1
|
Malik S, Sikander M, Wahid M, Dhasmana A, Sarwat M, Khan S, Cobos E, Yallapu MM, Jaggi M, Chauhan SC. Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance. Cancer Metastasis Rev 2024; 43:981-999. [PMID: 38498072 DOI: 10.1007/s10555-024-10177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.
Collapse
Affiliation(s)
- Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohd Wahid
- Unit of Research and Scientific Studies, College of Nursing and Allied Health Sciences, University of Jazan, Jizan, Saudi Arabia
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Everardo Cobos
- Department of Medicine, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
2
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P, Jafarzadeh E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl Oncol 2024; 45:101946. [PMID: 38636389 PMCID: PMC11040171 DOI: 10.1016/j.tranon.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Doxorubicin (DOX) a chemotherapy drug often leads to the development of resistance, in cancer cells after prolonged treatment. Recent studies have suggested that using metformin plus doxorubicin could result in synergic effects. This study focuses on exploring the co-treat treatment of doxorubicin and metformin for various cancers. METHOD Following the PRISMA guidelines we conducted a literature search using different databases such as Embase, Scopus, Web of Sciences, PubMed, Science Direct and Google Scholar until July 2023. We selected search terms based on the objectives of this study. After screening a total of 30 articles were included. RESULTS The combination of doxorubicin and metformin demonstrated robust anticancer effects, surpassing the outcomes of monotherapy drug treatment. In vitro experiments consistently demonstrated inhibition of cancer cell growth and increased rates of cell death. Animal studies confirmed substantial reductions in tumor growth and improved survival rates, emphasizing the synergistic impact of the combined therapy. The research' discoveries collectively emphasize the capability of the co-treat doxorubicin-metformin as a compelling approach in cancer treatment, highlighting its potential to address medicate resistance and upgrade generally helpful results. CONCLUSION The findings of this study show that the combined treatment regimen including doxorubicin and metformin has significant promise in fighting cancer. The observed synergistic effects suggest that this combination therapy could be valuable, in a setting. This study highlights the need for clinical research to validate and enhance the application of the doxorubicin metformin regimen.
Collapse
Affiliation(s)
- Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fakhari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrah Sepehr
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Omidi Sarajar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Sarihi
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Xu JX, Zhu QL, Bi YM, Peng YC. New evidence: Metformin unsuitable as routine adjuvant for breast cancer: a drug-target mendelian randomization analysis. BMC Cancer 2024; 24:691. [PMID: 38844880 PMCID: PMC11155042 DOI: 10.1186/s12885-024-12453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
PURPOSE The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk. METHODS Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes (T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests ensured reliability. RESULTS The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, P = 0.040). Other group analyses did not yield positive results. CONCLUSION The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a standard supplementary therapy for BC patients without T2D.
Collapse
Affiliation(s)
- Jing-Xuan Xu
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
| | - Qi-Long Zhu
- Pharmacy Department, The Ninth People's Hospital of Chongqing, Chongqing, 400015, China
| | - Yu-Miao Bi
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
5
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
6
|
Zaki RM, Alkharashi LA, Sarhan OM, Almurshedi AS, Aldosari BN, Said M. Box Behnken optimization of cubosomes for enhancing the anticancer activity of metformin: Design, characterization, and in-vitro cell proliferation assay on MDA-MB-231 breast and LOVO colon cancer cell lines. Int J Pharm X 2023; 6:100208. [PMID: 37680878 PMCID: PMC10480553 DOI: 10.1016/j.ijpx.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
