDAC patients. We found a higher number and a specific location of B cells in TIME of long-term survivors which emphasizes the importance of B cells and B cell-based therapy for future personalized immunotherapy in PDAC patients.
Collapse
Affiliation(s)
- Hosein M. Aziz
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lawlaw Saida
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Willem de Koning
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands,Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Andrew P. Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands,Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kostandinos Sideras
- Divisions of Medical Oncology and Hematology, Mayo Clinic, Rochester, MN, United States
| | - Elena Palacios
- Department of Pathology, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Jaime Feliu
- Department of Medical Oncology, La Paz University Hospital, IdiPAZ, Madrid, Spain,Cátedra UAM-ANGEM, Madrid, Spain,Centro de Investigación Biomédica en red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Mendiola
- Centro de Investigación Biomédica en red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain,Molecular Pathology and therapeutic Targets Group, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands,Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dana A. M. Mustafa
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands,*Correspondence: Dana A. M. Mustafa,
| |
Collapse
|
32
|
Kumar S, Singh SK, Srivastava P, Suresh S, Rana B, Rana A. Interplay between MAP kinases and tumor microenvironment: Opportunity for immunotherapy in pancreatic cancer. Adv Cancer Res 2023. [PMID: 37268394 DOI: 10.1016/bs.acr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC), commonly called pancreatic cancer, is aggressive cancer usually detected at a late stage, limiting treatment options with modest clinical responses. It is projected that by 2030, PDAC will be the second most common cause of cancer-related mortality in the United States. Drug resistance in PDAC is common and significantly affects patients' overall survival (OS). Oncogenic KRAS mutations are nearly uniform in PDAC, affecting over 90% of patients. However, effective drugs directed to target prevalent KRAS mutants in pancreatic cancer are not in clinical practice. Accordingly, efforts are continued on identifying alternative druggable target(s) or approaches to improve patient outcomes with PDAC. In most PDAC cases, the KRAS mutations turn-on the RAF-MEK-MAPK pathways, leading to pancreatic tumorigenesis. The MAPK signaling cascade (MAP4K→MAP3K→MAP2K→MAPK) plays a central role in the pancreatic cancer tumor microenvironment (TME) and chemotherapy resistance. The immunosuppressive pancreatic cancer TME is another unfavorable factor affecting the therapeutic efficacy of chemotherapy and immunotherapy. The immune checkpoint proteins (ICPs), including CTLA-4, PD-1, PD-L1, and PD-L2, are critical players in T cell dysfunction and pancreatic tumor cell growth. Here, we review the activation of MAPKs, a molecular trait of KRAS mutations and their impact on pancreatic cancer TME, chemoresistance, and expression of ICPs that could influence the clinical outcomes in PDAC patients. Therefore, understanding the interplay between MAPK pathways and TME could help to design rational therapy combining immunotherapy and MAPK inhibitors for pancreatic cancer treatment.
Collapse
|
33
|
Lipid-Nanoparticle-Mediated Delivery of Docetaxel Prodrug for Exploiting Full Potential of Gold Nanoparticles in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14246137. [PMID: 36551622 PMCID: PMC9776798 DOI: 10.3390/cancers14246137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Current chemoradiation therapy suffers from normal tissue toxicity. Thus, we are proposing incorporating gold nanoparticles (GNPs) and docetaxel (DTX), as they have shown very promising synergetic radiosensitization effects. Here, we explored the effect of a DTX prodrug encapsulated in lipid nanoparticles (LNPDTX-P) on GNP uptake in pancreatic cancer models in vitro and in vivo. For the in vitro experiment, a pancreatic cancer cell line, MIA PaCa-2, was cultured and dosed with 1 nM GNPs and 45 nM free DTX or an equivalent dose of LNPDTX-P. For the in vivo experiment, MIA PaCa-2 cells were implanted subcutaneously in NRG mice, and the mice were dosed with 2 mg/kg of GNPs and 6 mg/kg of DTX or an equivalent dose of LNPDTX-P. The results show that LNPDTX-P-treated tumour samples had double the amount GNPs compared to control samples, both in vitro and in vivo. The results are very promising, as LNPDTX-P have superior targeting of tumour tissues compared to free DTX due to their nanosize and their ability to be functionalized. Because of their minimal toxicity to normal tissues, both GNPs and LNPDTX-P could be ideal radiosensitization candidates in radiotherapy and would produce very promising synergistic therapeutic outcomes.
