1
|
Liu P, Ding P, Guo H, Yang J, Wu H, Wu J, Yang P, Zhao Q. Clinical calculator based on CT and clinicopathologic characteristics predicts short-term prognosis following resection of microsatellite-stabilized diffuse gastric cancer. Abdom Radiol (NY) 2024; 49:2165-2176. [PMID: 38727742 DOI: 10.1007/s00261-024-04350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Although microsatellite stability/Epithelial-mesenchymal transition (MSS/EMT) subtypes have been reported in multiple cancer prognosis studies, strong confounding factors between MSS/EMT (usually with Lauren's diffuse phenotype) and diffuse gastric cancer (GC) may obscure the independent prognostic value of diffuse GC. Additionally, recent studies suggest a strong correlation between mural stratification based on CT and diffuse GC. This study aims to investigate potential prognostic factors of MSS diffuse GC using mural stratification and to develop a risk assessment model. METHODS This retrospective study included 131 patients with MSS diffuse GC who underwent radical surgery. Univariate and multivariate Cox proportional hazards regression analysis was used to identify model predictors and construct a nomogram for overall survival (OS) and recurrence-free survival (RFS) risks. The model's performance was evaluated using ROC, accuracy, and C-index. Internal validation of the model was conducted using the bootstrap resampling method. RESULTS Among 131 cases, 60 cases (45.8%) exhibited grade 2 mural stratification, which correlated with a poorer tumor prognosis and a more invasive phenotype. Furthermore, a nomogram for predicting OS and RFS prognosis was established based on multivariate results (age, extranodal invasion, mural stratification, and/or P53). The nomogram demonstrated excellent performance, with an AUC of 0.859 (95% CI 0.794-0.924) for OS and 0.859 (95% CI 0.789-0.929) for RFS. Internal validation using 1000 bootstrap samples yielded AUC values of 0.845 and 0.846 for OS and RFS, respectively. CONCLUSION Grade 2 mural stratification based on CT imaging revealed a more aggressive invasive phenotype, characterized by increased LN metastasis, higher rates of peritoneal metastasis, and a poorer short-term prognosis. Furthermore, the CT phenotype-based nomogram demonstrates favorable discrimination and calibration, enabling convenient individual short-term prognostic evaluation following resection of MSS diffuse GC.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxuan Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
2
|
Xuan Y, Gao Q, Wang C, Cai D. Positive peritoneal lavage fluid cytology based on isolation by size of epithelial tumor cells indicates a high risk of peritoneal metastasis. PeerJ 2024; 12:e17602. [PMID: 38952968 PMCID: PMC11216200 DOI: 10.7717/peerj.17602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Peritoneal metastasis (PM) is the most prevalent type of metastasis in patients with gastric cancer (GC) and has an extremely poor prognosis. The detection of free cancer cells (FCCs) in the peritoneal cavity has been demonstrated to be one of the worst prognostic factors for GC. However, there is a lack of sensitive detection methods for FCCs in the peritoneal cavity. This study aimed to use a new peritoneal lavage fluid cytology examination to detect FCCs in patients with GC, and to explore its clinical significance on diagnosing of occult peritoneal metastasis (OPM) and prognosis. Methods Peritoneal lavage fluid from 50 patients with GC was obtained and processed via the isolation by size of epithelial tumor cells (ISET) method. Immunofluorescence and fluorescence in situ hybridization (FISH) were used to identify FCCs expressing chromosome 8 (CEP8), chromosome 17 (CEP17), and epithelial cell adhesion molecule (EpCAM). Results Using a combination of the ISET platform and immunofluorescence-FISH, the detection of FCCs was higher than that by light microscopy (24.0% vs. 2.0%). Samples were categorized into positive and negative groups, based on the expressions of CEP8, CEP17, and EpCAM. Statistically significant relationships were demonstrated between age (P = 0.029), sex (P = 0.002), lymphatic invasion (P = 0.001), pTNM stage (P = 0.001), and positivity for FCCs. After adjusting for covariates, patients with positive FCCs had lower progression-free survival than patients with negative FCCs. Conclusion The ISET platform highly enriched nucleated cells from peritoneal lavage fluid, and indicators comprising EpCAM, CEP8, and CEP17 confirmed the diagnosis of FCCs. As a potential detection method, it offers an opportunity for early intervention of OPM and an extension of patient survival.
Collapse
Affiliation(s)
- Ying Xuan
- Jiangnan University, Wuxi School of Medicine, Wuxi, China
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| | - Qizhong Gao
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| | - Chenhu Wang
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| | - Dongyan Cai
- Affiliated Hospital of Jiangnan University, Department of Oncology, Wuxi, China
| |
Collapse
|
3
|
Sun YT, Lu SX, Lai MY, Yang X, Guan WL, Yang LQ, Li YH, Wang FH, Yang DJ, Qiu MZ. Clinical outcomes and biomarker exploration of first-line PD-1 inhibitors plus chemotherapy in patients with low PD-L1-expressing of gastric or gastroesophageal junction adenocarcinoma. Cancer Immunol Immunother 2024; 73:144. [PMID: 38832979 PMCID: PMC11150231 DOI: 10.1007/s00262-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The beneficial effects of first-line programmed death-1 (PD-1) inhibitors plus chemotherapy in patients with low programmed death-ligand 1 (PD-L1)-expressing advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma are controversial. METHODS We conducted a retrospective analysis of patients with G/GEJ adenocarcinoma who had undergone first-line treatment with PD-1 inhibitors plus chemotherapy between October 2017 and May 2022. The primary outcomes were objective response rate (ORR) and progression-free survival (PFS). SPSS software V27.0 was used for data analysis. RESULTS Of 345 enrolled patients, 290 had measurable lesions. The overall ORR was 59.3%. PD-L1 status was available in 171 patients, and 67.8% of them were considered as low PD-L1 expression level (combined positive score (CPS) < 5). Patients with PD-L1 CPS < 5 showed a lower response rate (51.1% vs 70.8%, P = 0.024) and a worse PFS (P = 0.009) compared to those with PD-L1 CPS ≥ 5. In the PD-L1 low-expression cohort, patients with non-diffuse type, GEJ cancer, synchronous metastasis, distant lymph node metastasis, liver metastasis, non-peritoneal metastasis, and HER2 positive were significantly associated with higher response rates to PD-1 inhibitors plus chemotherapy (P < 0.05). The presence of peritoneal metastasis (P = 0.028) and diffuse type (P = 0.046) were identified as independent predictors of poor PFS in multivariate analysis of the PD-L1 CPS < 5 subgroup. When evaluated for correlation with overall survival (OS) in the PD-L1 low-expression subgroup, peritoneal metastasis was found to be the only independent prognostic factor of an increased risk of death (hazard ratio: 2.31, 95% CI 1.09-4.90; P = 0.029). CONCLUSIONS PD-L1 CPS ≥ 5 is significantly associated with improved response and extended PFS in G/GEJ cancer patients treated with a combination of PD-1 inhibitors and chemotherapy. Specific subgroups within the low PD-L1-expressing population, such as those with non-diffuse-type tumors and without peritoneal metastases, may also benefit from immunotherapy combined with chemotherapy.
Collapse
Affiliation(s)
- Yu-Ting Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Shi-Xun Lu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Ming-Yu Lai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Wen-Long Guan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Li-Qiong Yang
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Da-Jun Yang
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
4
|
Wu Z, Gu T, Xiong C, Shi J, Wang J, Guo T, Xing X, Pang F, He N, Miao R, Shan F, Zhou Y, Li Z, Ji J. Genomic characterization of peritoneal lavage cytology-positive gastric cancer. Chin J Cancer Res 2024; 36:66-77. [PMID: 38455368 PMCID: PMC10915641 DOI: 10.21147/j.issn.1000-9604.2024.01.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
Objective Positive peritoneal lavege cytology (CY1) gastric cancer is featured by dismal prognosis, with high risks of peritoneal metastasis. However, there is a lack of evidence on pathogenic mechanism and signature of CY1 and there is a continuous debate on CY1 therapy. Therefore, exploring the mechanism of CY1 is crucial for treatment strategies and targets for CY1 gastric cancer. Methods In order to figure out specific driver genes and marker genes of CY1 gastric cancer, and ultimately offer clues for potential marker and risk assessment of CY1, 17 cytology-positive gastric cancer patients and 31 matched cytology-negative gastric cancer patients were enrolled in this study. The enrollment criteria were based on the results of diagnostic laparoscopy staging and cytology inspection of exfoliated cells. Whole exome sequencing was then performed on tumor samples to evaluate genomic characterization of cytology-positive gastric cancer. Results Least absolute shrinkage and selection operator (LASSO) algorithm identified 43 cytology-positive marker genes, while MutSigCV identified 42 cytology-positive specific driver genes. CD3G and CDKL2 were both driver and marker genes of CY1. Regarding mutational signatures, driver gene mutation and tumor subclone architecture, no significant differences were observed between CY1 and negative peritoneal lavege cytology (CY0). Conclusions There might not be distinct differences between CY1 and CY0, and CY1 might represent the progression of CY0 gastric cancer rather than constituting an independent subtype. This genomic analysis will thus provide key molecular insights into CY1, which may have a direct effect on treatment recommendations for CY1 and CY0 patients, and provides opportunities for genome-guided clinical trials and drug development.
