1
|
Tian H, Wang W, Liang S, Ding J, Hua D. From darkness to light: Targeting CAFs as a new potential strategy for cancer treatment. Int Immunopharmacol 2024; 143:113482. [PMID: 39476569 DOI: 10.1016/j.intimp.2024.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Cancer-associated fibroblasts (CAFs), which are the most frequent stromal cells in the tumor microenvironment (TME), play a key role in the metastasis of tumor cells. Generally speaking, CAFs in cooperation with tumor cells can secrete various cytokines, proteins, growth factors, and metabolites to promote angiogenesis, mediate immune escape of tumor cells, enhance endothelial-to-mesenchymal transition, stimulate extracellular matrix remodeling, and preserve tumor cell stemness. These activities of CAFs provide a favorable exogenous pathway for tumor progression and metastasis, and a microenvironment that allows rapid growth of tumor cells, which always lead to poor prognosis for patients. More importantly, it seems that targeting CAFs is also a potential precision therapeutic strategy in clinical practice. Hence, this review outlines the origin of CAFs, the relationship between CAFs and cancer metastasis, and targeting CAFs as a potential strategy for cancer patients, which could give some inspirations for cancer treatment in clinic.
Collapse
Affiliation(s)
- Haixia Tian
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Weijing Wang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shuai Liang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junli Ding
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Dong Hua
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
2
|
Ruixin S, Yifan L, Yansha S, Min Z, Yiwei D, Xiaoli H, Bizhi S, Hua J, Zonghai L. Dual targeting chimeric antigen receptor cells enhance antitumour activity by overcoming T cell exhaustion in pancreatic cancer. Br J Pharmacol 2024; 181:4628-4646. [PMID: 39129178 DOI: 10.1111/bph.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs. EXPERIMENTAL APPROACH In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo. KEY RESULTS Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-β dependent manner. CONCLUSION AND IMPLICATIONS The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.
Collapse
Affiliation(s)
- Sun Ruixin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liu Yifan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sun Yansha
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhou Min
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Yiwei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hu Xiaoli
- CARsgen Therapeutics, Shanghai, China
| | - Shi Bizhi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| | - Jiang Hua
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| | - Li Zonghai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
3
|
Modi SK, Subedi A. Elevated Creatine Kinase (CK) and Myositis Triggered by Immune Checkpoint Inhibitors: Muscle Mysteries Unveiled. Cureus 2024; 16:e71742. [PMID: 39553010 PMCID: PMC11568965 DOI: 10.7759/cureus.71742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), including programmed cell death protein 1 (PD-1) inhibitors, such as nivolumab, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, such as ipilimumab, have revolutionized cancer treatment, particularly in metastatic melanoma. However, these therapies can cause immune-related adverse events (irAEs), including myositis, a rare but significant complication characterized by elevated creatine kinase (CK) and muscle weakness. We present the case of a 79-year-old male with a history of metastatic melanoma to the brain, previously treated with nivolumab and ipilimumab, who was admitted after an unwitnessed fall. Initial laboratory tests revealed significantly elevated CK levels (5277 U/L) and mildly elevated liver function tests (LFTs). Despite the absence of muscle pain or weakness upon presentation, the patient developed proximal muscle weakness and myalgias during hospitalization. Extensive workup, including negative autoimmune panels and imaging, raised suspicion of immune-related myositis given the recent ICI therapy. The patient was treated with prednisone, which resulted in a rapid decrease in CK levels and improvement of symptoms, supporting the diagnosis of ICI-related myositis.
Collapse
Affiliation(s)
- Shivani K Modi
- Internal Medicine, Einstein Medical Center Philadelphia, Philadelphia, USA
| | - Ashish Subedi
- Internal Medicine, Gandaki Medical College, Pokhara, NPL
| |
Collapse
|
4
|
Xia J, Shi Y, Chen X. New insights into the mechanisms of the extracellular matrix and its therapeutic potential in anaplastic thyroid carcinoma. Sci Rep 2024; 14:20977. [PMID: 39251678 PMCID: PMC11384763 DOI: 10.1038/s41598-024-72020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer, and it has a poor prognosis and high probability of metastatic recurrence. The long-term survival of cancer cells depends on their ability to settle in a favorable environment. Cancer cells interact with other cells in the tumor microenvironment to shape the "soil" and make it suitable for cell growth by forming an extremely complex tumor ecosystem. The extracellular matrix (ECM) is an essential component of the tumor ecosystem, and its biological and mechanical changes strongly affect tumor invasion, metastasis, immune escape and drug resistance. Compared to normal tissues, biological processes, such as collagen synthesis and ECM signaling, are significantly activated in ATC tissues. However, how ATC triggers changes in the properties of the ECM and its interaction with the ECM remain poorly characterized. Therefore, an in-depth study of the regulatory mechanism of the abnormal activation of ECM signaling in ATC is highly important for achieving the therapeutic goal of exerting antitumor effects by destroying the "soil" in which cancer cells depend for survival. In this research, we revealed the aberrant activation state of ECM signaling in ATC progression and attempted to uncover the potential mechanism of action of ECM components in ATC, with the aim of providing new drug targets for ATC therapy.