Collapse
|
34
|
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, Nguyen AT, Bauer-Rowe KE, Titan AL, Salhotra A, Jones RE, da Silva O, Lindsay HG, Berry CE, Chen K, Henn D, Mascharak S, Talbott HE, Kim A, Nosrati F, Sivaraj D, Ransom RC, Matthews M, Khan A, Wagh D, Coller J, Gurtner GC, Wan DC, Wapnir IL, Chang HY, Norton JA, Longaker MT. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 2022; 40:1392-1406.e7. [PMID: 36270275 PMCID: PMC9669239 DOI: 10.1016/j.ccell.2022.09.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 01/09/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity with a comprehensive multiomics approach. Using paired, same-cell chromatin accessibility and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over a complex spatial transcriptomic and proteomic landscape to identify three superclusters: steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory (IM) CAFs. These superclusters are recapitulated across multiple tissue types and species. Selective disruption of underlying mechanical force or immune checkpoint inhibition therapy results in shifts in CAF subpopulation distributions and affected tumor growth. As such, the balance among CAF superclusters may have considerable translational implications. Collectively, this research expands our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and elucidating therapeutic targets in a species- and tumor-agnostic manner.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea E Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Malini Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin R Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Khristian E Bauer-Rowe
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar da Silva
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hunter G Lindsay
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexia Kim
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fatemeh Nosrati
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R Chase Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Matthews
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - John Coller
- Stanford Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Irene L Wapnir
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA.
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Jiang Z, Zhang W, Sha G, Wang D, Tang D. Galectins Are Central Mediators of Immune Escape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14225475. [PMID: 36428567 PMCID: PMC9688059 DOI: 10.3390/cancers14225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is highly immune tolerant. Although there is immune cell infiltration in PDAC tissues, most of the immune cells do not function properly and, therefore, the prognosis of PDAC is very poor. Galectins are carbohydrate-binding proteins that are intimately involved in the proliferation and metastasis of tumor cells and, in particular, play a crucial role in the immune evasion of tumor cells. Galectins induce abnormal functions and reduce numbers of tumor-associated macrophages (TAM), natural killer cells (NK), T cells and B cells. It further promotes fibrosis of tissues surrounding PDAC, enhances local cellular metabolism, and ultimately constructs tumor immune privileged areas to induce immune evasion behavior of tumor cells. Here, we summarize the respective mechanisms of action played by different Galectins in the process of immune escape from PDAC, focusing on the mechanism of action of Galectin-1. Galectins cause imbalance between tumor immunity and anti-tumor immunity by coordinating the function and number of immune cells, which leads to the development and progression of PDAC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-18952783556
| |
Collapse
|
36
|