This study aimed to formulate and statistically optimize cubosomal formulations of metformin (MTF) to enhance its breast anticancer activity. A Box Behnken design was employed using Design-Expert® software. The formulation variables were glyceryl monooleate concentration (GMO) w/w%, Pluronic F-127 concentration (PF127) w/w% and Tween 80 concentration w/w% whereas Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. The design expert software was used to perform the process of optimization numerically. X ray diffraction (XRD), Transmission electron microscope (TEM), in-vitro release study, short-term stability study, and in in-vitro cell proliferation assay on the MDA-MB-231 breast cancer and LOVO cancer cell lines were used to validate the optimized cubosomal formulation. The optimized formulation had a composition of 4.35616 (w/w%) GMO, 5 (w/w%) PF127 and 7.444E-6 (w/w%) Tween 80 with a desirability of 0.733. The predicted values for EE%, VS and ZP were 78.0592%, 307.273 nm and - 26.8275 mV, respectively. The validation process carried out on the optimized formula revealed that there were less than a 5% variance from the predicted responses. The XRD thermograms showed that MTF was encapsulated inside the cubosomal vesicles. TEM images of the optimized MTF cubosomal formulation showed spherical non-aggregated nanovesicles. Moreover, it revealed a sustained release profile of MTF in comparison to the MTF solution. Stability studies indicated that optimum cubosomal formulation was stable for thirty days. Cytotoxicity of the optimized cubosomal formulation was enhanced on the MDA-MB-231 breast and LOVO cancer cell lines compared to MTF solution even at lower concentrations. However, it showed superior cytotoxic effect on breast cancer cell line. So, cubosomes could be considered a promising carrier of MTF to treat breast and colon cancers.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt
| | - Layla A. Alkharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia
| | - Omnia M. Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| |
Collapse
|
7
|
Rembiałkowska N, Novickij V, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Gajewska-Naryniecka A, Kulbacka J. Susceptibility of various human cancer cell lines to nanosecond and microsecond range electrochemotherapy: Feasibility of multi-drug cocktails. Int J Pharm 2023; 646:123485. [PMID: 37802257 DOI: 10.1016/j.ijpharm.2023.123485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Electrochemotherapy (ECT) involves combining anticancer drugs with electroporation, which is induced by pulsed electric fields (PEFs), while the effects vary in effectiveness based on the specific parameters of the electrical pulses and susceptibility of the cells to a specific drug. In this work, we utilized conventional microsecond electroporation protocols (0.8 - 1.5 kV/cm × 100 μs × 8, 1 Hz) and the new modality of nanosecond pulses (4 and 8 kV/cm × 500 ns × 100, 1 kHz and 1 MHz), which are compressed into a high frequency burst. Sensitive and resistant lung, breast and ovarian human cancer cell lines were used in the study. In order to overcome drug-resistance, we have investigated the feasibility to use anticancer drug cocktails i.e., bleomycin and cisplatin combinations with metformin, vinorelbine and Dp44mT. The different susceptibility of various human cancer cells lines to electric pulses was determined, the efficacy of ECT was characterized and the type of cell death depending on the combinations of drugs was investigated. The results indicate that synergistic effects of PEFs with drug cocktails may be used to overcome drug-resistance in cancer, while the application of nsPEF provides more flexibility in parametric protocols and modulation of cancer cell death.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556, Wroclaw, Poland.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Medical University, Borowska 211 A, 50-556, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania.
| |
Collapse
|
8
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Lin L, Wu Q, Lu F, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Ning Z, She T, Hu M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol 2023; 13:1184079. [PMID: 37810967 PMCID: PMC10559910 DOI: 10.3389/fonc.2023.1184079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
10
|
Batara DC, Park SW, Kim HJ, Choi SY, Ohn T, Choi MC, Park SI, Kim SH. Targeting the multidrug and toxin extrusion 1 gene (SLC47A1) sensitizes glioma stem cells to temozolomide. Am J Cancer Res 2023; 13:4021-4038. [PMID: 37818053 PMCID: PMC10560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, with an extremely poor prognosis due to resistance to standard-of-care treatments. Strong evidence suggests that the small population of glioma stem cells (GSCs) contributes to the aggressiveness of GBM. One of the mechanisms that promote GSC progression is the dysregulation of membrane transporters, which mediate the influx and efflux of substances to maintain cellular homeostasis. Here, we investigated the role of multidrug and toxin extrusion transporter gene SLC47A1 in GSCs. Results show that SLC47A1 is highly expressed in GSCs compared to non-stem cell glioma cells, and non-tumor cells. Additionally, in-silico analysis of public datasets showed that high SLC47A1 expression is linked to malignancy and a poor prognosis in glioma patients. Further, SLC47A1 expression is correlated with important biological processes and signaling pathways that support tumor growth. Meanwhile, silencing SLC47A1 by short-hairpin RNA (shRNA) influenced cell viability and self-renewal activity in GSCs. Interestingly, SLC47A1 shRNA knockdown or pharmacological inhibition potentiates the effect of temozolomide (TMZ) in GSC cells. The findings suggest that SLC47A1 could serve as a useful therapeutic target for gliomas.