Collapse
Affiliation(s)
- Jinkun Xia
- Department of Vascular and Thyroid Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Yuyu Shi
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, 550003, Guizhou, China
| | - Xinxu Chen
- Emergency Department, Fenggang County People's Hospital, Fenggang, 564299, Guizhou, China
| |
Collapse
|
5
|
Xu X, Cheng W, Zhao S, Liu Y, Li L, Song X, Zhang Y, Ding C. Pan-cancer analysis of the role of MPP7 in human tumors. Heliyon 2024; 10:e36148. [PMID: 39224268 PMCID: PMC11367567 DOI: 10.1016/j.heliyon.2024.e36148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
MAGUK p55 subfamily member 7, a part of the membrane palmitoylated protein subfamily, is an essential adapter that promotes epithelial cell polarity and has increasing significance in multiple cancers, including esophageal cancer, clear cell renal cell carcinoma, breast cancer, and pancreatic ductal adenocarcinoma. This paper aims to determine the effect of the MAGUK p55 subfamily member 7 in various tumor types using The Cancer Genome Atlas and Genotype-Tissue Expression database. A variety of software and web platforms, such as cBioPortal, GEPIA2, TIMER2, UALCAN, R, STRING, and DAVID, were used to obtain and analyze data. Notably, low expression of MAGUK p55 subfamily member 7 was observed in most cancers. In addition, low expression of MAGUK p55 subfamily member 7 predicted poor prognoses in cancer patients. Mutation was the most frequent genetic alteration type in MAGUK p55 subfamily member 7, with the phosphorylation sites identified as S412 and S490 in various cancers. Furthermore, expression of MAGUK p55 subfamily member 7 was associated with cancer-related fibroblasts and CD8+ T cells. Gene enrichment analysis indicated that MAGUK p55 subfamily member 7 influences cancer through the Rap1 signaling pathway. This paper elucidates the biological significance of MAGUK p55 subfamily member 7 in human pan-cancer prognosis and immune response.
Collapse
Affiliation(s)
- Xiaotong Xu
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Weyland Cheng
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Yuchun Liu
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Lifeng Li
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Xiaorui Song
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Cong Ding
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| |
Collapse
|
6
|
Freeman P, Bellomo G, Ireland L, Abudula M, Luckett T, Oberst M, Stafferton R, Ghaneh P, Halloran C, Schmid MC, Mielgo A. Inhibition of insulin-like growth factors increases production of CXCL9/10 by macrophages and fibroblasts and facilitates CD8 + cytotoxic T cell recruitment to pancreatic tumours. Front Immunol 2024; 15:1382538. [PMID: 39165364 PMCID: PMC11334161 DOI: 10.3389/fimmu.2024.1382538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.
Collapse
Affiliation(s)
- Patrick Freeman
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael Oberst
- Department of Oncology Research, AstraZeneca, One Medimmune Way, Gaithersburg, MD, United States
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael C. Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Akai M, Noma K, Kato T, Nishimura S, Matsumoto H, Kawasaki K, Kunitomo T, Kobayashi T, Nishiwaki N, Kashima H, Kikuchi S, Ohara T, Tazawa H, Choyke PL, Kobayashi H, Fujiwara T. Fibroblast activation protein-targeted near-infrared photoimmunotherapy depletes immunosuppressive cancer-associated fibroblasts and remodels local tumor immunity. Br J Cancer 2024; 130:1647-1658. [PMID: 38555315 PMCID: PMC11091110 DOI: 10.1038/s41416-024-02639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a critical role in tumor immunosuppression. However, targeted depletion of CAFs is difficult due to their diverse cells of origin and the resulting lack of specific surface markers. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that leads to rapid cell membrane damage. METHODS In this study, we used anti-mouse fibroblast activation protein (FAP) antibody to target FAP+ CAFs (FAP-targeted NIR-PIT) and investigated whether this therapy could suppress tumor progression and improve tumor immunity. RESULTS FAP-targeted NIR-PIT induced specific cell death in CAFs without damaging adjacent normal cells. Furthermore, FAP-targeted NIR-PIT treated mice showed significant tumor regression in the CAF-rich tumor model accompanied by an increase in CD8+ tumor infiltrating lymphocytes (TILs). Moreover, treated tumors showed increased levels of IFN-γ, TNF-α, and IL-2 in CD8+ TILs compared with non-treated tumors, suggesting enhanced antitumor immunity. CONCLUSIONS Cancers with FAP-positive CAFs in their TME grow rapidly and FAP-targeted NIR-PIT not only suppresses their growth but improves tumor immunosuppression. Thus, FAP-targeted NIR-PIT is a potential therapeutic strategy for selectively targeting the TME of CAF+ tumors.
Collapse
Affiliation(s)
- Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hijiri Matsumoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Gene and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis 2024; 15:307. [PMID: 38693104 PMCID: PMC11063215 DOI: 10.1038/s41419-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
9
|
Pan F, Pan R, Hu R, Zhang H, Lei S, Zhang L, Zhou C, Zeng Z, Tian X, Xie Q. Analysis of the effects of M2 macrophage-derived PDE4C on the prognosis, metastasis and immunotherapy benefit of osteosarcoma. J Cell Mol Med 2024; 28:e18395. [PMID: 38774995 PMCID: PMC11109666 DOI: 10.1111/jcmm.18395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.