Hao S, Xu S, Li L, Li Y, Zhao M, Chen J, Zhu S, Xie Y, Jiang H, Zhu J, Wu M. Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4. BMC Cancer 2022; 22:1092. [PMID: 36284271 PMCID: PMC9594910 DOI: 10.1186/s12885-022-10165-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background: Antibodies and derivative drugs targeting immune checkpoints have been approved for the treatment of several malignancies, but there are fewer responses in patients with pancreatic cancer. Here, we designed a nanobody molecule with bi-targeting on PD-L1 and CXCR4, as both targets are overexpressed in many cancer cells and play important roles in tumorigenesis. We characterized the biochemical and anti-tumour activities of the bispecific nanobodies in vitro and in vivo. Methods: A nanobody molecule was designed and constructed. The nanobody sequences targeting PD-L1 and CXCR4 were linked by the (G4S)3 flexible peptide to construct the anti-PD-L1/CXCR4 bispecific nanobody. The bispecific nanobody was expressed in E. coli cells and purified by affinity chromatography. The purified nanobody was biochemically characterized by mass spectrometry, Western blotting and flow cytometry to confirm the molecule and its association with both PD-L1 and CXCR4. The biological function of the nanobody and its anti-tumour effects were examined by an in vitro tumour cell-killing assay and in vivo tumour inhibition in mouse xenograft models. Results: A novel anti-PD-L1/CXCR4 bispecific nanobody was designed, constructed and characterized. The molecule specifically bound to two targets on the surface of human cancer cells and inhibited CXCL12-induced Jurkat cell migration. The bispecific nanobody increased the level of IFN-γ secreted by T-cell activation. The cytotoxicity of human peripheral blood mononuclear cells (hPBMCs) against pancreatic cancer cells was enhanced by the molecule in combination with IL-2. In a human pancreatic cancer xenograft model, the anti-PD-L1/CXCR4 nanobody markedly inhibited tumour growth and was superior to the combo-treatment by anti-PD-L1 nanobody and anti-CXCR4 nanobody or treatment with atezolizumab as a positive control. Immunofluorescence and immunohistochemical staining of xenograft tumours showed that the anti-tumour effects were associated with the inhibition of angiogenesis and the infiltration of immune cells. Conclusion: These results clearly revealed that the anti-PD-L1/CXCR4 bispecific nanobody exerted anti-tumour efficacy in vitro and inhibited tumour growth in vivo. This agent can be further developed as a therapeutic reagent to treat human pancreatic cancer by simultaneously blocking two critical targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10165-7.
Collapse
Affiliation(s)
- Shuai Hao
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Shuyi Xu
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Liangzhu Li
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Yaxian Li
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Meiqi Zhao
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Junsheng Chen
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Shunying Zhu
- grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Yueqing Xie
- Jecho Laboratories, Inc, 7320 Executive Way, 21704 Frederick, MD USA
| | - Hua Jiang
- Jecho Laboratories, Inc, 7320 Executive Way, 21704 Frederick, MD USA
| | - Jianwei Zhu
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China ,Jecho Laboratories, Inc, 7320 Executive Way, 21704 Frederick, MD USA
| | - Mingyuan Wu
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| |
Collapse
|
37
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci 2022; 114:16-24. [PMID: 36197901 PMCID: PMC9807521 DOI: 10.1111/cas.15609] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/07/2023] Open
Abstract
The prognosis for patients with cancers known for a highly activated stromal reaction, including diffuse-type (scirrhous) gastric cancer, consensus molecular subtype 4 (CMS4) colorectal cancer, and pancreatic ductal adenocarcinoma, is extremely poor. To explore the resistance of conventional therapy for those refractory cancers, detailed classification and investigation of the different subsets of cancer-associated fibroblasts (CAFs) involved are needed. Recent studies with a single-cell transcriptomics strategy (single-cell RNA-seq) have demonstrated that CAF subpopulations contain different origins and marker proteins with the capacity to either promote or suppress cancer progression. Through multiple signaling pathways, CAFs can promote tumor growth, metastasis, and angiogenesis with extracellular matrix (ECM) remodeling; they can also interact with tumor-infiltrating immune cells and modulate the antitumor immunological state in the tumor microenvironment (TME). Here, we review the recent literature on the various subpopulations of CAFs to improve our understanding of the cell-cell interactions in the TME and highlight future avenues for CAF-targeted therapy.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Hiroaki Kasashima