Collapse
Affiliation(s)
- Zhouqiao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tingfei Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Changxian Xiong
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jinyao Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jingpu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ning He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rulin Miao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Shan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ziyu Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiafu Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
5
|
Ueda A, Yuki S, Ando T, Hosokawa A, Nakada N, Kito Y, Motoo I, Ito K, Sakumura M, Nakayama Y, Ueda Y, Kajiura S, Nakashima K, Harada K, Kawamoto Y, Komatsu Y, Yasuda I. CA125 Kinetics as a Potential Biomarker for Peritoneal Metastasis Progression following Taxane-Plus-Ramucirumab Administration in Patients with Advanced Gastric Cancer. Cancers (Basel) 2024; 16:871. [PMID: 38473233 DOI: 10.3390/cancers16050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no established marker exists for predicting peritoneal metastasis progression during chemotherapy, although they are major interruptive factors in sequential chemotherapy in patients with advanced gastric cancer (AGC). This multicenter retrospective study was conducted from June 2015 to July 2019, analyzing 73 patients with AGC who underwent taxane-plus-ramucirumab (TAX/RAM) therapy and had their serum carbohydrate antigen 125 (CA125) concentrations measured. Of 31 patients with elevated CA125 levels above a cutoff of 35 U/mL, 25 (80.6%) had peritoneal metastasis. The CA125 concentrations before TAX/RAM treatment were associated with ascites burden. The overall survival was significantly shorter in the CA125-elevated group. CA125 kinetics, measured at a median of 28 days after chemotherapy, were associated with the ascites response (complete or partial response: -1.86%/day; stable disease: 0.28%/day; progressive disease: 2.33%/day). Progression-free survival in the CA125-increased group, defined by an increase of 0.0067%/day using receiver operating characteristic curve analysis, was significantly poorer among patients with peritoneal metastases. In conclusion, this study highlights that CA125 kinetics can serve as an early predictor for the progression of peritoneal metastasis during TAX/RAM treatment.
Collapse
Affiliation(s)
- Akira Ueda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Kita14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayumu Hosokawa
- Department of Clinical Oncology, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Naokatsu Nakada
- Department of Internal Medicine, Itoigawa Sogo Hospital, 457-1 Takegahana, Itoigawa 941-8502, Japan
| | - Yosuke Kito
- Department of Medical Oncology, Ishikawa Prefectural Central Hospital, 2-1 Kuratuki Higashi, Kanazawa 920-8530, Japan
| | - Iori Motoo
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ken Ito
- Department of Gastroenterology, Tomakomai City Hospital, 1-5-20 Shimizucho, Tomakomai 053-8567, Japan
| | - Miho Sakumura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yurika Nakayama
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuko Ueda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shinya Kajiura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Koji Nakashima
- Department of Clinical Oncology, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Kazuaki Harada
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Kita14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Yasuyuki Kawamoto
- Division of Cancer Center, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Yoshito Komatsu
- Division of Cancer Center, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
6
|
Liu P, Ding P, Wu H, Wu J, Yang P, Tian Y, Guo H, Zhao Q. Prediction of occult peritoneal metastases or positive cytology using CT in gastric cancer. Eur Radiol 2023; 33:9275-9285. [PMID: 37414883 DOI: 10.1007/s00330-023-09854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Accurate prediction of preoperative occult peritoneal metastasis (OPM) is critical to selecting appropriate therapeutic regimen for gastric cancer (GC). Considering the clinical practicability, we develop and validate a visible nomogram that integrates the CT images and clinicopathological parameters for the individual preoperative prediction of OPM in GC. METHODS This retrospective study included 520 patients who underwent staged laparoscopic exploration or peritoneal lavage cytology (PLC) examination. Univariate and multivariate logistic regression results were used to screen model predictors and construct nomograms of OPM risk. The performance of the model was detected by using ROC, accuracy, and C-index. The bootstrap resampling method was considered internal validation of the model. The Delong test was used to evaluate the difference in AUC between the two models. RESULTS Grade 2 mural stratification, tumor thickness, and the Lauren classification diffuse were significant predictors of OPM (p < 0.05). The nomogram of these three factors (compared with the original model) showed a higher predictive effect (p < 0.001). The area under the curve (AUC) of the model was 0.830 (95% CI 0.788-0.873), and the internally validated AUC of 1000 bootstrap samples was 0.826 (95% CI 0.756-0.870). The sensitivity, specificity, and accuracy were 76.0%, 78.8%, and 78.3%, respectively. CONCLUSIONS CT phenotype-based nomogram demonstrates favorable discrimination and calibration, and it can be conveniently used for preoperative individual risk rating of OPM in GC. CLINICAL RELEVANCE STATEMENT In this study, the preoperative OPM prediction model based on CT images (mural stratification, tumor thickness) combined with pathological parameters (the Lauren classification) showed excellent predictive ability in GC, and it is also suitable for clinicians to use rather than limited to professional radiologists. KEY POINTS • Nomogram based on CT image analysis can effectively predict occult peritoneal metastasis in gastric cancer (training area under the curve (AUC) = 0.830 and bootstrap AUC = 0.826). • Nomogram model combined with CT features performed better than the original model (established using only clinicopathological parameters) in differentiating occult peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Haotian Wu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Jiaxiang Wu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Peigang Yang
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Honghai Guo
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China.
| |
Collapse
|
7
|
Hong W, Hu Q, Tan Y, Duan Q, Zhang Q, Chen D, Qi C, Wang D. Gastrointestinal signet ring cell malignancy: current advancement and future prospects. Invest New Drugs 2023; 41:861-869. [PMID: 37864727 DOI: 10.1007/s10637-023-01403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Globally, gastrointestinal cancer is the most widespread neoplastic disease and the primary contributor to cancer-associated fatalities. Gastrointestinal signet ring cell carcinoma (SRCC) exhibits unique distinguishing features in several aspects when compared to adenocarcinomas (ACs). The scarcity of signet ring cell carcinoma has resulted in a heightened significance of related clinical and molecular investigations. However, a comprehensive and systematic review of the clinical, molecular, therapeutic, and research aspects of this disease is currently absent. This review provides an overview of the latest developments in our understanding of the clinical and molecular features of gastrointestinal signet ring cell carcinoma (SRCC). Additionally, we have compiled a list of potential therapeutic targets or biomarkers, as well as an examination of the current treatment options and the possible mechanisms of formation.
Collapse
Affiliation(s)
- Weiping Hong
- Department of Oncology, Guangdong Sanjiu Brain Hospital, 578 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province, China
| | - Qingjun Hu
- Department of Oncology, Guangdong Sanjiu Brain Hospital, 578 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province, China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Qianqian Duan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Dongsheng Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Chuang Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Da Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, China.
| |
Collapse
|
8
|
Yan Z, Liu K, Xu P, Chen Z, Zhang P, Pei S, Cheng Q, Huang S, Li B, Lv J, Xu Z, Xu H, Yang L, Zhang D. ACLY promotes gastric tumorigenesis and accelerates peritoneal metastasis of gastric cancer regulated by HIF-1A. Cell Cycle 2023; 22:2288-2301. [PMID: 38009671 PMCID: PMC10730177 DOI: 10.1080/15384101.2023.2286805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Mounting evidence indicates the potential involvement of ATP-citrate lyase (ACLY) in the modulation of various cancer types. Nevertheless, the precise biological significance of ACLY in gastric cancer (GC) remains elusive. This study sought to elucidate the biological function of ACLY and uncover its influence on peritoneal metastasis in GC. The expression of ACLY was assessed using both real-time quantitative PCR and western blot techniques. To investigate the impact of ACLY on the proliferation of gastric cancer (GC) cells, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. The migratory and invasive abilities of GC were evaluated using wound healing and transwell assays. Additionally, a bioinformatics analysis was employed to predict the correlation between ACLY and HIF-1A. This interaction was subsequently confirmed through a chromatin immunoprecipitation (ChIP) assay. ACLY exhibited upregulation in gastric cancer (GC) as well as in peritoneal metastasis. Its overexpression was found to facilitate the proliferation and metastasis of GC cells in both in vitro and in vivo experiments. Moreover, ACLY was observed to play a role in promoting angiogenesis and epithelial-mesenchymal transition (EMT). Notably, under hypoxic conditions, HIF-1A levels were elevated, thereby acting as a transcription factor to upregulate ACLY expression. Under the regulatory influence of HIF-1A, ACLY exerts a significant impact on the progression of gastric cancer, thereby facilitating peritoneal metastasis.