Collapse
Affiliation(s)
- Feng Pan
- College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina
- Department of Bone and Joint SurgeryBeijing Jishuitan Hospital Guizhou HospitalGuiyangChina
| | - Runsang Pan
- School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Rui Hu
- The 4th Department of OrthopaedicsThe Second People's Hospital of JingmenJingmenChina
| | - Hao Zhang
- College of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Shan Lei
- School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Lu Zhang
- College of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Changhua Zhou
- College of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhirui Zeng
- School of Basic MedicineGuizhou Medical UniversityGuiyangChina
- Postdoctoral WorkstationAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xiaobin Tian
- School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Quan Xie
- College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina
| |
Collapse
|
10
|
Røgenes H, Finne K, Winge I, Akslen LA, Östman A, Milosevic V. Development of 42 marker panel for in-depth study of cancer associated fibroblast niches in breast cancer using imaging mass cytometry. Front Immunol 2024; 15:1325191. [PMID: 38711512 PMCID: PMC11070582 DOI: 10.3389/fimmu.2024.1325191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Imaging Mass Cytometry (IMC) is a novel, and formidable high multiplexing imaging method emerging as a promising tool for in-depth studying of tissue architecture and intercellular communications. Several studies have reported various IMC antibody panels mainly focused on studying the immunological landscape of the tumor microenvironment (TME). With this paper, we wanted to address cancer associated fibroblasts (CAFs), a component of the TME very often underrepresented and not emphasized enough in present IMC studies. Therefore, we focused on the development of a comprehensive IMC panel that can be used for a thorough description of the CAF composition of breast cancer TME and for an in-depth study of different CAF niches in relation to both immune and breast cancer cell communication. We established and validated a 42 marker panel using a variety of control tissues and rigorous quantification methods. The final panel contained 6 CAF-associated markers (aSMA, FAP, PDGFRa, PDGFRb, YAP1, pSMAD2). Breast cancer tissues (4 cases of luminal, 5 cases of triple negative breast cancer) and a modified CELESTA pipeline were used to demonstrate the utility of our IMC panel for detailed profiling of different CAF, immune and cancer cell phenotypes.
Collapse
Affiliation(s)
- Hanna Røgenes
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Xue X, Wang X, Pang M, Yu L, Qian J, Li X, Tian M, Lu C, Xiao C, Liu Y. An exosomal strategy for targeting cancer-associated fibroblasts mediated tumors desmoplastic microenvironments. J Nanobiotechnology 2024; 22:196. [PMID: 38644492 PMCID: PMC11032607 DOI: 10.1186/s12951-024-02452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.
Collapse
Affiliation(s)
- Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
12
|
Dong Y, Zhang C, Mao F, Dan H, Zeng X, Ji N, Li J, Chen Q, Zhou Y, Li T. Mass cytometry and transcriptomic profiling reveal PD1 blockade induced alterations in oral carcinogenesis. Mol Carcinog 2024; 63:563-576. [PMID: 38085124 DOI: 10.1002/mc.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 03/16/2024]
Abstract
Oral squamous cell carcinoma is the predominant subtype of head and neck squamous cell carcinoma, characterized by a challenging prognosis. In this study, we established a murine model of oral carcinogenesis using 4-nitroquinoline-1-oxide (4-NQO) induction to investigate the impact of immunotherapy on microenvironmental alterations. Mice in the precancerous condition were randomly divided into two groups: one receiving programmed death-1 (PD1) monoclonal antibody treatment and the other, control immunoglobulin G. Our observations showed that while PD1 blockade effectively delayed the progression of carcinogenesis, it did not completely impede or reverse it. To unravel the underlying reasons for the limited effectiveness of PD1 blockade, we collected tongue lesions and applied mass cytometry (CyTOF) and RNA sequencing (RNA-seq) to characterize the microenvironment. CyTOF analysis revealed an increased macrophage subset (expressing high levels of IFNγ and iNOS) alongside a diminished Th1-like subset (exhibiting low expression of TCF7) and three myeloid-derived suppressor cell subsets (displaying low expression of MHC Class II or IFNγ) following anti-PD1 treatment. Notably, we observed an increased presence of cancer-associated fibroblasts (CAFs) expressing collagen-related genes after PD1 blockade. Furthermore, we found a negative correlation between the infiltration levels of CAFs and CD8+ T cells. These findings were validated in murine tongue tissue slides, and publicly available multi-omics datasets. Our results suggest that CAFs may impair the therapeutic efficacy of PD1 blockade in oral carcinogenesis by the remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- Yunmei Dong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengli Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Mao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Institute of Drug/Medical Device Clinical Trial, West China Hospital of Stomatology, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Croizer H, Mhaidly R, Kieffer Y, Gentric G, Djerroudi L, Leclere R, Pelon F, Robley C, Bohec M, Meng A, Meseure D, Romano E, Baulande S, Peltier A, Vincent-Salomon A, Mechta-Grigoriou F. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat Commun 2024; 15:2806. [PMID: 38561380 PMCID: PMC10984943 DOI: 10.1038/s41467-024-47068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Although heterogeneity of FAP+ Cancer-Associated Fibroblasts (CAF) has been described in breast cancer, their plasticity and spatial distribution remain poorly understood. Here, we analyze trajectory inference, deconvolute spatial transcriptomics at single-cell level and perform functional assays to generate a high-resolution integrated map of breast cancer (BC), with a focus on inflammatory and myofibroblastic (iCAF/myCAF) FAP+ CAF clusters. We identify 10 spatially-organized FAP+ CAF-related cellular niches, called EcoCellTypes, which are differentially localized within tumors. Consistent with their spatial organization, cancer cells drive the transition of detoxification-associated iCAF (Detox-iCAF) towards immunosuppressive extracellular matrix (ECM)-producing myCAF (ECM-myCAF) via a DPP4- and YAP-dependent mechanism. In turn, ECM-myCAF polarize TREM2+ macrophages, regulatory NK and T cells to induce immunosuppressive EcoCellTypes, while Detox-iCAF are associated with FOLR2+ macrophages in an immuno-protective EcoCellType. FAP+ CAF subpopulations accumulate differently according to the invasive BC status and predict invasive recurrence of ductal carcinoma in situ (DCIS), which could help in identifying low-risk DCIS patients eligible for therapeutic de-escalation.