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yasuhiro Fukui
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Gen Tsujio
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Masakazu Yashiro
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Maeda
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
38
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
39
|
Zhu XX, Li JH, Ni X, Wu X, Hou X, Li YX, Li SJ, Zhao W, Yin XY. Pancreatic ductal adenocarcinoma cells regulated the gemcitabine-resistance function of CAFs by LINC00460. Cancer Sci 2022; 113:3735-3750. [PMID: 36047966 PMCID: PMC9633316 DOI: 10.1111/cas.15547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with extremely poor prognosis. Gemcitabine resistance is a major challenge in the treatment of PDAC. Here, we showed that LINC00460 was associated with the response to gemcitabine both in PDAC patients and PDAC‐PDX. After knocking down LINC00460 in PDAC tumor cells, results of RNA sequencing followed by gene ontology analysis indicated that LINC00460 influenced the activity of growth factors and modified the extracellular matrix. FISH showed that LINC00460 is mostly located in the cytoplasm. Results of RNA pull‐down, LC–MS/MS, RIP, and immunoblotting confirmed that LINC00460 could directly bind to PDAP1. Furthermore, we demonstrated that LINC00460 mediated the cellular communication of PDAC tumor cells and CAFs by PDAP1/PDGFA/PDGFR signaling pathway and regulated the gemcitabine‐resistance function of CAFs, which could be reversed by treatment with a PDGFR inhibitor (crenolanib). PDAC‐PDX tumors with lower expression of LINC00460 showed a better response to gemcitabine plus crenolanib treatment. Our finding supported the application of LINC00460 in precision medicine that uses gemcitabine plus crenolanib to treat PDAC with low expression of LINC00460.
Collapse
Affiliation(s)
- Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Wu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Hou
- Center for Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shi-Jin Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Transforming Growth Factor-Beta Signaling in Cancer-Induced Cachexia: From Molecular Pathways to the Clinics. Cells 2022; 11:cells11172671. [PMID: 36078078 PMCID: PMC9454487 DOI: 10.3390/cells11172671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a metabolic syndrome consisting of massive loss of muscle mass and function that has a severe impact on the quality of life and survival of cancer patients. Up to 20% of lung cancer patients and up to 80% of pancreatic cancer patients are diagnosed with cachexia, leading to death in 20% of them. The main drivers of cachexia are cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), macrophage inhibitory cytokine 1 (MIC-1/GDF15) and transforming growth factor-beta (TGF-β). Besides its double-edged role as a tumor suppressor and activator, TGF-β causes muscle loss through myostatin-based signaling, involved in the reduction in protein synthesis and enhanced protein degradation. Additionally, TGF-β induces inhibin and activin, causing weight loss and muscle depletion, while MIC-1/GDF15, a member of the TGF-β superfamily, leads to anorexia and so, indirectly, to muscle wasting, acting on the hypothalamus center. Against this background, the blockade of TGF-β is tested as a potential mechanism to revert cachexia, and antibodies against TGF-β reduced weight and muscle loss in murine models of pancreatic cancer. This article reviews the role of the TGF-β pathway and to a minor extent of other molecules including microRNA in cancer onset and progression with a special focus on their involvement in cachexia, to enlighten whether TGF-β and such other players could be potential targets for therapy.