Collapse
Affiliation(s)
- Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| | - Sang Wook Park
- Deprtment of Landscape Architecture, Chonnam National UniversityGwangju 61186, South Korea
| | - Hyun-Jin Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| | - Su-Young Choi
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
- Central R&D Center, B&Tech Co., Ltd.Naju 58205, South Korea
| | - Takbum Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun UniversityGwangju 61452, South Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun UniversityGwangju 61452, South Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National UniversityGwangju 61186, South Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| |
Collapse
|
11
|
Hu M, Chen Y, Ma T, Jing L. Repurposing Metformin in hematologic tumor: State of art. Curr Probl Cancer 2023; 47:100972. [PMID: 37364455 DOI: 10.1016/j.currproblcancer.2023.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Metformin is an ancient drug for the treatment of type 2 diabetes, and many studies now suggested that metformin can be used as an adjuvant drug in the treatment of many types of tumors. The mechanism of action of metformin for tumor treatment mainly involves: 1. activation of AMPK signaling pathway 2. inhibition of DNA damage repair in tumor cells 3. downregulation of IGF-1 expression 4. inhibition of chemoresistance and enhancement of chemotherapy sensitivity in tumor cells 5. enhancement of antitumor immunity 6. inhibition of oxidative phosphorylation (OXPHOS). Metformin also plays an important role in the treatment of hematologic tumors, especially in leukemia, lymphoma, and multiple myeloma (MM). The combination of metformin and chemotherapy enhances the efficacy of chemotherapy, and metformin reduces the progression of monoclonal gammopathy of undetermined significance (MGUS) to MM. The purpose of this review is to summarize the anticancer mechanism of metformin and the role and mechanism of action of metformin in hematologic tumors. We mainly summarize the studies related to metformin in hematologic tumors, including cellular experiments and animal experiments, as well as controlled clinical studies and clinical trials. In addition, we also focus on the possible side effects of metformin. Although a large number of preclinical and clinical studies have been performed and the role of metformin in preventing the progression of MGUS to MM has been demonstrated, metformin has not been approved for the treatment of hematologic tumors, which is related to the adverse effects of its high-dose application. Low-dose metformin reduces adverse effects and has been shown to alter the tumor microenvironment and enhance antitumor immune response, which is one of the main directions for future research.
Collapse
Affiliation(s)
- Min Hu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Li Jing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
12
|
Samuel SM, Varghese E, Satheesh NJ, Triggle CR, Büsselberg D. Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy. Biomed Pharmacother 2023; 164:114911. [PMID: 37224753 DOI: 10.1016/j.biopha.2023.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Breast cancers (BCs) remain the leading cause of cancer-related deaths among women worldwide. Among the different types of BCs, treating the highly aggressive, invasive, and metastatic triple-negative BCs (TNBCs) that do not respond to hormonal/human epidermal growth factor receptor 2 (HER2) targeted interventions since they lack ER/PR/HER2 receptors remains challenging. While almost all BCs depend on glucose metabolism for their proliferation and survival, studies indicate that TNBCs are highly dependent on glucose metabolism compared to non-TNBC malignancies. Hence, limiting/inhibiting glucose metabolism in TNBCs should curb cell proliferation and tumor growth. Previous reports, including ours, have shown the efficacy of metformin, the most widely prescribed antidiabetic drug, in reducing cell proliferation and growth in MDA-MB-231 and MDA-MB-468 TNBC cells. In the current study, we investigated and compared the anticancer effects of either metformin (2 mM) in glucose-starved or 2-deoxyglucose (10 mM; glycolytic inhibitor; 2DG) exposed MDA-MB-231 and MDA-MB-468 TNBC cells. Assays for cell proliferation, rate of glycolysis, cell viability, and cell-cycle analysis were performed. The status of proteins of the mTOR pathway was assessed by Western blot analysis. Metformin treatment in glucose-starved and 2DG (10 mM) exposed TNBC cells inhibited the mTOR pathway compared to non-treated glucose-starved cells or 2DG/metformin alone treated controls. Cell proliferation is also significantly reduced under these combination treatment conditions. The results indicate that combining a glycolytic inhibitor and metformin could prove an efficient therapeutic approach for treating TNBCs, albeit the efficacy of the combination treatment may depend on metabolic heterogeneity across various subtypes of TNBCs.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Noothan Jyothi Satheesh
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
13
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
14
|
Afifi N, Barrero CA. Understanding Breast Cancer Aggressiveness and Its Implications in Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041375. [PMID: 36835911 PMCID: PMC9959372 DOI: 10.3390/jcm12041375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer (BC) is the most common form of cancer in women worldwide [...].