Collapse
Affiliation(s)
- Hugo Croizer
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Rana Mhaidly
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Geraldine Gentric
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Lounes Djerroudi
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France
| | - Renaud Leclere
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France
| | - Floriane Pelon
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Catherine Robley
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Mylene Bohec
- Institut Curie, PSL Research University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
- Institut Curie, PSL Research University, Single Cell Initiative, 75005, Paris, France
| | - Arnaud Meng
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Didier Meseure
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France
| | - Emanuela Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, 26, Rue d'Ulm, F-75248, Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL Research University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
- Institut Curie, PSL Research University, Single Cell Initiative, 75005, Paris, France
| | - Agathe Peltier
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, Rue d'Ulm, F-75248, Paris, France
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe Labélisée par la Ligue Nationale Contre le Cancer, PSL Research University, 26, Rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, Rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
14
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
15
|
Henrich LM, Greimelmaier K, Wessolly M, Klopp NA, Mairinger E, Krause Y, Berger S, Wohlschlaeger J, Schildhaus HU, Baba HA, Mairinger FD, Borchert S. The Impact of Cancer-Associated Fibroblasts on the Biology and Progression of Colorectal Carcinomas. Genes (Basel) 2024; 15:209. [PMID: 38397199 PMCID: PMC10888097 DOI: 10.3390/genes15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. Cancer-associated fibroblasts (CAFs) are major components of CRC's tumour microenvironment (TME), but their biological background and interplay with the TME remain poorly understood. This study investigates CAF biology and its impact on CRC progression. (2) The cohort comprises 155 cases, including CRC, with diverse localizations, adenomas, inflammations, and controls. Digital gene expression analysis examines genes associated with signalling pathways (MAPK, PI3K/Akt, TGF-β, WNT, p53), while next-generation sequencing (NGS) determines CRC mutational profiles. Immunohistochemical FAP scoring assesses CAF density and activity. (3) FAP expression is found in 81 of 150 samples, prevalent in CRC (98.4%), adenomas (27.5%), and inflammatory disease (38.9%). Several key genes show significant associations with FAP-positive fibroblasts. Gene set enrichment analysis (GSEA) highlights PI3K and MAPK pathway enrichment alongside the activation of immune response pathways like natural killer (NK)-cell-mediated cytotoxicity via CAFs. (4) The findings suggest an interplay between CAFs and cancer cells, influencing growth, invasiveness, angiogenesis, and immunogenicity. Notably, TGF-β, CDKs, and the Wnt pathway are affected. In conclusion, CAFs play a significant role in CRC and impact the TME throughout development.
Collapse
Affiliation(s)
- Larissa Maria Henrich
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Kristina Greimelmaier
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany (J.W.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Nick Alexander Klopp
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Yvonne Krause
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Sophia Berger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Jeremias Wohlschlaeger
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany (J.W.)
| | - Hans-Ulrich Schildhaus
- Targos-A Discovery Life Sciences Company, Germaniastraße 7, 34119 Kassel, Germany;
- Institute of Pathology Nordhessen, Germaniastraße 7, 34119 Kassel, Germany
| | - Hideo Andreas Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| |
Collapse
|
16
|
Fergatova A, Affara NI. The cellular triumvirate: fibroblasts entangled in the crosstalk between cancer cells and immune cells. Front Immunol 2024; 14:1337333. [PMID: 38313431 PMCID: PMC10835808 DOI: 10.3389/fimmu.2023.1337333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
This review article will focus on subpopulations of fibroblasts that get reprogrammed by tumor cells into cancer-associated fibroblasts. Throughout this article, we will discuss the intricate interactions between fibroblasts, immune cells, and tumor cells. Unravelling complex intercellular crosstalk will pave the way for new insights into cellular mechanisms underlying the reprogramming of the local tumor immune microenvironment and propose novel immunotherapy strategies that might have potential in harnessing and modulating immune system responses.
Collapse
|
17
|
Zhang L, Cascio S, Mellors JW, Buckanovich RJ, Osmanbeyoglu HU. Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol 2024; 7:20. [PMID: 38182756 PMCID: PMC10770164 DOI: 10.1038/s42003-023-05733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a highstromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome. Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated mesenchymal stem cells, establish a complex network of paracrine signaling pathways with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and inhibit the antitumor immune response. In this work, we integrate single-cell transcriptomics of the HGSOC TME from public and in-house datasets (n = 20) and stratify tumors based upon high vs. low stromal cell content. Although our cohort size is small, our analyses suggest a distinct transcriptomic landscape for immune and non-immune cells in high-stromal vs. low-stromal tumors. High-stromal tumors have a lower fraction of certain T cells, natural killer (NK) cells, and macrophages, and increased expression of CXCL12 in epithelial cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell communication indicate that epithelial cancer cells and CA-MSCs secrete CXCL12 that interacte with the CXCR4 receptor, which is overexpressed on NK and CD8+ T cells. Dual IHC staining show that tumor infiltrating CD8 T cells localize in proximity of CXCL12+ tumor area. Moreover, CXCL12 and/or CXCR4 antibodies confirm the immunosuppressive role of CXCL12-CXCR4 in high-stromal tumors.
Collapse
Affiliation(s)
- Linan Zhang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Applied Mathematics, School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sandra Cascio
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ronald J Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15219, USA.