Collapse
|
41
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
42
|
Glabman RA, Choyke PL, Sato N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14163906. [PMID: 36010899 PMCID: PMC9405783 DOI: 10.3390/cancers14163906] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are found in the tumor microenvironment and exhibit several protumorigenic functions. Preclinical studies suggest that CAFs can be reduced, eliminated, or reprogrammed; however, clinical translation has not yet occurred. A better understanding of these cells and their functions will undoubtedly improve cancer treatments. In this review, we summarize current research, highlight major challenges, and discuss future opportunities for improving our knowledge of CAF biology and targeting. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous group of activated fibroblasts and a major component of the tumor stroma. CAFs may be derived from fibroblasts, epithelial cells, endothelial cells, cancer stem cells, adipocytes, pericytes, or stellate cells. These complex origins may underlie their functional diversity, which includes pro-tumorigenic roles in extracellular matrix remodeling, the suppression of anti-tumor immunity, and resistance to cancer therapy. Several methods for targeting CAFs to inhibit tumor progression and enhance anti-tumor immunity have recently been reported. While preclinical studies have shown promise, to date they have been unsuccessful in human clinical trials against melanoma, breast cancer, pancreas cancer, and colorectal cancers. This review summarizes recent and major advances in CAF-targeting therapies, including DNA-based vaccines, anti-CAF CAR-T cells, and modifying and reprogramming CAF functions. The challenges in developing effective anti-CAF treatment are highlighted, which include CAF heterogeneity and plasticity, the lack of specific target markers for CAFs, the limitations in animal models recapitulating the human cancer microenvironment, and the undesirable off-target and systemic side effects. Overcoming these challenges and expanding our understanding of the basic biology of CAFs is necessary for making progress towards safe and effective therapeutic strategies against cancers in human patients.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-858-3079
| |
Collapse
|
43
|
Zaitsev A, Chelushkin M, Dyikanov D, Cheremushkin I, Shpak B, Nomie K, Zyrin V, Nuzhdina E, Lozinsky Y, Zotova A, Degryse S, Kotlov N, Baisangurov A, Shatsky V, Afenteva D, Kuznetsov A, Paul SR, Davies DL, Reeves PM, Lanuti M, Goldberg MF, Tazearslan C, Chasse M, Wang I, Abdou M, Aslanian SM, Andrewes S, Hsieh JJ, Ramachandran A, Lyu Y, Galkin I, Svekolkin V, Cerchietti L, Poznansky MC, Ataullakhanov R, Fowler N, Bagaev A. Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes. Cancer Cell 2022; 40:879-894.e16. [PMID: 35944503 DOI: 10.1016/j.ccell.2022.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022]
Abstract
Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Boris Shpak
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | - Krystle Nomie
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | - Vladimir Zyrin
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | | | | | | | | | - Nikita Kotlov
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | | | | | - Daria Afenteva
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | | | - Susan Raju Paul
- The Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Diane L Davies
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick M Reeves
- The Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Madison Chasse
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | - Iris Wang
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | - Mary Abdou
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | | | | | - James J Hsieh
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Akshaya Ramachandran
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Yang Lyu
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Ilia Galkin
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA
| | | | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mark C Poznansky
- The Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Nathan Fowler
- BostonGene, Corp., 95 Sawyer Road, Waltham, MA 02453, USA; Department of Lymphoma and Myeloma, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 429, Houston, TX 77030, USA.
| | | |
Collapse
|
44
|