Collapse
Affiliation(s)
- Zhengyuan Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengwei Chen
- Department of Surgery, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Nanjing, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center Cancer Hospital, Beijing, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Liu Z, Tian H, Zhu Z. Application of Circulating Tumor Cells and Interleukin-6 in Preoperative Prediction of Peritoneal Metastasis of Advanced Gastric Cancer. J Inflamm Res 2023; 16:3033-3047. [PMID: 37497064 PMCID: PMC10366674 DOI: 10.2147/jir.s414786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Abstract
Background The purpose of this study was to explore the clinical significance of circulating tumor cells (CTCs) and cytokines in peripheral blood in preoperative prediction of peritoneal metastasis (PM) in advanced gastric cancer (AGC). Methods The clinicopathological characteristics of 282 patients with AGC were retrospectively analyzed. The patients were divided into training and validation groups according to the time of receiving treatment. We used univariate analysis and multivariate logistic regression analysis to screen out the independent risk factors of PM in AGC. Then, we incorporated independent risk factors into the nomogram, and evaluated the discriminative ability. Results The levels of CTCs and interleukin-6 (IL-6) of AGC patients with PM were higher than those without PM (P<0.05). Moreover, the levels of CTCs and IL-6 in the occult peritoneal metastasis (OPM) group and the CT-positive PM group were higher than those in the negative PM (P<0.05). Multivariate logistic regression analysis showed that IL-6 > 12.22 pg/mL, CTCs > 4/5mL, CA724 > 6 IU/mL, CA125 > 35 U/mL and tumor size > 5 cm were independent risk factors for PM of AGC. The area under the ROC curve of the nomogram were 0.898 and 0.926 in the training and validation sets, respectively. The clinical decision curve showed that the nomogram had good clinical utility. Conclusion CTCs and IL-6 in peripheral blood are promising biomarkers for predicting the risk of PM in AGC. The nomogram constructed from five risk factors can effectively assess the risk of PM in AGC patients individually.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Huakai Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
10
|
Chen Y, Cai G, Jiang J, He C, Chen Y, Ding Y, Lu J, Zhao W, Yang Y, Zhang Y, Wu G, Wang H, Zhou Z, Teng L. Proteomic profiling of gastric cancer with peritoneal metastasis identifies a protein signature associated with immune microenvironment and patient outcome. Gastric Cancer 2023; 26:504-516. [PMID: 36930369 PMCID: PMC10284991 DOI: 10.1007/s10120-023-01379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Peritoneal metastasis (PM) frequently occurs in patients with gastric cancer (GC) and is a major cause of mortality. Risk stratification for PM can optimize decision making in GC treatment. METHODS A total of 25 GC patients (13 with synchronous, 6 with metachronous PM and 6 PM-free) were included in this study. Quantitative proteomics by high-depth tandem mass tags labeling and whole-exome sequencing were conducted in primary GC and PM samples. Proteomic signature and prognostic model were established by machine learning algorithms in PM and PM-free GC, then validated in two external cohorts. Tumor-infiltrating immune cells in GC were analyzed by CIBERSORT. RESULTS Heterogeneity between paired primary and PM samples was observed at both genomic and proteomic levels. Compared to primary GC, proteome of PM samples was enriched in RNA binding and extracellular exosomes. 641 differently expressed proteins (DEPs) between primary GC of PM group and PM-free group were screened, which were enriched in extracellular exosome and cell adhesion pathways. Subsequently, a ten-protein signature was derived based on DEPs by machine learning. This signature was significantly associated with patient prognosis in internal cohort and two external proteomic datasets of diffuse and mixed type GC. Tumor-infiltrating immune cell analysis showed that the signature was associated with immune microenvironment of GC. CONCLUSIONS We characterized proteomic features that were informative for PM progression of GC. A protein signature associated with immune microenvironment and patient outcome was derived, and it could guide risk stratification and individualized treatment.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Guoxin Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Wenyi Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Yiqin Zhang
- Department of Informatics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghao Wu
- School of Clinical Medicine, Hangzhou Normal University Medical College, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
11
|
Liang N, Li C, Zhang N, Xu Q, Zou S, Zhang M, Si S, Zeng L. Effects of NM23 transfection of human gastric carcinoma cells in mice. Open Life Sci 2023; 18:20220610. [PMID: 37250840 PMCID: PMC10224620 DOI: 10.1515/biol-2022-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Gastric carcinoma is a frequent malignant tumor worldwide. NM23 plays an important role in pathological processes, including in the occurrence and development of tumors. The purpose of this study is to examine the effect of NM23 transfection of human gastric carcinoma cells (BGC-823) on growth and metastases of BGC-823 abdominal cancer xenografts in nude mice. BGC-823 cells were transfected with an adenovirus vector for NM23 (NM23-OE), transfected with an empty vector (NC), or were not transfected (Ctrl). Eighteen female BALB/c-nu mice were randomly divided into three groups (six per group) according to the type of BGC-823 cells administered by intraperitoneal injection. After 2 weeks, necropsies of mice were performed, abdominal circumferences were measured, and abdominal cavities were searched by ultrasound. In order to observe the xenografts in nude mice, there were gross macroscopic observations and microscopic observations. In addition, immunohistochemical analysis and western blot of NM23 were also performed. Green fluorescence in the NM23-OE and NC cells indicated successful transfection. The multiplicity of infection is 80%. A comparison of the three groups of mice indicated the NM23-OE group had positive conditions (abdominal circumferences: 81.83 ± 2.40 mm), but the other groups had negative conditions and enlarged abdomens (NC: 90.83 ± 2.32 mm; Ctrl: 92.67 ± 2.07 mm). Ultrasound observations confirmed large tumors in the NC and Ctrl groups, but did not find in the NM23-OE group. There were no obvious ascites in the NM23-OE group, but the cytological examination of ascites exfoliation in NC and Ctrl groups indicated that there were large and deep-stained gastric carcinoma cells. Tumor expression of NM23 was greater in the NM23-OE group than in the NC and Ctrl groups (both p < 0.05). In conclusion, transfection of BCG-823 cells with NM23 rather than an empty vector (NC) or no vector (Ctrl) led to reduced growth and metastases of abdominal cancer xenografts in nude mice.
Collapse
Affiliation(s)
- Na Liang
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunming Li
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Neng Zhang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qiang Xu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shengnan Zou
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Meng Zhang
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shuyao Si
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Li Zeng
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
12
|
Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis. Cancer Lett 2023; 553:215983. [PMID: 36404569 DOI: 10.1016/j.canlet.2022.215983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
Abstract
Peritoneal metastasis is one of the most frequent causes of death in several types of advanced cancers; however, the underlying molecular mechanisms remain largely unknown. In this study, we exploited multicolor fluorescent lineage tracking to investigate the clonality of peritoneal metastasis in mouse xenograft models. When peritoneal metastasis was induced by intraperitoneal or orthotopic injection of multicolored cancer cells, each peritoneally metastasized tumor displayed multicolor fluorescence regardless of metastasis sites, indicating that it consists of multiclonal cancer cell populations. Multicolored cancer cell clusters form within the peritoneal cavity and collectively attach to the peritoneum. In vitro, peritoneal lavage fluid or cleared ascitic fluid derived from cancer patients induces cancer cell clustering, which is inhibited by anticoagulants. Cancer cell clusters formed in vitro and in vivo are associated with fibrin formation. Furthermore, tissue factor knockout in cancer cells abrogates cell clustering, peritoneal attachment, and peritoneal metastasis. Thus, we propose that cancer cells activate the coagulation cascade via tissue factor to form fibrin-mediated cell clusters and promote peritoneal attachment; these factors lead to the development of multiclonal peritoneal metastasis and may be therapeutic targets.