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
18
|
Kawasaki K, Noma K, Kato T, Ohara T, Tanabe S, Takeda Y, Matsumoto H, Nishimura S, Kunitomo T, Akai M, Kobayashi T, Nishiwaki N, Kashima H, Maeda N, Kikuchi S, Tazawa H, Shirakawa Y, Fujiwara T. PD-L1-expressing cancer-associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer. Cancer Immunol Immunother 2023; 72:3787-3802. [PMID: 37668710 PMCID: PMC10576702 DOI: 10.1007/s00262-023-03531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
The programmed cell death 1 protein (PD-1)/programmed cell death ligand 1 (PD-L1) axis plays a crucial role in tumor immunosuppression, while the cancer-associated fibroblasts (CAFs) have various tumor-promoting functions. To determine the advantage of immunotherapy, the relationship between the cancer cells and the CAFs was evaluated in terms of the PD-1/PD-L1 axis. Overall, 140 cases of esophageal cancer underwent an immunohistochemical analysis of the PD-L1 expression and its association with the expression of the α smooth muscle actin, fibroblast activation protein, CD8, and forkhead box P3 (FoxP3) positive cells. The relationship between the cancer cells and the CAFs was evaluated in vitro, and the effect of the anti-PD-L1 antibody was evaluated using a syngeneic mouse model. A survival analysis showed that the PD-L1+ CAF group had worse survival than the PD-L1- group. In vitro and in vivo, direct interaction between the cancer cells and the CAFs showed a mutually upregulated PD-L1 expression. In vivo, the anti-PD-L1 antibody increased the number of dead CAFs and cancer cells, resulting in increased CD8+ T cells and decreased FoxP3+ regulatory T cells. We demonstrated that the PD-L1-expressing CAFs lead to poor outcomes in patients with esophageal cancer. The cancer cells and the CAFs mutually enhanced the PD-L1 expression and induced tumor immunosuppression. Therefore, the PD-L1-expressing CAFs may be good targets for cancer therapy, inhibiting tumor progression and improving host tumor immunity.
Collapse
Affiliation(s)
- Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasushige Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hijiri Matsumoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoaki Maeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
19
|
Xu Y, Liu Y, Ge Y, Li H, Zhang Y, Wang L. Drug resistance mechanism and reversal strategy in lung cancer immunotherapy. Front Pharmacol 2023; 14:1230824. [PMID: 37795038 PMCID: PMC10546211 DOI: 10.3389/fphar.2023.1230824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Among all malignant tumors, lung cancer has the highest mortality and morbidity rates. The non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the most common histological subtypes. Although there are a number of internationally recognized lung cancer therapy regimens, their therapeutic effects remain inadequate. The outlook for individuals with lung carcinoma has ameliorated partly thanks to the intensive study of the tumor microenvironment and immune checkpoint inhibitors. Numerous cancers have been effectively treated with immunotherapy, which has had positive therapeutic results. Global clinical trials have validated that PD-1/PD-L1 inhibitors are effective and safe for treating lung cancer either independently or in combination, and they are gradually being recommended as systemic treatment medications by numerous guidelines. However, the immunotherapy resistance restricts the immunotherapy efficacy due to the formation of tumor immunosuppressive microenvironment and tumor mutations, and immunotherapy is only effective for a small percentage of lung cancer patients. To summarize, while tumor immunotherapy is benefiting an increasing number of lung cancer patients, most of them still develop natural or acquired resistance during immunotherapy. Consequently, a crucial and urgent topic is understanding and tackling drug resistance triggered by immunotherapy in lung cancer treatment. This review will outline the presently recognized mechanisms of immunotherapy resistance and reversal strategies in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yi Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
21
|
Dorst D, Smeets EMM, Klein C, Frielink C, Geijs D, Trajkovic-Arsic M, Cheung PFY, Stommel MWJ, Gotthardt M, Siveke JT, Aarntzen EHJG, van Lith SAM. Fibroblast Activation Protein-Targeted Photodynamic Therapy of Cancer-Associated Fibroblasts in Murine Models for Pancreatic Ductal Adenocarcinoma. Mol Pharm 2023; 20:4319-4330. [PMID: 37485886 PMCID: PMC10410663 DOI: 10.1021/acs.molpharmaceut.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5 year survival of 9%. One important limiting factor for treatment efficacy is the dense tumor-supporting stroma. The cancer-associated fibroblasts in this stroma deposit excessive amounts of extracellular matrix components and anti-inflammatory mediators, which hampers the efficacy of chemo- and immunotherapies. Systemic depletion of all activated fibroblasts is, however, not feasible nor desirable and therefore a local approach should be pursued. Here, we provide a proof-of-principle of using fibroblast activation protein (FAP)-targeted photodynamic therapy (tPDT) to treat PDAC. FAP-targeting antibody 28H1 and irrelevant control antibody DP47GS were conjugated to the photosensitizer IRDye700DX (700DX) and the chelator diethylenetriaminepentaacetic acid. In vitro binding and cytotoxicity were evaluated using the fibroblast cell-line NIH-3T3 stably transfected with FAP. Biodistribution of 111In-labeled antibody-700DX constructs was determined in mice carrying syngeneic tumors of the murine PDAC cell line PDAC299, and in a genetically engineered PDAC mouse model (CKP). Then, tPDT was performed by exposing the subcutaneous or the spontaneous PDAC tumors to 690 nm light. Induction of apoptosis after treatment was assessed using automated analyses of immunohistochemistry for cleaved caspase-3. 28H1-700DX effectively bound to 3T3-FAP cells and induced cytotoxicity upon exposure to 690 nm light, whereas no binding or cytotoxic effects were observed for DP47GS-700DX. Although both 28H1-700DX and DP47GS-700DX accumulated in subcutaneous PDAC299 tumors, autoradiography demonstrated that only 28H1-700DX reached the tumor core. On the contrary, control antibody DP47GS-700DX was only present at the tumor rim. In CKP mice, both antibodies accumulated in the tumor, but tumor-to-blood ratios of 28H1-700DX were higher than that of the control. Notably, in vivo FAP-tPDT caused upregulation of cleaved caspase-3 staining in both subcutaneous and in spontaneous tumors. In conclusion, we have shown that tPDT is a feasible approach for local depletion of FAP-expressing stromal cells in murine models for PDAC.