Collapse
|
15
|
Acquired drug resistance interferes with the susceptibility of prostate cancer cells to metabolic stress. Cell Mol Biol Lett 2022; 27:100. [PMCID: PMC9673456 DOI: 10.1186/s11658-022-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed. Methods Using a range of phenotypic and metabolic assays, we assessed the sensitivity of human prostate cancer PC-3 and DU145 cells, and their drug-resistant lineages (PC-3_DCX20 and DU145_DCX20), to combined docetaxel/metformin stress. Their adaptation responses have been assessed, in particular the shifts in their metabolic profile and invasiveness. Results Metformin increased the sensitivity of PC-3 wild-type (WT) cells to docetaxel, as illustrated by the attenuation of their motility, proliferation, and viability after the combined drug application. These effects correlated with the accumulation of energy carriers (NAD(P)H and ATP) and with the inactivation of ABC drug transporters in docetaxel/metformin-treated PC-3 WT cells. Both PC-3 WT and PC-3_DCX20 reacted to metformin with the Warburg effect; however, PC-3_DCX20 cells were considerably less susceptible to the cytostatic/misbalancing effects of metformin. Concomitantly, an epithelial–mesenchymal transition and Cx43 upregulation was seen in these cells, but not in other more docetaxel/metformin-sensitive DU145_DCX20 populations. Stronger cytostatic effects of the combined fenofibrate/docetaxel treatment confirmed that the fine-tuning of the balance between energy supply and expenditure determines cellular welfare under metabolic stress. Conclusions Collectively, our data identify the mechanisms that underlie the limited potential of metformin for the chemotherapy of drug-resistant tumors. Metformin can enhance the sensitivity of cancer cells to chemotherapy by inducing their metabolic decoupling/imbalance. However, the acquired chemoresistance of cancer cells impairs this effect, facilitates cellular adaptation to metabolic stress, and prompts the invasive front formation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00400-1.
Collapse
|
16
|
Tossetta G. Metformin Improves Ovarian Cancer Sensitivity to Paclitaxel and Platinum-Based Drugs: A Review of In Vitro Findings. Int J Mol Sci 2022; 23:12893. [PMID: 36361682 PMCID: PMC9654053 DOI: 10.3390/ijms232112893] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide, showing a high fatality rate and recurrence due to diagnosis at an advanced stage of the disease and the occurrence of chemoresistance, which weakens the therapeutic effects of the chemotherapeutic treatments. In fact, although paclitaxel and platinum-based drugs (carboplatin or cisplatin) are widely used alone or in combination to treat ovarian cancer, the occurrence of chemoresistance significantly reduces the effects of these drugs. Metformin is a hypoglycemic agent that is commonly used for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver disease. However, this drug also shows anti-tumor activity, reducing cancer risk and chemoresistance. This review analyzes the current literature regarding the role of metformin in ovarian cancer and investigates what is currently known about its effects in reducing paclitaxel and platinum resistance to restore sensitivity to these drugs.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; ; Tel.: +39-0712206270
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy
| |
Collapse
|
17
|
The Juggernaut of Adaptive Metabolism in Cancers: Implications and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14215202. [DOI: 10.3390/cancers14215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
The disease of cancer instills a sense of fear and dread among patients and the next of kin who are indirectly affected by the deteriorating quality of life of their loved ones [...]