Collapse
|
13
|
Liu D, Xu W, Lin B, Ji C, Shen M, Shen S, Ma J, Zhou X, Yan Y, Zhang B, Lin N. HZ-A-018, a novel inhibitor of Bruton tyrosine kinase, exerts anti-cancer activity and sensitizes 5-FU in gastric cancer cells. Front Pharmacol 2023; 14:1142127. [PMID: 37033615 PMCID: PMC10073700 DOI: 10.3389/fphar.2023.1142127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer related death worldwide. Due to the complexity and heterogeneity of gastric cancer, the development of targeted drugs is somehow limited, but is urgently needed. Since the expression of Bruton tyrosine kinase (BTK) was significantly associated with the prognosis of gastric cancer patients, we aimed to determine the anti-cancer activity of HZ-A-018, which was a novel derivative of ACP-196, in gastric cancer cells. As a result, HZ-A-018 presented a stronger anti-proliferation activity than ACP-196 via the substantial suppression of AKT/S6 pathway. In addition, HZ-A-018, but not ACP-196, exerted the synergistic effects in combined treatment with 5-FU both in vitro and in vivo, without exacerbating the adverse effects of 5-FU. Mechanismly, the combination of HZ-A-018 and 5-FU remarkably reduced the expression of RRM2, which played an essential role in proliferation and drug sensitivity in gastric cancer cells. In summary, our work demonstrated the stronger anti-cancer activity of HZ-A-018 than ACP-196 in gastric cancer cells, and revealed synergistic effects of HZ-A-018 and 5-FU combination probably through the inhibition of RRM2 via AKT/S6 pathway, thereby providing a promising therapeutic strategy in gastric cancer.
Collapse
Affiliation(s)
- Danjing Liu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Wei Xu
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Bin Lin
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing People’s Hospital, Huzhou, Zhejiang, China
| | - Cong Ji
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Minmin Shen
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Shuying Shen
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Junjie Ma
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Xinglu Zhou
- Hangzhou Hezheng Pharmaceutical Co., Ltd., Huzhou, Zhejiang, China
| | - Youyou Yan
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Bo Zhang
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Huzhou, Zhejiang, China
- *Correspondence: Nengming Lin, ; Bo Zhang,
| | - Nengming Lin
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Huzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Huzhou, Zhejiang, China
- *Correspondence: Nengming Lin, ; Bo Zhang,
| |
Collapse
|
14
|
Kim H, Park S, Kang SY, Ahn S, Kim KM. Peritoneal Seeding Is More Common in Gastric Cancer Patients with FGFR2 Amplification or High Tumor Mutation Burden. Diagnostics (Basel) 2022; 12:diagnostics12102355. [PMID: 36292044 PMCID: PMC9601213 DOI: 10.3390/diagnostics12102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Fibroblast growth factor receptor-2 (FGFR2) gene alterations have been identified in solid tumors. FGFR2 amplification is found in 2−9% of gastric carcinomas. We hypothesized that FGFR2 could be associated with peritoneal seeding and studied 360 advanced gastric carcinoma patients; 222 (61.7%) were male, 246 (73.7%) had poorly differentiated histology, and 175 (48.6%) presented with peritoneal seeding. High tumor mutation burden (TMB) was observed in 44 (12.2%) patients, high microsatellite instability (MSI) was observed in 12 (3.33%) patients, ERBB2 amplification was observed in 44 (12.2%) patients, EBV positivity was observed in 10 (10/278; 3.6%) patients, and PD-L1 positivity was observed in 186 (186/264; 70.5%) cases. We found FGFR2 amplification in 26 (7.2%) patients, of which 12 (46.2%) were female and 22 (84.6%) had poorly differentiated histology. In these 26 cases, the copy number of FGFR2 amplification ranged from 3.7 to 274. Eighteen of them showed seeding, and this association was statistically significant (18/26, 69.2%; 157/334, 47%; p = 0.023). In addition, high TMB was significantly associated with seeding (p = 0.028; OR = 1.83). Poorly differentiated histology was significantly associated with seeding (p = 0.04) but not with FGFR2 amplification (p > 0.1). Seeding was frequent in gastric carcinoma patients with FGFR2 amplification, in patients with high TMB, or in those who were female. The subgroup of patients with FGFR2 amplification could be potential candidates for targeted therapeutic agents.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Pathology Center, Seegene Medical Foundation, Seoul 06351, Korea
| | - Sujin Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
15
|
Yarema R, Оhorchak М, Hyrya P, Kovalchuk Y, Safiyan V, Oliynyk Y, Rilinh O, Matusyak M. PREDICTIVE NOMOGRAM OF THE RISK OF PERITONEAL RELAPSE FOLLOWING RADICAL GASTRIC CANCER SURGERY. PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY. MEDICAL SCIENCES 2022; 69. [DOI: 10.25040/ntsh2022.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
|
16
|
Chen YF, Wang SY, Le PH, Chen TH, Kuo CJ, Lin CJ, Chou WC, Yeh TS, Hsu JT. Prognostic Significance of Perineural Invasion in Patients with Stage II/III Gastric Cancer Undergoing Radical Surgery. J Pers Med 2022; 12:962. [PMID: 35743747 PMCID: PMC9224547 DOI: 10.3390/jpm12060962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022] Open
Abstract
The prognostic significance of perineural invasion in patients with gastric cancer (GC) is controversial. This study aimed to determine the prognostic value of perineural invasion in patients with stage II/III GC undergoing radical surgery. A total of 1913 patients with stage II/III GC who underwent curative resection between 1994 and 2015 were recruited. Clinicopathological factors, tumor recurrence patterns, disease-free survival, and cancer-specific survival were compared in terms of perineural invasion. The prognostic factors of disease-free survival and cancer-specific survival were determined using univariate and multivariate analyses. Perineural invasion was found in 57.1% of the patients. Age of <65 years, female sex, large tumor size, upper tumor location, total gastrectomy, advanced tumor invasion depth and nodal involvement, greater metastatic to examined lymph node ratio, undifferentiated tumor, and presence of lymphatic or vascular invasion were significantly associated with perineural invasion. The patients with perineural invasion had higher locoregional/peritoneal recurrence rates than those without. Perineural invasion was independently associated with disease-free survival and cancer-specific survival. In conclusion, perineural invasion positivity is associated with aggressive tumor behaviors and higher locoregional/peritoneal recurrence rates in patients with stage II/III GC undergoing curative surgery. It is an independent unfavorable prognostic factor of disease recurrence and cancer-specific survival.
Collapse
Affiliation(s)
- Yi-Fu Chen
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (Y.-F.C.); (S.-Y.W.); (T.-S.Y.)
| | - Shan-Yu Wang
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (Y.-F.C.); (S.-Y.W.); (T.-S.Y.)
| | - Puo-Hsien Le
- Department of Gastroenterology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (P.-H.L.); (T.-H.C.); (C.-J.K.); (C.-J.L.)
| | - Tsung-Hsing Chen
- Department of Gastroenterology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (P.-H.L.); (T.-H.C.); (C.-J.K.); (C.-J.L.)
| | - Chia-Jung Kuo
- Department of Gastroenterology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (P.-H.L.); (T.-H.C.); (C.-J.K.); (C.-J.L.)
| | - Chun-Jung Lin
- Department of Gastroenterology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (P.-H.L.); (T.-H.C.); (C.-J.K.); (C.-J.L.)
| | - Wen-Chi Chou
- Department of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (Y.-F.C.); (S.-Y.W.); (T.-S.Y.)
| | - Jun-Te Hsu
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan; (Y.-F.C.); (S.-Y.W.); (T.-S.Y.)
| |
Collapse
|
17
|
Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022; 10:biomedicines10061376. [PMID: 35740397 PMCID: PMC9220323 DOI: 10.3390/biomedicines10061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer (GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy combination has become the standard of care for advanced GC. Several clinical trials of newer immunotherapy agents are ongoing. Understanding of the molecular process of PM and the potential rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, intraperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
Collapse
Affiliation(s)
- Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
18
|
Chen Y, Sun Z, Wan L, Chen H, Xi T, Jiang Y. Tumor Microenvironment Characterization for Assessment of Recurrence and Survival Outcome in Gastric Cancer to Predict Chemotherapy and Immunotherapy Response. Front Immunol 2022; 13:890922. [PMID: 35572498 PMCID: PMC9101297 DOI: 10.3389/fimmu.2022.890922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background The tumor microenvironment (TME) is crucial for tumor recurrence, prognosis, and therapeutic responses. We comprehensively investigated the TME characterization associated with relapse and survival outcomes of gastric cancer (GC) to predict chemotherapy and immunotherapy response. Methods A total of 2,456 GC patients with complete gene-expression data and clinical annotations from twelve cohorts were included. The TME characteristics were evaluated using three proposed computational algorithms. We then developed a TME-classifier, a TME-cluster, and a TME-based risk score for the assessment of tumor recurrence and prognosis in patients with GC to predict chemotherapy and immunotherapy response. Results Patients with tumor recurrence presented with inactive immunogenicity, namely, high infiltration of tumor-associated stromal cells, low infiltration of tumor-associated immunoactivated lymphocytes, high stromal score, and low immune score. The TME-classifier of 4 subtypes with distinct clinicopathology, genomic, and molecular characteristics was significantly associated with tumor recurrence (P = 0.002), disease-free survival (DFS, P <0.001), and overall survival (OS, P <0.001) adjusted by confounding variables in 1,193 stage I–III GC patients who underwent potential radical surgery. The TME cluster and TME-based risk score can also predict DFS (P <0.001) and OS (P <0.001). More importantly, we found that patients in the TMEclassifier-A, TMEclassifier-C, and TMEclassifier-D groups benefited from adjuvant chemotherapy, and patients in the TMEclassifier-B group without chemotherapy benefit responded best to pembrolizumab treatment (PD-1 inhibitor), followed by patients in the TMEclassifier-A, while patients in the C and D groups of the TMEclassifier responded poorly to immunotherapy. Conclusion We determined that TME characterization is significantly associated with tumor recurrence and prognosis. The TME-classifier we proposed can guide individualized chemotherapy and immunotherapy decision-making.