Collapse
Affiliation(s)
- Daphne
N. Dorst
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Esther M. M. Smeets
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Christian Klein
- Roche
Pharma Research and Early Development, Innovation
Center Zurich, 8952 Schlieren, Switzerland
| | - Cathelijne Frielink
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Daan Geijs
- Department
of Pathology, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Marija Trajkovic-Arsic
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Phyllis F. Y. Cheung
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Martijn W. J. Stommel
- Department
of Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Jens T. Siveke
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Erik H. J. G. Aarntzen
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Sanne A. M. van Lith
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
22
|
Jiang F, Jia K, Chen Y, Ji C, Chong X, Li Z, Zhao F, Bai Y, Ge S, Gao J, Zhang X, Li J, Shen L, Zhang C. ANO1-Mediated Inhibition of Cancer Ferroptosis Confers Immunotherapeutic Resistance through Recruiting Cancer-Associated Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300881. [PMID: 37341301 PMCID: PMC10460848 DOI: 10.1002/advs.202300881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Indexed: 06/22/2023]
Abstract
The application of immunotherapy in gastrointestinal (GI) cancers remains challenging because of the limited response rate and emerging therapeutic resistance. Combining clinical cohorts, multi-omics study, and functional/molecular experiments, it is found that ANO1 amplification or high-expression predicts poor outcomes and resistance to immunotherapy for GI cancer patients. Knocking-down or inhibiting ANO1 suppresses the growth/metastasis/invasion of multiple GI cancer cell lines, cell-derived xenograft, and patient-derived xenograft models. ANO1 contributes to an immune-suppressive tumor microenvironment and induces acquired resistance to anti-PD-1 immunotherapy, while ANO1 knockdown or inhibition enhances immunotherapeutic effectiveness and overcomes resistance to immunotherapy. Mechanistically, through inhibiting cancer ferroptosis in a PI3K-Akt signaling-dependent manner, ANO1 enhances tumor progression and facilitates cancer-associated fibroblast recruitment by promoting TGF-β release, thus crippling CD8+ T cell-mediated anti-tumor immunity and generating resistance to immunotherapy. This work highlights ANO1's role in mediating tumor immune microenvironment remodeling and immunotherapeutic resistance, and introduces ANO1 as a promising target for GI cancers' precision treatment.
Collapse
Affiliation(s)
- Fangli Jiang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Keren Jia
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Yang Chen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Congcong Ji
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Xiaoyi Chong
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Zhongwu Li
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Feilong Zhao
- Department of Medical Affairs3D Medicines, Inc.Shanghai201199P. R. China
| | - Yuezong Bai
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Sai Ge
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Jing Gao
- Department of OncologyShenzhen Key Laboratory of Gastrointestinal Cancer Translational ResearchCancer InstitutePeking University Shenzhen HospitalShenzhen‐Peking University‐Hong Kong University of Science and Technology Medical CenterShenzhen518000P. R. China
| | - Xiaotian Zhang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Jian Li
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Lin Shen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Cheng Zhang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| |
Collapse
|
23
|
Zhang Y, Han X, Wang K, Liu D, Ding X, Hu Z, Wang J. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment. Int J Nanomedicine 2023; 18:4329-4346. [PMID: 37545872 PMCID: PMC10403052 DOI: 10.2147/ijn.s418100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Immune checkpoint inhibitors (ICI) have received the most attention for triple negative breast cancer (TNBC), while the response rate to ICI remains limited due to insufficient T cell infiltration. It is therefore essential that alternative strategies are developed to improve the therapeutic outcomes of ICI in non-responsive TNBC cases. The efficacy of pH-responsive nanomicelles (P/A/B@NM) co-loaded with paclitaxel (PTX), CXCR4 antagonist AMD3100, and PD-1/PD-L1 inhibitor BMS-1 activating the T cell-mediated antitumor immune response were evaluated using a 4T1 antiPD-1-resistance breast tumor model. Methods In vitro, pH-responsive antitumor effect of P/A/B@NM was investigated by assessing cell viability, migration and invasion. In vivo, the distribution of P/A/B@NM was visualized in 4T1 orthotopic TNBC model using an IVIS spectrum imaging instrument. The efficacy of the co-delivery nanocarriers was evaluated by monitoring mouse survival, tumor growth and metastasis, cancer-associated fibroblasts (CAFs)-mediated tumor stroma and immunosuppressive microenvironment components, and the recruitment and infiltration of CD8+ T cells. Results The prepared P/A/B@NM in acid microenvironment demonstrates remarkable cytotoxicity against MDA-MB-231 cells, with an IC50 of 105 μg/mL. Additionally, it exhibits substantial inhibition of tumor cell migration and invasion. The P/A/B@NM based on co-delivery nanocarriers efficiently accumulate at the tumor site and release the drugs in a pH-responsive controlled manner. The nanomedicine-PTX, AMD3100, and BMS-1 formulation significantly inhibits tumor growth and lung/liver metastasis by inducing antitumor immune responses via CXCL12/CXCR4 axis blockade, and immunogenic cell death to reprogramme both tumor stroma and immunosuppressive microenvironment. As a result, CD8+ T cell infiltration is triggered into the tumor site, boosting the efficacy of ICI therapy synergistically. Conclusion These results demonstrate that combination therapy using P/A/B@NM reshapes CAFs-mediated tumor stroma and immunosuppressive microenvironment, which can enhance the infiltration of CD8+ T cells, thereby reactivating anti-tumor immunity for non-responsive TNBC cases.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xue Han
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Ke Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Da Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Xiaoyun Ding
- Oncology Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Zhiqiang Hu
- Oncology Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Jing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
24
|
Caponio VCA, Zhurakivska K, Lo Muzio L, Troiano G, Cirillo N. The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:3779. [PMID: 37568595 PMCID: PMC10417065 DOI: 10.3390/cancers15153779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
A still unresolved issue surrounding tumor formation concerns the role that the immune system plays in preventing the formation and progression of neoplasia, including oral squamous cell carcinoma (OSCC). Antitumor immunity has historically been seen as a critical barrier for cancer cells to develop, grow and spread, and this can be modulated using immunotherapies to achieve antitumor clinical responses. However, it has recently become clear that tumor-associated immunity, particularly the inflammatory microenvironment, has the paradoxical effect of enhancing tumorigenesis and progression. In this review, we discuss the multifaceted function of infiltrating immune cells in suppressing or promoting premalignancy and cancer. In particular, we report on the evidence supporting a role for T lymphocytes, dendritic cells, macrophages, and neutrophils in the development and progression of oral potentially malignant disorders (OPMD) and OSCC. We also draw attention to the clinical relevance of immune cell phenotypes and associated molecules for use as biomarkers and to the translatability of current research findings to improve classification systems and precision medicine in patients with OSCC.