Monteiro MV, Ferreira LP, Rocha M, Gaspar VM, Mano JF. Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials 2022; 287:121653. [PMID: 35803021 DOI: 10.1016/j.biomaterials.2022.121653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luís P Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Alhussan A, Palmerley N, Smazynski J, Karasinska J, Renouf DJ, Schaeffer DF, Beckham W, Alexander AS, Chithrani DB. Potential of Gold Nanoparticle in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblast Cells. Cancers (Basel) 2022; 14:cancers14153586. [PMID: 35892845 PMCID: PMC9332249 DOI: 10.3390/cancers14153586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Many cancer therapeutics do not account for the complexity of the tumor microenvironment (TME), which may result in failure when applied clinically. In this paper we utilized a simple tumor model made of two types of pancreatic cancer cells that contribute to the tumor environment, i.e., cancer cells and cancer associated fibroblasts. Herein, radiotherapy along with radiosensitizing gold nanoparticles were used to test the efficacy of a co-culture vs. monoculture model. The results show that the co-culture model exhibited heightened resistance to radiation. Furthermore, we found that the combination of gold radiosensitizers with radiotherapy reduced the radioresistance of the co-culture model compared to radiotherapy alone. This study demonstrates the potential of using nanotherapeutics in targeting the complex tumor microenvironment. Abstract Many cancer therapeutics are tested in vitro using only tumour cells. However, the tumour promoting effect of cancer associated fibroblasts (CAFs) within the tumour microenvironment (TME) is thought to reduce cancer therapeutics’ efficacy. We have chosen pancreatic ductal adenocarcinoma (PDAC) as our tumor model. Our goal is to create a co-culture of CAFs and tumour cells to model the interaction between cancer and stromal cells in the TME and allow for better testing of therapeutic combinations. To test the proposed co-culture model, a gold nanoparticle (GNP) mediated-radiation response was used. Cells were grown in co-culture with different ratios of CAFs to cancer cells. MIA PaCa-2 was used as our PDAC cancer cell line. Co-cultured cells were treated with 2 Gy of radiation following GNP incubation. DNA damage and cell proliferation were examined to assess the combined effect of radiation and GNPs. Cancer cells in co-culture exhibited up to a 23% decrease in DNA double strand breaks (DSB) and up to a 35% increase in proliferation compared to monocultures. GNP/Radiotherapy (RT) induced up to a 25% increase in DNA DSBs and up to a 15% decrease in proliferation compared to RT alone in both monocultured and co-cultured cells. The observed resistance in the co-culture system may be attributed to the role of CAFs in supporting cancer cells. Moreover, we were able to reduce the activity of CAFs using GNPs during radiation treatment. Indeed, CAFs internalize a significantly higher number of GNPs, which may have led to the reduction in their activity. One reason experimental therapeutics fail in clinical trials relates to limitations in the pre-clinical models that lack a true representation of the TME. We have demonstrated a co-culture platform to test GNP/RT in a clinically relevant environment.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Nicholas Palmerley
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Julian Smazynski
- Deeley Research Centre, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Joanna Karasinska
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S. Alexander
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
46
|
Harper MM, Lin M, Cavnar MJ, Pandalai PK, Patel RA, Gao M, Kim J. Interaction of immune checkpoint PD-1 and chemokine receptor 4 (CXCR4) promotes a malignant phenotype in pancreatic cancer cells. PLoS One 2022; 17:e0270832. [PMID: 35797269 PMCID: PMC9262213 DOI: 10.1371/journal.pone.0270832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with limited therapeutic options. Immune checkpoint inhibitors (ICIs) have demonstrated promising results in many cancers, but thus far have yielded little clinical benefit in PDAC. Based on recent combined targeting of programmed cell death protein-1 (PD-1) and C-X-C chemokine receptor 4 (CXCR4) in patient-derived xenografts (PDXs) and a pilot clinical trial, we sought to elucidate potential interactions between PD-1 and CXCR4. We observed concomitant expression and direct interaction of PD-1 and CXCR4 in PDAC cells. This interaction was disrupted upon CXCR4 antagonism with AMD3100 and led to increased cell surface expression of PD-1. Importantly, CXCR4-mediated PDAC cell migration was also blocked by PD-1 inhibition. Our work provides a possible mechanism by which prior studies have demonstrated that combined CXCR4 and PD-1 inhibition leads to decreased tumor growth. This is the first report investigating PD-1 and CXCR4 interactions in PDAC cells and our results can serve as the basis for further investigation of combined therapeutic targeting of CXCR4 and PD-1.