Collapse
Affiliation(s)
- Yan Chen
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
- *Correspondence: Yuming Jiang, ; Yan Chen,
| | - Zepang Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Wan
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
| | - Hongzhuan Chen
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
| | - Tieju Xi
- Shatou Community Health Service Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of Bao’an Shenzhen (Group), Shenzhen Bao’an Shajing People’s Hospital, Guangzhou Medical University, Shenzhen, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Yuming Jiang, ; Yan Chen,
| |
Collapse
|
19
|
Chen C, Bao H, Lin W, Chen X, Huang Y, Wang H, Yang Y, Liu J, Lv X, Teng L. ASF1b is a novel prognostic predictor associated with cell cycle signaling pathway in gastric cancer. J Cancer 2022; 13:1985-2000. [PMID: 35399734 PMCID: PMC8990430 DOI: 10.7150/jca.69544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with poor outcomes. Identification of new therapeutic targets is urgently needed. Accumulating evidence has shown that anti-silencing function 1b (ASF1b) contributes to the progression in multiple cancer types. However, detailed mechanisms of ASF1b tumorigenesis in gastric cancer remain elusive. This study showed that ASF1b was upregulated in GC tissues and remarkably correlated with TNM stage, histological grade and poor prognosis of GC. We induced down and up-regulation of ASF1b in GC cell lines and monitored the changes in their biological behavior. Furthermore, loss of ASF1b was efficient to suppress subcutaneous xenograft tumor growth in vivo. We demonstrate that ASF1b is involved in regulation of cell cycle and PI3K/AKT/mTOR signaling through experiments and database analysis. Mechanistically, ASF1b promoted the proliferation, migration and invasion of GC cells. Taken together, this study highlights the role of ASF1b, which provided new insights into the underlying mechanism of progression and metastasis in GC for the first time.
Collapse
Affiliation(s)
- Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haili Bao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Wu Lin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jin Liu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiadong Lv
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
20
|
Zhang C, Quan Y, Bai Y, Yang L, Yang Y. The effect and apoptosis mechanism of 6-methoxyflavone in HeLa cells. Biomarkers 2022; 27:470-482. [PMID: 35400257 DOI: 10.1080/1354750x.2022.2062448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tumor cell apoptosis is a crucial indicator for judging the antiproliferative effects of anti-cancer drugs. The detection of optical and macromolecular biomarkers is the most common method for assessing the level of apoptosis. We aimed to explore the anti-tumor mechanisms of 6-methoxyflavone. MATERIAL AND METHODS Three optical methods, including the percentage of apoptotic cells, cell morphology, and subcellular ultrastructure changes, were obtained using flow cytometry, inverted fluorescence microscopy, and transmission electron microscope imaging. The mRNA or protein expression of macromolecular biomarkers related to common apoptotic pathways was determined via polymerase chain reactions or western blot assays. The functional role of the core gene biomarker was investigated through overexpression, knockdown, and phosphorylation inhibitor (GSK2656157). RESULTS Transcriptome sequencing and the optical biomarkers assays demonstrated that 6-methoxyflavone could induce apoptosis in HeLa cells. The expression of macromolecular biomarkers indicated that 6-methoxyflavone induced apoptosis through the PERK/EIF2α/ATF4/CHOP pathway. Phosphorylated PERK was identified as the core biomarker of this pathway. Both overexpression and GSK2656157 significantly altered the expression level of phosphorylated PERK in 6-methoxyflavone-treated HeLa cells. DISCUSSION AND CONCLUSION Macromolecular biomarkers such as phosphorylated PERK and phosphorylated EIF2α are of great significance for assessing the therapeutic effects of 6-methoxyflavone.
Collapse
Affiliation(s)
- Chaihong Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China
| | - Yuchong Quan
- College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Yingying Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China
| | - Lijuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China
| | - Yongxiu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China.,Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Zeng CDD, Jin CC, Gao C, Xiao AT, Tong YX, Zhang S. Preoperative Folate Receptor-Positive Circulating Tumor Cells Are Associated With Occult Peritoneal Metastasis and Early Recurrence in Gastric Cancer Patients: A Prospective Cohort Study. Front Oncol 2022; 12:769203. [PMID: 35425708 PMCID: PMC9002093 DOI: 10.3389/fonc.2022.769203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background The aim of this study is to explore the clinical feasibility of detecting folate receptor-positive circulating tumor cells (FR+ CTCs) for predicting peritoneal metastasis and short-term outcome in gastric cancer patients. Methods This is a prospective, single-center, observational study. We applied ligand-targeted enzyme-linked polymerization method to detect preoperative FR+ CTC levels in peripheral blood. We evaluated the diagnostic value of FR+ CTCs and other biomarkers in predicting peritoneal metastasis. Prognostic factors for recurrence-free survival (RFS) were investigated in univariate and multivariate analyses. Results A total of 132 patients with gastric cancer and 9 patients with benign disease were recruited. Gastric cancer patients had a significantly higher CTC level compared to that of patients with benign disease (p < 0.01). Combined model including CTC level and other biomarkers presented high sensitivity (100%) and moderate specificity (59.3%) in predicting peritoneal metastasis. Univariate analysis revealed that decreased serum prealbumin, decreased peripheral lymphocyte count, FR+ CTCs, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and lymph node metastasis were significantly associated with shorter RFS. FR+ CTC level [≥12.6 folate units (FU)/3 ml, hazard ratio (HR) = 6.957, p = 0.005] and CA19-9 (>34 ng/ml, HR = 3.855, p = 0.037) were independent prognostic factors in multivariate analysis. Conclusions Our findings for the first time suggested the diagnostic value of preoperative CTC levels in predicting peritoneal metastasis in gastric cancer. Moreover, the FR+ CTC level could be a novel and promising prognostic factor for the recurrence of gastric cancer in patients who underwent surgery. Clinical Trial Registration Chinese Clinic Trial Registry, identifier ChiCTR2100050514.