Collapse
Affiliation(s)
- Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
25
|
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023; 13:120. [PMID: 37386520 DOI: 10.1186/s13578-023-01073-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Chi A, Nguyen NP. Mechanistic rationales for combining immunotherapy with radiotherapy. Front Immunol 2023; 14:1125905. [PMID: 37377970 PMCID: PMC10291094 DOI: 10.3389/fimmu.2023.1125905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Immunotherapy consisted mainly of immune checkpoint inhibitors (ICIs) has led to significantly improved antitumor response. However, such response has been observed only in tumors possessing an overall responsive tumor immune micro-environment (TIME), in which the presence of functional tumor-infiltrating lymphocytes (TILs) is critical. Various mechanisms of immune escape from immunosurveillance exist, leading to different TIME phenotypes in correlation with primary or acquired resistance to ICIs. Radiotherapy has been shown to induce antitumor immunity not only in the irradiated primary tumor, but also at unirradiated distant sites of metastases. Such antitumor immunity is mainly elicited by radiation's stimulatory effects on antigenicity and adjuvanticity. Furthermore, it may be significantly augmented when irradiation is combined with immunotherapy, such as ICIs. Therefore, radiotherapy represents one potential therapeutic strategy to restore anti-tumor immunity in tumors presenting with an unresponsive TIME. In this review, the generation of anti-tumor immunity, its impairment, radiation's immunogenic properties, and the antitumor effects of combining radiation with immunotherapy will be comprehensively discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Capital Medical University Xuanwu Hospital, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| |
Collapse
|
27
|
Yang C, He Y, Chen F, Zhang F, Shao D, Wang Z. Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207029. [PMID: 36703529 DOI: 10.1002/smll.202207029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The establishment of effective antitumor immune responses of vaccines is mainly limited by insufficient priming tumor infiltration of T cells and immunosuppressive tumor microenvironment (TME). Targeting β-adrenergic receptor (β-AR) signaling exerts promising benefits on reversing the suppressive effects directly on T cells, but it appears to have considerably limited antitumor performance when combined with vaccine-based immunotherapies. Herein, a tumor membrane-coated nanoplatform for codelivery of adjuvant CpG and propranolol (Pro), a β-AR inhibitor is designed. The biomimetic nanovaccine displayed an improved accumulation in lymph nodes and sufficient drug release, thereby inducing dendritic cell maturation and antigen presentation. Meanwhile, the integration of vaccination and blockade of β-AR signaling not only promoted the priming of the naive CD8+ T cells and effector T cell egress from lymph nodes, but also alleviated the immunosuppressive TME by decreasing the frequency of immunosuppressive cells and increasing the tumor infiltration of B cells and NK cells. Consequently, the biomimetic nanovaccines outperformed greater prophylactic and therapeutic efficacy than nanovaccines without Pro encapsulation in B16-F10 melanoma mice. Taken together, the work explored a biomimetic nanovaccine for priming tumor infiltration of T cells and immunosuppressive TME regulation, offering tremendous potential for a combined β-AR signaling-targeting strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
28
|
Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R, Du Q. CAFs orchestrates tumor immune microenvironment—A new target in cancer therapy? Front Pharmacol 2023; 14:1113378. [PMID: 37007004 PMCID: PMC10064291 DOI: 10.3389/fphar.2023.1113378] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Cancer immunotherapy has opened a new landscape in cancer treatment, however, the poor specificity and resistance of most targeted therapeutics have limited their therapeutic efficacy. In recent years, the role of CAFs in immune regulation has been increasingly noted as more evidence has been uncovered regarding the link between cancer-associated fibroblasts (CAFs) and the evolutionary process of tumor progression. CAFs interact with immune cells to shape the tumor immune microenvironment (TIME) that favors malignant tumor progression, a crosstalk process that leads to the failure of cancer immunotherapies. In this review, we outline recent advances in the immunosuppressive function of CAFs, highlight the mechanisms of CAFs-immune cell interactions, and discuss current CAF-targeted therapeutic strategies for future study.