Collapse
Affiliation(s)
- Megan M. Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Miranda Lin
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michael J. Cavnar
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Prakash K. Pandalai
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Reema A. Patel
- Division of Medical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mei Gao
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
47
|
Masugi Y. The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14133293. [PMID: 35805064 PMCID: PMC9265767 DOI: 10.3390/cancers14133293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic cancer is a highly malignant disease with treatment resistance to standardized chemotherapies. In addition, only a small fraction of patients with pancreatic cancer has, to date, actionable genetic aberrations, leading to a narrow therapeutic window for molecularly targeted therapies or immunotherapies. A lot of preclinical and translational studies are ongoing to discover potential vulnerabilities to treat pancreatic cancer. Histologically, human pancreatic cancer is characterized by abundant cancer-associated fibrotic stroma, called “desmoplastic stroma”. Recent technological advances have revealed that desmoplastic stroma in pancreatic cancer is much more complicated than previously thought, playing pleiotropic roles in manipulating tumor cell fate and anti-tumor immunity. Moreover, real-world specimen-based analyses of pancreatic cancer stroma have also uncovered spatial heterogeneity and an intertumoral variety associated with molecular alterations, clinicopathological factors, and patient outcomes. This review describes an overview of the current efforts in the field of pancreatic cancer stromal biology and discusses treatment opportunities of stroma-modifying therapies against this hard-to-treat cancer. Abstract Pancreatic cancer remains one of the most lethal malignancies and is becoming a dramatically increasing cause of cancer-related mortality worldwide. Abundant desmoplastic stroma is a histological hallmark of pancreatic ductal adenocarcinoma. Emerging evidence suggests a promising therapeutic effect of several stroma-modifying therapies that target desmoplastic stromal elements in the pancreatic cancer microenvironment. The evidence also unveils multifaceted roles of cancer-associated fibroblasts (CAFs) in manipulating pancreatic cancer progression, immunity, and chemotherapeutic response. Current state-of-the-art technologies, including single-cell transcriptomics and multiplexed tissue imaging techniques, have provided a more profound knowledge of CAF heterogeneity in real-world specimens from pancreatic cancer patients, as well as in genetically engineered mouse models. In this review, we describe recent advances in the understanding of the molecular pathology bases of pancreatic cancer desmoplastic stroma at multilayered levels of heterogeneity, namely, (1) variations in cellular and non-cellular members, including CAF subtypes and extracellular matrix (ECM) proteins; (2) geographical heterogeneity in relation to cell–cell interactions and signaling pathways at niche levels and spatial heterogeneity at locoregional levels or organ levels; and (3) intertumoral stromal heterogeneity at individual levels. This review further discusses the clinicopathological significance of desmoplastic stroma and the potential opportunities for stroma-targeted therapies against this lethal malignancy.
Collapse
Affiliation(s)
- Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 1608582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Department of Pathology, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
48
|
Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. NATURE CANCER 2022; 3:793-807. [PMID: 35883004 PMCID: PMC7613625 DOI: 10.1038/s43018-022-00411-z] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are central players in the microenvironment of solid tumors, affecting cancer progression and metastasis. CAFs have diverse phenotypes, origins and functions and consist of distinct subpopulations. Recent progress in single-cell RNA-sequencing technologies has enabled detailed characterization of the complexity and heterogeneity of CAF subpopulations in multiple tumor types. In this Review, we discuss the current understanding of CAF subsets and functions as elucidated by single-cell technologies, their functional plasticity, and their emergent shared and organ-specific features that could potentially be harnessed to design better therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Dor Lavie
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Ben-Shmuel