Collapse
Affiliation(s)
| | | | | | | | | | - Sheng Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Zhang C, Yang J, Chen Y, Jiang F, Liao H, Liu X, Wang Y, Kong G, Zhang X, Li J, Gao J, Shen L. miRNAs derived from plasma small extracellular vesicles predict organo-tropic metastasis of gastric cancer. Gastric Cancer 2022; 25:360-374. [PMID: 35031872 DOI: 10.1007/s10120-021-01267-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peritoneum, liver and lymph node are the most common metastatic sites of gastric cancer (GC). Biomarkers for GC's organo-tropic metastasis remained largely unknown, which was investigated in this study from the perspective of small extracellular vesicle (sEV)-derived miRNAs. METHODS Plasma from treatment-naïve GC patients including no metastasis (M0), peritoneal metastasis (PM), hepatic metastasis (HM) and distant lymph node metastasis (dLNM)) were divided into one discovery (N = 40), one training (N = 40) and one validating cohort (N = 86), then assessed by sEV-miRNA-sequencing and sEV-miRNA-qPCR. Functional explorations were also performed for verification. RESULTS The expression profiles of sEV-miRNAs varied greatly across different metastatic patterns. Based on logistic regression models, we constructed signatures for M0 (hsa-miR-186-5p/hsa-miR-200c-3p/hsa-miR-429/hsa-miR-5187-5p/hsa-miR-548ae-5p), PM (hsa-miR-200c-3p/hsa-miR-429), HM (hsa-miR-200c-3p/hsa-miR-429) and dLNM (hsa-miR-324-5p/hsa-miR-374a-5p/hsa-miR-429/hsa-miR-548ae-5p). These signatures vigorously characterized organo-tropic metastasis (all displaying AUC > 0.8, consistency ≥ 75%), and effectively conjectured the risk of future metastasis within 5 years (accuracy 45.5% for occurrence, 70% for organotropism, P = 0.002 for prognostic diversity). Additionally, we explored these seven biomarker miRNAs' impact on GC's in vitro motility and discussed their potential involvement in cancer-related biological processes and pathways. CONCLUSIONS Our work highlighted that plasma sEV-miRNAs powerfully characterized and predicted the organo-tropic metastasis of GC and provided new insight into the applications of sEV-based liquid biopsy in clinical practice.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jing Yang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Fangli Jiang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Xiang Liu
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Yuan Wang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Guanyi Kong
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
23
|
Hendrikson J, Liu Y, Ng WH, Lee JY, Lim AH, Loh JW, Ng CC, Ong WS, Tan JWS, Tan QX, Ng G, Shannon NB, Lim WK, Lim TK, Chua C, Wong JSM, Tan GHC, So JBY, Yeoh KG, Teh BT, Chia CS, Soo KC, Kon OL, Tan IB, Chan JY, Teo MCC, Ong CAJ. Ligand-mediated PAI-1 inhibition in a mouse model of peritoneal carcinomatosis. Cell Rep Med 2022; 3:100526. [PMID: 35243423 PMCID: PMC8861959 DOI: 10.1016/j.xcrm.2022.100526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 12/28/2022]
Abstract
Peritoneal carcinomatosis (PC) present a ubiquitous clinical conundrum in all intra-abdominal malignancies. Via functional and transcriptomic experiments of ascites-treated PC cells, we identify STAT3 as a key signaling pathway. Integrative analysis of publicly available databases and correlation with clinical cohorts (n = 7,359) reveal putative clinically significant activating ligands of STAT3 signaling. We further validate a 3-biomarker prognostic panel in ascites independent of clinical covariates in a prospective study (n = 149). Via single-cell sequencing experiments, we uncover that PAI-1, a key component of the prognostic biomarker panel, is largely secreted by fibroblasts and mesothelial cells. Molecular stratification of ascites using PAI-1 levels and STAT3 activation in ascites-treated cells highlight a therapeutic opportunity based on a phenomenon of paracrine addiction. These results are recapitulated in patient-derived ascites-dependent xenografts. Here, we demonstrate therapeutic proof of concept of direct ligand inhibition of a prognostic target within an enclosed biological space.
Collapse
Affiliation(s)
- Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Ying Liu
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Wai Har Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Abner Herbert Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jui Wan Loh
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Cedric C.Y. Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Whee Sze Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Joey Wee-Shan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Gillian Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nicholas B. Shannon
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169609, Singapore
- Cancer and Stem Biology Signature Research Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tony K.H. Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
- Pathology Academic Clinical Program, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| | - Clarinda Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jolene Si Min Wong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Grace Hwei Ching Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Division of Surgical Oncology, National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Gastroenterology and Hepatology, National University Hospital, Singapore 119074, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
- Institute of Molecular and Cell Biology, A∗STAR Research Entities, Singapore 138673, Singapore
| | - Claramae Shulyn Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Khee Chee Soo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
| | - Oi Lian Kon
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Iain Beehuat Tan
- Cancer and Stem Biology Signature Research Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Laboratory of Applied Cancer Genomics, Genome Institute of Singapore, A∗STAR Research Entities, Singapore 138672, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Melissa Ching Ching Teo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
| | - Chin-Ann J. Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Institute of Molecular and Cell Biology, A∗STAR Research Entities, Singapore 138673, Singapore
| | - on behalf of the Singapore Peritoneal Oncology Study (SPOS) Group and Singapore Gastric Cancer Consortium (SGCC)
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Cresent, Singapore 169610, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore 169608, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169609, Singapore
- Cancer and Stem Biology Signature Research Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
- Pathology Academic Clinical Program, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Division of Surgical Oncology, National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Gastroenterology and Hepatology, National University Hospital, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, A∗STAR Research Entities, Singapore 138673, Singapore
- Laboratory of Applied Cancer Genomics, Genome Institute of Singapore, A∗STAR Research Entities, Singapore 138672, Singapore
| |
Collapse
|
24
|
Takiguchi K, Shoda K, Nakayama T, Takahashi K, Saito R, Yamamoto A, Furuya S, Akaike H, Hosomura N, Kawaguchi Y, Amemiya H, Kawaida H, Inoue S, Kono H, Konishi H, Otsuji E, Ichikawa D. Soluble podoplanin as a biomarker in diffuse‑type gastric cancer. Oncol Rep 2022; 47:51. [PMID: 35029281 DOI: 10.3892/or.2022.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Diffuse‑type gastric cancer, also known as scirrhous gastric cancer, is characterized by a larger number of stromal cells, referred to as cancer‑associated fibroblasts (CAFs), than the number of cancer cells in the tissue. The present study focused on CAFs in gastric cancer and examined their potential as a blood biomarker. A total of 46 and 84 patients with gastric cancer were respectively included in a development and an independent validation cohort to assess the clinicopathological characteristics of plasma podoplanin (PDPN) levels. The prognostic impact of plasma PDPN was also investigated in the validation cohort. The cut‑off value of the plasma‑PDPN concentration was set to the median plasma PDPN concentration in the development cohort that was then divided into the high‑PDPN and low‑PDPN groups. The high‑PDPN group tended to have more diffuse‑type disease (P=0.079), which was further confirmed through logistic regression analysis (P=0.008). Kaplan‑Meier survival estimates indicated that the recurrence‑free survival rate was significantly lower in the high‑PDPN group (P=0.029). In conclusion, plasma soluble PDPN was demonstrated to be a marker for diffuse gastric cancer and may reflect the prognosis of this disease.
Collapse
Affiliation(s)
- Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Kazunori Takahashi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Atsushi Yamamoto
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Naohiro Hosomura
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Shingo Inoue
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Hiroshi Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409‑3898, Japan
| |
Collapse
|
25
|
Ozawa H, Imazeki H, Ogiwara Y, Kawakubo H, Fukuda K, Kitagawa Y, Kudo-Saito C. Targeting AURKA in treatment of peritoneal tumor dissemination in gastrointestinal cancer. Transl Oncol 2021; 16:101307. [PMID: 34902741 PMCID: PMC8681022 DOI: 10.1016/j.tranon.2021.101307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 01/16/2023] Open
Abstract
Intraperitoneal (i.p.) tumor dissemination and the consequent malignant ascites remain unpredictable and incurable in patients with gastrointestinal (GI) cancer, and practical advances in diagnosis and treatment are urgently needed in the clinical settings. Here, we explored tumor biological and immunological mechanisms underlying the i.p. tumor progression for establishing more effective treatments. We established mouse tumor ascites models that murine and human colorectal cancer cells were both i.p. and subcutaneously (s.c.) implanted in mice, and analyzed peritoneal exudate cells (PECs) obtained from the mice. We then evaluated anti-tumor efficacy of agents targeting the identified molecular mechanisms using the ascites models. Furthermore, we validated the clinical relevancy of the findings using peritoneal lavage fluids obtained from gastric cancer patients. I.p. tumor cells were giant with large nuclei, and highly express AURKA, but less phosphorylated TP53, as compared to s.c. tumor cells, suggesting polyploidy-like cells. The i.p. tumors impaired phagocytic activity and the consequent T-cell stimulatory activity of CD11b+Gr1+PD1+ myeloid cells by GDF15 that is regulated by AURKA, leading to treatment resistance. Blocking AURKA with MLN8237 or siRNAs, however, abrogated the adverse events, and induced potent anti-tumor immunity in the ascites models. This treatment synergized with anti-PD1 therapy. The CD11b+PD1+ TAMs are also markedly expanded in the PECs of gastric cancer patients. These suggest AURKA is a determinant of treatment resistance of the i.p. tumors. Targeting the AURKA-GDF15 axis could be a promising strategy for improving clinical outcome in the treatment of GI cancer.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
26
|
Molecular Cytology by One-Step Nucleic Acid Amplification (OSNA) Assay of Peritoneal Washings during D2 Gastrectomy in Advanced Gastric Cancer Patients: Preliminary Results. J Clin Med 2021; 10:jcm10225230. [PMID: 34830512 PMCID: PMC8621409 DOI: 10.3390/jcm10225230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of peritoneal free cancer cells (FCC) in gastric cancer (GC) patients is a poor prognostic factor. D2 gastrectomy may induce exfoliated FCC spread from the primary tumour or involved lymph nodes (LN). Conventional cytology for FCC detection has several limitations, whereas prophylactic use of extensive intraoperative peritoneal lavage (IPL) does not improve survival. A prospective single-arm observational study was conducted to verify whether D2 gastrectomy causes an intraoperative increase of FCC in peritoneal fluid. Twenty-seven GC patients underwent D2 gastrectomy, followed by objective quantitative measurements of CK19 mRNA level reflecting FCC with One-Step Nucleic Acid Amplification (OSNA) assay. The IPL with 3000 mL of saline was performed twice: (1) after gastrectomy with D2 lymphadenectomy and (2) after alimentary tract reconstruction. The IPL samples were analysed by initial cytology and four (1-4) consecutive OSNA assays. Initial OSNA measurement (1) revealed positive results (≥24.6 cCP/μL) in 7 (29.6%) patients. Subsequent OSNA measurements showed a significant decrease in the FCC level after D2 gastrectomy (1 vs. 2; p = 0.0012). The first IPL induced a non-significant increase in the FCCs (2 vs. 3, p = 0.3300), but the second IPL reversed it to normal levels (3 vs. 4, p = 0.0.0574). The OSNA assay indicates a temporal intraoperative increase in the peritoneal FCC in advanced GC patients undergoing D2 gastrectomy. Two consecutive IPLs are necessary to reverse the increase of CK19 mRNA level in peritoneal washings.