Collapse
|
18
|
Swati K, Agrawal K, Raj S, Kumar R, Prakash A, Kumar D. Molecular mechanism(s) of regulations of cancer stem cell in brain cancer propagation. Med Res Rev 2022; 43:441-463. [PMID: 36205299 DOI: 10.1002/med.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/01/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022]
Abstract
Brain tumors are most often diagnosed with solid neoplasms and are the primary reason for cancer-related deaths in both children and adults worldwide. With recent developments in the progression of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. However, the high recurrence rate and high mortality rate remain unresolved and are closely linked to the biological features of cancer stem cells (CSCs). Research on tumor biology has reached a new age with more understanding of CSC features. CSCs, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Therefore, in the diagnosis and treatment of tumors, recognizing the biological properties of CSCs is of considerable significance. Here, we have discussed the concept of CSCs and their significant role in brain cancer growth and propagation. We have also discussed personalized therapeutic development and immunotherapies for brain cancer by specifically targeting CSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Sibi Raj
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
19
|
Parvathaneni V, Chilamakuri R, Kulkarni NS, Baig NF, Agarwal S, Gupta V. Exploring Amodiaquine's Repurposing Potential in Breast Cancer Treatment-Assessment of In-Vitro Efficacy & Mechanism of Action. Int J Mol Sci 2022; 23:11455. [PMID: 36232751 PMCID: PMC9569809 DOI: 10.3390/ijms231911455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Due to the heterogeneity of breast cancer, current available treatment options are moderately effective at best. Hence, it is highly recommended to comprehend different subtypes, understand pathogenic mechanisms involved, and develop treatment modalities. The repurposing of an old FDA approved anti-malarial drug, amodiaquine (AQ) presents an outstanding opportunity to explore its efficacy in treating majority of breast cancer subtypes. Cytotoxicity, scratch assay, vasculogenic mimicry study, and clonogenic assay were employed to determine AQ's ability to inhibit cell viability, cell migration, vascular formation, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of AQ in MCF-7 and MDAMB-231 cell lines. Apoptosis assays, cell cycle analysis, RT-qPCR assays, and Western blot studies were performed to determine AQ's ability to induce apoptosis, cell cycle changes, gene expression changes, and induction of autophagy marker proteins. The results from in-vitro studies confirmed the potential of AQ as an anti-cancer drug. In different breast cancer cell lines tested, AQ significantly induces cytotoxicity, inhibit colony formation, inhibit cell migration, reduces 3D spheroid volume, induces apoptosis, blocks cell cycle progression, inhibit expression of cancer related genes, and induces LC3BII protein to inhibit autophagy. Our results demonstrate that amodiaquine is a promising drug to repurpose for breast cancer treatment, which needs numerous efforts from further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
20
|
Zhang H, Yu J, Ma L, Zhao Y, Xu S, Shi J, Qian K, Gu M, Tan H, Xu L, Liu Y, Mu C, Xiong Y. Reversing multi-drug resistance by polymeric metformin to enhance antitumor efficacy of chemotherapy. Int J Pharm 2022; 624:121931. [PMID: 35750278 DOI: 10.1016/j.ijpharm.2022.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023]
Abstract
Multi-drug resistance (MDR) in breast cancer poses a great threat to chemotherapy. The expression and function of the ATP binding cassette (ABC) transporter are the major cause of MDR. Herein, a linear polyethylene glycol (PEI) conjugated with dicyandiamide, which called polymeric metformin (PolyMet), was successfully synthesized as a simple and biocompatible polymer of metformin. PolyMet showed the potential to reverse MDR by inhibiting the efflux of the substrate of ATP-binding cassette (ABC) transporter from DOX resistant MCF-7 cells (MCF-7/DOX). To test its MDR reversing effect, PolyMet was combined with DOX to treat mice carrying MCF-7/DOX xenografts. In order to decrease the toxicities of DOX and delivery PolyMet and DOX to tumor at the same time, PolyMet was complexed with poly-γ-glutamic acid-doxorubicin (PGA-DOX) electrostatically at the optimal ratio of 2:3, which were further coated with lipid membrane to form lipid/PolyMet-(PGA-DOX) nanoparticles (LPPD). The particle size of LPPD was 165.8 nm, and the zeta potential was +36.5 mV. LPPD exhibited favorable cytotoxicity and cellular uptake in MCF-7/DOX. Meanwhile, the bioluminescence imaging and immunohistochemical analysis indicated that LPPD effectively conquered DOX-associated MDR by blocking ABC transporters (ABCB1 and ABCC1) via PolyMet. Remarkably, LPPD significantly inhibited the tumor growth and lowered the systemic toxicity in a murine MCF-7/DOX tumor model. This is the first time to reveal that PolyMet can enhance the anti-tumor efficacy of DOX by dampening ABC transporters and activating the AMPK/mTOR pathway, which is a promising strategy for drug-resistant breast cancer therapy.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiandong Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shujun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ke Qian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Mancang Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Li Xu
- Zhejiang Provincial Hospital of TCM (Traditional Chinese Medicine), The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Yun Liu
- UNC Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27559, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
21
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
22
|
Scordamaglia D, Cirillo F, Talia M, Santolla MF, Rigiracciolo DC, Muglia L, Zicarelli A, De Rosis S, Giordano F, Miglietta AM, De Francesco EM, Vella V, Belfiore A, Lappano R, Maggiolini M. Metformin counteracts stimulatory effects induced by insulin in primary breast cancer cells. J Transl Med 2022; 20:263. [PMID: 35672854 PMCID: PMC9172136 DOI: 10.1186/s12967-022-03463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. Methods Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. Results We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. Conclusions Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03463-y.