- Department of Biomolecular Sciences, the Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Zhao M, Zhuang A, Fang Y. Cancer-Associated Fibroblast-Derived Exosomal miRNA-320a Promotes Macrophage M2 Polarization In Vitro by Regulating PTEN/PI3K γ Signaling in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9514697. [PMID: 35813857 PMCID: PMC9270150 DOI: 10.1155/2022/9514697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/20/2021] [Accepted: 06/03/2022] [Indexed: 12/21/2022]
Abstract
Our previous study has indicated that cancer-associated fibroblasts (CAFs) play a crucial role in regulating gemcitabine resistance through transferring exosomal miRNA-106b to cancer cells. Tumor-associated macrophages (TAMs) are recently verified to facilitate gemcitabine resistance. However, the effect of CAFs in regulating TAMs function in pancreatic cancer (PCa) remains unclear. Here, primary CAFs were extracted from tumor tissues of PCa patients, and CAFs-derived exosomes (CAFs-Exo) were acquired and authenticated by transmission electron microscopy, qNano, and western blot analysis. The role of exosomal miRNA-320a in facilitating macrophage M2 polarization was investigated in vitro. We found that CAFs-derived conditioned medium (CM) possessed a higher potential to promote macrophage M2 polarization compared with normal fibroblasts (NFs) or PCa cell-derived CM. Furthermore, CAFs-Exo treatment polarized macrophage to M2 phenotype. miRNA-320a levels were remarkably increased in CAFs-Exo versus NFs-Exo. More important, miRNA-320a could be transferred from CAFs to macrophages through exosomes, and miRNA-320a overexpression in macrophages facilitated its M2 polarization. Functionally, miRNA-320a-overexpressed macrophages facilitated PCa cell proliferation and invasion. CAFs pretreated with miRNA-320a inhibitor reduced miRNA-320a expression in CAFs-Exo and led to decreased M2 macrophage polarization. Finally, we verified that miRNA-320a polarized macrophage to M2 phenotype by regulating PTEN/PI3Kγ signaling. Taken together, the current data demonstrated that CAFs-derived exosomal miRNA-320a facilitated macrophage M2 polarization to accelerate malignant behavior of PCa cells.
Collapse
Affiliation(s)
- Mingkun Zhao
- Department of General Surgery, Shanghai Public Health Clinical Center, Zhongshan Hospital (South), Fudan University, Shanghai 200032, China
| | - Aobo Zhuang
- Department of General Surgery, Shanghai Public Health Clinical Center, Zhongshan Hospital (South), Fudan University, Shanghai 200032, China
| | - Yuan Fang
- Department of General Surgery, Shanghai Public Health Clinical Center, Zhongshan Hospital (South), Fudan University, Shanghai 200032, China
| |
Collapse
|
50
|
Zhang Q, Luo Y, Liang B, Suo D, Lyu S, Wang Y, Zhao X. An anti-bacterial and anti-cancer fibrous membrane with multiple therapeutic effects for prevention of pancreatic cancer recurrence. BIOMATERIALS ADVANCES 2022; 137:212831. [PMID: 35929264 DOI: 10.1016/j.bioadv.2022.212831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Adjuvant systemic chemotherapy with gemcitabine (GEM) is recognized as the standard of care to improve the prognosis of patients with resected pancreatic cancer (PC); however, it is greatly limited by poor absorption of chemotherapy agents. Moreover, surgical site infection and Gammaproteobacteria-induced GEM resistance further decrease the chemotherapy efficacy and increase the risk of recurrence and even mortality. Here, we develop an implantable anti-bacterial and anti-cancer fibrous membrane (AAFM) to inhibit PC recurrence in a well-coordinated manner. Our AAFM can be readily prepared via simple co-electrospinning of GEM and poly-L-lactic acid (PLLA) and subsequent tannic acid (TA)-mediated in-situ generation of silver nanoparticles (AgNPs). The resultant membrane presents highly porous fibrous morphology and appropriate mechanical performance. Most importantly, we find the surface-deposited TA/AgNP complexes can exert multiple therapeutic effects: (1) they can act as a fence to extend GEM diffusion route, achieving a sustained drug release; (2) they can fight the pathogenic microorganisms in the local microenvironment and prevent infectious complications and alleviate Gammaproteobacteria-induced chemotherapy resistance; (3) they can combat residual cancer cells to synchronously strengthen the effectiveness of GEM-based chemotherapy. Altogether, our AAFM provides a proof-of-concept demonstration of the integrated anti-cancer and anti-bacterial strategy for enhanced therapeutic efficacy and will inspire the design of other high-performance implants for prevention of tumor relapse.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yang Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Liang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Di Suo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|