Collapse
|
27
|
SHP2 as a Potential Therapeutic Target in Diffuse-Type Gastric Carcinoma Addicted to Receptor Tyrosine Kinase Signaling. Cancers (Basel) 2021; 13:cancers13174309. [PMID: 34503119 PMCID: PMC8430696 DOI: 10.3390/cancers13174309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse-type gastric carcinoma (DGC) is characterized by rapid infiltrative growth associated with massive stroma and frequent peritoneal dissemination, which leads to poor patient outcomes. In this study, we found that the oncogenic tyrosine phosphatase SHP2 is tyrosine-phosphorylated downstream of the amplified receptor tyrosine kinases (RTKs) Met and fibroblast growth factor receptor 2 (FGFR2) in DGC cell lines. SHP2 knockdown or pharmacological inhibition selectively suppressed the growth of DGC addicted to amplified Met and FGFR2. Moreover, targeting SHP2 abrogated malignant phenotypes, including peritoneal dissemination, of Met-addicted DGC and could overcome acquired resistance to Met inhibitors. Our findings suggest that SHP2 is a potential target for the treatment of DGC addicted to amplified RTK signaling. Abstract Diffuse-type gastric carcinoma (DGC) exhibits aggressive progression associated with rapid infiltrative growth, massive fibrosis, and peritoneal dissemination. Gene amplification of Met and fibroblast growth factor receptor 2 (FGFR2) receptor tyrosine kinases (RTKs) has been observed in DGC. However, the signaling pathways that promote DGC progression downstream of these RTKs remain to be fully elucidated. We previously identified an oncogenic tyrosine phosphatase, SHP2, using phospho-proteomic analysis of DGC cells with Met gene amplification. In this study, we characterized SHP2 in the progression of DGC and assessed the therapeutic potential of targeting SHP2. Although SHP2 was expressed in all gastric carcinoma cell lines examined, its tyrosine phosphorylation preferentially occurred in several DGC cell lines with Met or FGFR2 gene amplification. Met or FGFR inhibitor treatment or knockdown markedly reduced SHP2 tyrosine phosphorylation. Knockdown or pharmacological inhibition of SHP2 selectively suppressed the growth of DGC cells addicted to Met or FGFR2, even when they acquired resistance to Met inhibitors. Moreover, SHP2 knockdown or pharmacological inhibition blocked the migration and invasion of Met-addicted DGC cells in vitro and their peritoneal dissemination in a mouse xenograft model. These results indicate that SHP2 is a critical regulator of the malignant progression of RTK-addicted DGC and may be a therapeutic target.
Collapse
|
28
|
Hu XY, Ling ZN, Hong LL, Yu QM, Li P, Ling ZQ. Circulating methylated THBS1 DNAs as a novel marker for predicting peritoneal dissemination in gastric cancer. J Clin Lab Anal 2021; 35:e23936. [PMID: 34390026 PMCID: PMC8418496 DOI: 10.1002/jcla.23936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives Thrombospondin 1 (THBS1) is known to play a key role in tumor metastasis, and aberrant DNA methylation is one of the mechanisms regulating THBS1. The present study investigated whether methylated THBS1 in circulating cell‐free DNA from preoperative peritoneal lavage fluid (PPLF) and peripheral blood could be used as a potential biomarker for predicting peritoneal dissemination in gastric cancer (GC) patients. Methods The status of THBS1 methylation was detected by quantitative methylation‐specific PCR (MSP) in tumor tissues, paired PPLF, and serum from 92 GC patients. The correlation between methylated THBS1 levels and peritoneal dissemination of GC was studied, and its diagnostic value for predicting peritoneal dissemination was clarified by the receiver operating characteristic (ROC) curve. Results Aberrant THBS1 methylation in tumor tissues was significantly higher than that in paracancerous normal tissues (p < 0.0001). No THBS1 methylation was found in 40 healthy controls, and partial methylation was detected in 3 of 48 patients with chronic non‐atrophic gastritis. The frequency of THBS1 methylation in pairing PPLF and serum from 92 GC patients was 52.2% (48/92) and 58.7% (54/92), respectively. The results of methylated THBS1 in pairing PPLF and serum were similar to those of tumor tissues. Aberrant THBS1 methylation in tumor tissues and pairing PPLF or serum was closely related to peritoneal dissemination, tumor progression, and poor prognosis (all p < 0.0001). Conclusion Circulating methylated THBS1 DNAs in PPLF/serum may predict peritoneal dissemination, a potential poor prognostic factor for GC patients.
Collapse
Affiliation(s)
- Xuan-Yu Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Experimental Research Centre, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, China
| | - Zhe-Nan Ling
- Experimental Research Centre, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, China.,Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Lian-Lian Hong
- Experimental Research Centre, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, China
| | - Qi-Ming Yu
- Experimental Research Centre, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Ling
- Experimental Research Centre, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, China
| |
Collapse
|
29
|
Zou D, Song J, Deng M, Ma Y, Yang C, Liu J, Wang S, Wen Z, Tang Y, Qu X, Zhang Y. Bufalin inhibits peritoneal dissemination of gastric cancer through endothelial nitric oxide synthase-mitogen-activated protein kinases signaling pathway. FASEB J 2021; 35:e21601. [PMID: 33913201 DOI: 10.1096/fj.202002780r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023]
Abstract
Peritoneal dissemination threatens the survival of patients with gastric cancer (GC). Bufalin is an extract of traditional Chinese medicine, which has been proved to have anticancer effect. The target of bufalin in suppressing gastric cancer peritoneal dissemination (GCPD) and the underlying mechanism are still unclear. In this research, GC cell line MGC-803 and high-potential peritoneal dissemination cell line MKN-45P were treated with bufalin or L-NAME. Malignant biological behavior and protein level of GC cell lines were detected with MTT, wound healing, transwell, adhesion, and western blotting. Bioinformatics analysis and patient tissues were used to verify the role of endothelial nitric oxide synthase (NOS3) in GC. Mice model was used to assess the effect of bufalin and role of NOS3 in vivo. We found that bufalin inhibited the proliferation, invasion, and migration in GC cell lines. NOS3, which was an independent prognostic factor of GC patients, was predicted to be a potential target of bufalin. Further experiments proved that bufalin reduced the phosphorylation of NOS3, thereby inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway, and ultimately suppressed GCPD by inhibiting EMT process. In conclusion, NOS3 was a potential therapeutic target and prognostic biomarker of GC. Bufalin could suppress GCPD through NOS3-MAPK signaling pathway, which provided more evidence support for intraperitoneal perfusion of bufalin to treat GCPD.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Jincheng Song
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China.,Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingming Deng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Song Wang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Zhenpeng Wen
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Xu P, Xu X, Zhang L, Li Z, Qiang J, Yao J, Xu A. hsa_circ_0060975 is highly expressed and predicts a poor prognosis in gastric cancer. Oncol Lett 2021; 22:619. [PMID: 34257727 PMCID: PMC8243078 DOI: 10.3892/ol.2021.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and GC has a high mortality rate worldwide. Circular (circ) RNAs serve an important role in cancer. The present study aimed to investigate the expression level of hsa_circ_0060975 in gastric cancer (GC) and to determine the clinical pathological significance of hsa_circ_0060975 in patients with GC. Reverse transcription-quantitative PCR was used to detect expression level of hsa_circ_0060975 in 192 GC and adjacent non-cancerous gastric tissues, in GC cell lines (MKN-45, HGC27 and AGS) and a human gastric epithelium cell line (GES-1), as well as in plasma samples from 126 patients with GC and 92 healthy volunteers. All plasma and tissue samples of were obtained from The First Affiliated Hospital of Anhui Medical University (Hefei, China). The relationship between hsa_circ_0060975 expression and clinical pathological factors was analyzed using the χ2 test. The diagnostic value of hsa_circ_0060975 was analyzed using the receiver operating characteristic curve (ROC curve), while the Kaplan-Meier method was used to analyze the relationship of hsa_circ_0060975 expression with the survival of patients with GC as determined by log-rank tests. Univariate and multivariate Cox regression analyses were used to identify the prognostic factors, including hsa_circ_0060975 expression and clinical pathological factors. In addition, the