Collapse
|
23
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
24
|
Li X, Chen W, Huang L, Zhu M, Zhang H, Si Y, Li H, Luo Q, Yu B. Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B. Pharmacol Res 2022; 179:106222. [DOI: 10.1016/j.phrs.2022.106222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
25
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
26
|
Du Q, Yuan Z, Huang X, Huang Y, Zhang J, Li R. miR-26b-5p suppresses chemoresistance in breast cancer by targeting serglycin. Anticancer Drugs 2022; 33:308-319. [PMID: 34924500 PMCID: PMC8812413 DOI: 10.1097/cad.0000000000001268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Chemoresistance is a crucial barrier to limit the therapeutic outcome of breast cancer (BC), and the mechanism underlying chemoresistance development in BC is not fully understood. In this study, we aimed to investigate the potential involvement of miR-26b-5p/serglycin (SRGN) axis in BC drug resistance. The expression level of SRGN in drug-resistant BC cells was investigated by western blotting analysis, real-time quantitative PCR (qRT-PCR), immunohistochemical staining, and ELISA. Its expression between chemoresistant and sensitive patient samples was compared by qRT-PCR. Bioinformatics tool and dual-luciferase reporter assay were employed to identify miR-26b-5p as a regulator of SRGN. Functional assays were performed to examine cell proliferation, cell viability, apoptosis, migration, and invasion ability in vitro. Xenograft tumorigenesis experiment was conducted to evaluate the tumor suppressor effect of miR-26b-5p on chemoresistant BC cells. SRGN expression was significantly upregulated in both chemoresistant BC cell lines and chemoresistant patient samples. miR-26b-5p was identified as an upstream regulator of SRGN. Overexpression of miR-26b-5p downregulated SRGN expression, overcame chemoresistance, and suppressed cell proliferation, migration, and invasion in BC cells. Overexpression of miR-26b-5p also suppressed the tumorigenesis of chemoresistant BC cells in vivo. Mechanistically, the downregulation of SRGN by miR-26b-5p decreased the expression of breast cancer drug-resistant protein and multidrug-resistant protein 1 in chemoresistant BC cells. Our study identified miR-26b-5p as a tumor suppressor which targets SRGN to sensitize BC cells to chemotherapeutics. These results suggest that miR-26b-5p and SRGN may serve as potential biomarkers and targets for BC chemotherapy.
Collapse
Affiliation(s)
- Qiwei Du
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan, Hangzhou
| | - Zuguo Yuan
- Chemoradiotherapy Center of Oncology, The Affiliated People’s Hospital of Ningbo University
| | - Xiaoling Huang
- Department of Obstetrics and Gynecology, Dongyang Women’s and Children’s Hospital, Dongyang
| | - Yuqing Huang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan, Hangzhou
| | - Jie Zhang
- Department of Breast Surgery, The First People’s Hospital of Fuyang, Hangzhou, China
| | - Rongguo Li
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan, Hangzhou
| |
Collapse
|
27
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
28
|
A Nanosized Codelivery System Based on Intracellular Stimuli-Triggered Dual-Drug Release for Multilevel Chemotherapy Amplification in Drug-Resistant Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14020422. [PMID: 35214154 PMCID: PMC8878749 DOI: 10.3390/pharmaceutics14020422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lacking nano-systems for precisely codelivering the chemotherapeutics paclitaxel (PTX) and the natural P-glycoprotein (P-gp) inhibitor, quercetin (QU), into cancer cells and controlling their intracellular release extremely decreased the anticancer effects in multidrug resistant (MDR) tumors. To overcome this hurdle, we constructed hybrid polymeric nanoparticles (PNPs) which consist of redox-sensitive PTX/polyethyleneimine-tocopherol hydrogen succinate-dithioglycollic acid PNPs and pH-sensitive hyaluronic acid-QU conjugates. The obtained hybrid PNPs can be internalized into drug-resistant breast cancer cells by the hyaluronic acid/CD44-mediated endocytosis pathway and escape from the lysosome through the “proton sponge effect”. Under the trigger of intracellular stimuli, the nanoplatform used the pH/glutathione dual-sensitive disassembly to release QU and PTX. The PTX diffused into microtubules to induce tumor cell apoptosis, while QU promoted PTX retention by down-regulating P-gp expression. Moreover, tocopherol hydrogen succinate and QU disturbed mitochondrial functions by generating excessive reactive oxygen species, decreasing the mitochondrial membrane potential, and releasing cytochrome c into the cytosol which consequently achieved intracellular multilevel chemotherapy amplification in MDR cancers. Importantly, the PNPs substantially suppressed tumors growth with an average volume 2.54-fold lower than that of the control group in the MCF-7/ADR tumor-bearing nude mice model. These presented PNPs would provide a valuable reference for the coadministration of natural compounds and anticarcinogens for satisfactory combination therapy in MDR cancers.
Collapse
|
29
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
30
|
Samuel SM, Kubatka P, Büsselberg D. Treating Cancers Using Nature's Medicine: Significance and Challenges. Biomolecules 2021; 11:1698. [PMID: 34827696 PMCID: PMC8615517 DOI: 10.3390/biom11111698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
There was a time when plant-derived natural formulations were the cornerstone of ancient therapeutic approaches for treating many illnesses [...].
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
31
|
Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci 2021; 22:9451. [PMID: 34502361 PMCID: PMC8430957 DOI: 10.3390/ijms22179451] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
With nearly 10 million deaths, cancer is the leading cause of mortality worldwide. Along with major key parameters that control cancer treatment management, such as diagnosis, resistance to the classical and new chemotherapeutic reagents continues to be a significant problem. Intrinsic or acquired chemoresistance leads to cancer recurrence in many cases that eventually causes failure in the successful treatment and death of cancer patients. Various determinants, including tumor heterogeneity and tumor microenvironment, could cause chemoresistance through a diverse range of mechanisms. In this review, we summarize the key determinants and the underlying mechanisms by which chemoresistance appears. We then describe which strategies have been implemented and studied to combat such a lethal phenomenon in the management of cancer treatment, with emphasis on the need to improve the early diagnosis of cancer complemented by combination therapy.
Collapse
Affiliation(s)
- Alisha Ramos
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Samira Sadeghi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
32
|
León-González AJ, Jiménez-Vacas JM, Fuentes-Fayos AC, Sarmento-Cabral A, Herrera-Martínez AD, Gahete MD, Luque RM. Role of metformin and other metabolic drugs in the prevention and therapy of endocrine-related cancers. Curr Opin Pharmacol 2021; 60:17-26. [PMID: 34311387 DOI: 10.1016/j.coph.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is associated with chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. This review summarizes the current evidence on the antitumor effects of some relevant drugs currently used to manage metabolic-related pathologies (i.e. insulin and its analogs, metformin, statins, etc.) in endocrine-related cancers including breast cancer, prostate cancer, pituitary cancer, ovarian cancer, and neuroendocrine neoplasms. Although current evidence does not provide a clear antitumor role of several of these drugs, metformin seems to be a promising chemopreventive and adjuvant agent in cancer management, modulating tumor cell metabolism and microenvironment, through both AMP-activated protein kinase-dependent and -independent mechanisms. Moreover, its combination with statins might represent a promising therapeutic strategy to tackle the progression of endocrine-related tumors. However, further studies are needed to endorse the clinical relevance of these drugs as adjuvants for cancer chemotherapy.