potential function of hsa_circ_0060975 was evaluated via bioinformatics analysis. The expression level of hsa_circ_0060975 was higher in GC tissues compared with adjacent non-cancerous gastric tissues, GC cell lines compared with GES-1 and plasma samples from patients with GC compared with plasma samples from healthy volunteers. In addition, higher hsa_circ_0060975 expression was associated with histological grade, pathological stage and tumor (T) classification in GC tissues and plasma samples (P<0.05). The area under the ROC curves of hsa_circ_0060975, the combination with hsa_circ_0060975 and carcinoembryonic antigen (CEA) or CEA alone were 0.804 (sensitivity, 0.746; specificity, 0.783; P<0.001); 0.931 (sensitivity, 0.937; specificity, 0.870; P<0.001) and 0.924 (sensitivity, 0.937; sspecificity, 0.804; P<0.001) respectively. The Kaplan-Meier survival analysis revealed that the overall survival (OS) and disease-free survival (DFS) time of patients with higher hsa_circ_0060975 expression were shorter compared with those in patients with lower hsa_circ_0060975 expression. Univariate and multivariate Cox regression analyses in OS and DFS time determined that the expression level of hsa_circ_0060975, histological grade and pathological stage were independent prognostic factors for patients with GC. In addition, the bioinformatics analysis results suggested that the abnormal expression of hsa_circ_0060975 may serve an important role in tumorigenesis. Hence, hsa_circ_0060975 expression may be an independent prognostic factor for patients with GC and may be a potential marker for biological malignancy.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Lixiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhengnan Li
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jianjun Qiang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
31
|
Chen Y, Xi W, Yao W, Wang L, Xu Z, Wels M, Yuan F, Yan C, Zhang H. Dual-Energy Computed Tomography-Based Radiomics to Predict Peritoneal Metastasis in Gastric Cancer. Front Oncol 2021; 11:659981. [PMID: 34055627 PMCID: PMC8160383 DOI: 10.3389/fonc.2021.659981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Objective To develop and validate a dual-energy computed tomography (DECT) derived radiomics model to predict peritoneal metastasis (PM) in patients with gastric cancer (GC). Methods This retrospective study recruited 239 GC (non-PM = 174, PM = 65) patients with histopathological confirmation for peritoneal status from January 2015 to December 2019. All patients were randomly divided into a training cohort (n = 160) and a testing cohort (n = 79). Standardized iodine-uptake (IU) images and 120-kV-equivalent mixed images (simulating conventional CT images) from portal-venous and delayed phases were used for analysis. Two regions of interest (ROIs) including the peritoneal area and the primary tumor were independently delineated. Subsequently, 1691 and 1226 radiomics features were extracted from the peritoneal area and the primary tumor from IU and mixed images on each phase. Boruta and Spearman correlation analysis were used for feature selection. Three radiomics models were established, including the R_IU model for IU images, the R_MIX model for mixed images and the combined radiomics model (the R_comb model). Random forest was used to tune the optimal radiomics model. The performance of the clinical model and human experts to assess PM was also recorded. Results Fourteen and three radiomics features with low redundancy and high importance were extracted from the IU and mixed images, respectively. The R_IU model showed significantly better performance to predict PM than the R_MIX model in the training cohort (AUC, 0.981 vs. 0.917, p = 0.034). No improvement was observed in the R_comb model (AUC = 0.967). The R_IU model was the optimal radiomics model which showed no overfitting in the testing cohort (AUC = 0.967, p = 0.528). The R_IU model demonstrated significantly higher predictive value on peritoneal status than the clinical model and human experts in the testing cohort (AUC, 0.785, p = 0.005; AUC, 0.732, p <0.001, respectively). Conclusion DECT derived radiomics could serve as a non-invasive and easy-to-use biomarker to preoperatively predict PM for GC, providing opportunity for those patients to tailor appropriate treatment.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Department of DI CT Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Michael Wels
- Department of Diagnostic Imaging Computed Tomography Image Analytics, Siemens Healthcare GmbH, Forchheim, Germany
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Nagamura Y, Miyazaki M, Nagano Y, Yuki M, Fukami K, Yanagihara K, Sasaki K, Sakai R, Yamaguchi H. PLEKHA5 regulates the survival and peritoneal dissemination of diffuse-type gastric carcinoma cells with Met gene amplification. Oncogenesis 2021; 10:25. [PMID: 33677467 PMCID: PMC7936979 DOI: 10.1038/s41389-021-00314-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Met gene amplification has been found in a subset of malignant carcinomas, including diffuse-type gastric carcinoma (DGC), which has a poor prognosis owing to rapid infiltrative invasion and frequent peritoneal dissemination. Met is considered a promising therapeutic target for DGC. However, DGC cells with Met gene amplification eventually acquire resistance to Met inhibitors. Therefore, identification of alternate targets that mediate Met signaling and confer malignant phenotypes is critical. In this study, we conducted a phosphoproteomic analysis of DGC cells possessing Met gene amplification and identified Pleckstrin Homology Domain Containing A5 (PLEKHA5) as a protein that is tyrosine-phosphorylated downstream of Met. Knockdown of PLEKHA5 selectively suppressed the growth of DGC cells with Met gene amplification by inducing apoptosis, even though they had acquired resistance to Met inhibitors. Moreover, PLEKHA5 silencing abrogated the malignant phenotypes of Met-addicted DGC cells, including peritoneal dissemination in vivo. Mechanistically, PLEKHA5 knockdown dysregulates glycolytic metabolism, leading to activation of the JNK pathway that promotes apoptosis. These results indicate that PLEKHA5 is a novel downstream effector of amplified Met and is required for the malignant progression of Met-addicted DGC.
Collapse
Affiliation(s)
- Yuko Nagamura
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Makoto Miyazaki
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Masako Yuki
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan.,Laboratory of Genome and Biosignal, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Kazuki Sasaki
- Department of Peptidomics, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Ryuichi Sakai
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan.
| |
Collapse
|
33
|
Immune Cell Landscape in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1930706. [PMID: 33575321 PMCID: PMC7857889 DOI: 10.1155/2021/1930706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Background The tumor-infiltrating immune cells are closely associated with the prognosis of gastric cancer (GC). This article is aimed at determining the composition change of immune cells and immune regulatory factors in GC and normal tissues, depicting their prognosis value in GC, and revealing the relationship between them and GC clinical parameters. Methods We used CIBERSORT to calculate the proportion of 22 immune cells in the GC or normal tissues; a t-test was applied to assess the expression difference of immune cells and immune regulatory factors in normal and GC tissues. The relationship of the immune cells, immune regulatory factors, and GC patients' clinical characteristics was assessed by univariate analysis. Results In this study, we found that the proportion of macrophages increased, while plasma cells and monocytes decreased in GC tissues. In these immune fractions, Tregs and naïve B cells were found to be correlated with GC patients' prognosis. Interestingly, the expression of immune regulatory factors was ambiguous with their classical function in GC tissues. For example, TIM-3, FOXP3, and CMTM6 were overexpressed, while CD27 and PD-1 were underexpressed in GC tissues. We also found that IDO1, PD-1, TIGIT, and TIM-3 were highly expressed in high-grade GC tissues, the HERC2 expression level was related to patients' gender, and the TIGIT expression level was sensitive to targeted therapy. Furthermore, our results suggested that the infiltration of Tregs and naive B cells was strongly correlated with the T stage, radiation therapy, targeted molecular therapy, and the expression levels of TIM-3 and FOXP3 in GC. Conclusion The expression pattern of tumor-infiltrating immune cells and immune regulatory factors was systematically depicted in the GC tumor microenvironment, indicating that individualized treatment based on the tumor-infiltrating immune cells and immune regulatory factors may be beneficial to GC patients.
Collapse
|