Collapse
Affiliation(s)
- Antonio J León-González
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain; Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Andre Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain.
| |
Collapse
|
33
|
PKCα Inhibition as a Strategy to Sensitize Neuroblastoma Stem Cells to Etoposide by Stimulating Ferroptosis. Antioxidants (Basel) 2021; 10:antiox10050691. [PMID: 33924765 PMCID: PMC8145544 DOI: 10.3390/antiox10050691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a limited cell population inside a tumor bulk characterized by high levels of glutathione (GSH), the most important antioxidant thiol of which cysteine is the limiting amino acid for GSH biosynthesis. In fact, CSCs over-express xCT, a cystine transporter stabilized on cell membrane through interaction with CD44, a stemness marker whose expression is modulated by protein kinase Cα (PKCα). Since many chemotherapeutic drugs, such as Etoposide, exert their cytotoxic action by increasing reactive oxygen species (ROS) production, the presence of high antioxidant defenses confers to CSCs a crucial role in chemoresistance. In this study, Etoposide-sensitive and -resistant neuroblastoma CSCs were chronically treated with Etoposide, given alone or in combination with Sulfasalazine (SSZ) or with an inhibitor of PKCα (C2-4), which target xCT directly or indirectly, respectively. Both combined approaches are able to sensitize CSCs to Etoposide by decreasing intracellular GSH levels, inducing a metabolic switch from OXPHOS to aerobic glycolysis, down-regulating glutathione-peroxidase-4 activity and stimulating lipid peroxidation, thus leading to ferroptosis. Our results suggest, for the first time, that PKCα inhibition inducing ferroptosis might be a useful strategy with which to fight CSC chemoresistance.
Collapse
|
34
|
Yoon S, Wang X, Vongpunsawad S, Tromp G, Kuivaniemi H. Editorial: FDA-Approved Drug Repositioning for P-Glycoprotein Overexpressing Resistant Cancer. Front Oncol 2021; 11:632657. [PMID: 33816271 PMCID: PMC8018233 DOI: 10.3389/fonc.2021.632657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Xiaoju Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Sompong Vongpunsawad
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
35
|
Leng W, Pu D, Jiang J, Lei X, Wu Q, Chen B. Effect of Metformin on Breast Density in Overweight/Obese Premenopausal Women. Diabetes Metab Syndr Obes 2021; 14:4423-4432. [PMID: 34764661 PMCID: PMC8572728 DOI: 10.2147/dmso.s330625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study investigated the effects of metformin on breast density in overweight/obese premenopausal women. METHODS Overweight/obese premenopausal women (n=120) were randomly assigned to the metformin or placebo group, and all women received lifestyle interventions. The outcomes included weight, BMI, FPG, FIN, glucose, HOMA-IR, LDL-C, HDL-C, TG, TC, SBP, DBP, FSH, E, AD, and the BIRADS grade, and the incidence of breast cancer was assessed by pathological biopsy and BIRADS grade greater than 4. RESULTS In total, 120 overweight/obese women completed the 1-year trial. Seven patients had a BIRADS grade greater than 4, including 5 patients who were biopsy positive, in the control group, and 2 patients had a BIRADS grade greater than 4, including 1 patient who was biopsy positive, in the metformin group. Compared with those in the control group, the body weight, BMI, FIN, FPG, HOMA-IR, TC, BIRADS grade and positive pathological biopsy rate in the metformin group were significantly decreased (P<0.05), while AD was significantly increased (P<0.05). The correlation analysis indicated that the BIRADS grade was significantly correlated with weight, BMI, FPG, FIN, HOMA-IR, SBP, AD and the positive pathological biopsy rate, and the positive pathological biopsy rate was significantly correlated with weight, BMI, HOMA-IR, SBP, AD and BIRADS grade. The logistic regression analysis revealed that the BIRADS grade was significantly correlated with the positive pathological biopsy rate and AD and that the positive pathological biopsy rate was significantly correlated with the BIRADS grade. CONCLUSION As adjunctive therapy, the combination of lifestyle changes and metformin was found to be a safe strategy for improving related metabolic markers and increasing adiponectin. The BIRADS grade was significantly correlated with the positive pathological biopsy rate and AD, and the positive pathological biopsy rate was significantly correlated with the BIRADS grade.
Collapse
Affiliation(s)
- Weiling Leng
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Danlan Pu
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Juan Jiang
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xiaotian Lei
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Qinan Wu
- Endocrinology Department, Chongqing Medical University Affiliated Dazu Hospital, Dazu District People’s Hospital, Chongqing, People’s Republic of China
- Correspondence: Qinan Wu; Bing Chen Email ;
| | - Bing Chen
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| |
Collapse
|