Collapse
Affiliation(s)
- Chunxue Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sheng Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| |
Collapse
|
29
|
Arpinati L, Scherz-Shouval R. From gatekeepers to providers: regulation of immune functions by cancer-associated fibroblasts. Trends Cancer 2023; 9:421-443. [PMID: 36870916 DOI: 10.1016/j.trecan.2023.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are major protumorigenic components of the tumor microenvironment in solid cancers. CAFs are heterogeneous, consisting of multiple subsets that display diverse functions. Recently, CAFs have emerged as major promoters of immune evasion. CAFs favor T cell exclusion and exhaustion, promote recruitment of myeloid-derived suppressor cells, and induce protumoral phenotypic shifts in macrophages and neutrophils. With the growing appreciation of CAF heterogeneity came the understanding that different CAF subpopulations may be driving distinct immune-regulatory effects, interacting with different cell types, and perhaps even driving opposing effects on malignancy. In this review we discuss the current understanding of CAF-immune interactions, their effect on tumor progression and therapeutic response, and the possibility of exploiting CAF-immune interactions as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Hexun Z, Miyake T, Maekawa T, Mori H, Yasukawa D, Ohno M, Nishida A, Andoh A, Tani M. High abundance of Lachnospiraceae in the human gut microbiome is related to high immunoscores in advanced colorectal cancer. Cancer Immunol Immunother 2023; 72:315-326. [PMID: 35869338 PMCID: PMC10991469 DOI: 10.1007/s00262-022-03256-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The tumor microenvironment (TME) in colorectal cancer (CRC) includes the gut microbiome, immune cells, angiogenic factors, and fibroblasts and plays a major role in cancer progression. The Immunoscore (IS) is based on tumor infiltration by immune cells that are known prognostic biomarkers for CRC. However, the interrelation between the IS, microbiome, and other TME factors in human CRC remains unclear. PATIENTS AND METHODS A cohort of 94 patients with CRC was examined at the Shiga University of Medical Science Hospital in Japan. The expression levels of CD3, CD8, CD31, and alpha-smooth muscle actin (α-SMA) in the primary tumor were evaluated by immunohistochemistry. The IS was calculated based on the results of the CD3 and CD8 staining assays. Microbiomes in patients with CRC were examined by amplicon sequencing. RESULTS The expression levels of α-SMA and tumor-infiltrating lymphocytes in patients with CRC were negatively correlated (P = 0.006). A high IS was associated with high abundance of Lachnospiraceae in the microbiomes of patients with CRC. CONCLUSION Lymphocyte infiltration into the primary tumor was marked by reduced density of cancer-associated fibroblasts and enrichment of the Lachnospiraceae family in the gut microbiome, which may influence CRC progression.
Collapse
Affiliation(s)
- Zhang Hexun
- Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, 520-2192, Japan
| | - Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, 520-2192, Japan.
| | - Takeru Maekawa
- Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, 520-2192, Japan
| | - Haruki Mori
- Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, 520-2192, Japan
| | - Daiki Yasukawa
- Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, 520-2192, Japan
| | - Masashi Ohno
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama, Shiga, 5268580, Japan
- Department of Intestinal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Nishida
- Department of Intestinal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Akira Andoh
- Department of Intestinal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
31
|
Li R, Huang B, Tian H, Sun Z. Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment. Front Oncol 2023; 12:1096717. [PMID: 36698392 PMCID: PMC9868934 DOI: 10.3389/fonc.2022.1096717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer (EC) is one of the most life-threatening malignancies worldwide. Esophageal squamous cell carcinoma (ESCC) is the dominant subtype, accounting for approximately 90% of new incident EC each year. Although multidisciplinary treatment strategies have advanced rapidly, patients with ESCC are often diagnosed at advanced stage and the long-term prognosis remains unsatisfactory. In recent decades, immunotherapy, such as immune checkpoint inhibitors (ICIs), tumor vaccines, and chimeric antigen receptor T-cell (CAR-T) therapy, has been successfully used in clinical practice as a novel therapy for treating tumors, bringing new hope to ESCC patients. However, only a small fraction of patients achieved clinical benefits due to primary or acquired resistance. Immune evasion plays a pivotal role in the initiation and progression of ESCC. Therefore, a thorough understanding of the mechanisms by which ESCC cells escape from anti-tumor immunity is necessary for a more effective multidisciplinary treatment strategy. It has been widely recognized that immune evasion is closely associated with the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic complex and comprehensive system including not only cellular components but also non-cellular components, which influence hallmarks and fates of tumor cells from the outside. Novel immunotherapy targeting tumor-favorable TME represents a promising strategy to achieve better therapeutic responses for patients with ESCC. In this review, we provide an overview of immune evasion in ESCC, mainly focusing on the molecular mechanisms that underlie the role of TME in immune evasion of ESCC. In addition, we also discuss the challenges and opportunities of precision therapy for ESCC by targeting TME.
Collapse
|
32
|
D’Accardo C, Porcelli G, Mangiapane LR, Modica C, Pantina VD, Roozafzay N, Di Franco S, Gaggianesi M, Veschi V, Lo Iacono M, Todaro M, Turdo A, Stassi G. Cancer cell targeting by CAR-T cells: A matter of stemness. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1055028. [PMID: 39086964 PMCID: PMC11285689 DOI: 10.3389/fmmed.2022.1055028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 08/02/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.
Collapse
Affiliation(s)
- Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
33
|
Zheng X, Jiang K, Xiao W, Zeng D, Peng W, Bai J, Chen X, Li P, Zhang L, Zheng X, Miao Q, Wang H, Wu S, Xu Y, Xu H, Li C, Li L, Gao X, Zheng S, Li J, Wang D, Zhou Z, Xia X, Yang S, Li Y, Cui Z, Zhang Q, Chen L, Lin X, Lin G. CD8 + T cell/cancer-associated fibroblast ratio stratifies prognostic and predictive responses to immunotherapy across multiple cancer types. Front Immunol 2022; 13:974265. [PMID: 36439099 PMCID: PMC9682254 DOI: 10.3389/fimmu.2022.974265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 09/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are critical for immune suppression by restricting immune cell infiltration in the tumor stromal zones from penetrating tumor islands and changing their function status, particularly for CD8+ T cells. However, assessing and quantifying the impact of CAFs on immune cells and investigating how this impact is related to clinical outcomes, especially the efficacy of immunotherapy, remain unclear. Materials and methods The TME was characterized using immunohistochemical (IHC) analysis using a large-scale sample size of gene expression profiles. The CD8+ T cell/CAF ratio (CFR) association with survival was investigated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) lung cancer cohorts. The correlation between CFR and immunotherapeutic efficacy was computed in five independent cohorts. The correlation between CFR and objective response rates (ORRs) following pembrolizumab monotherapy was investigated in 20 solid tumor types. To facilitate clinical translation, the IHC-detected CD8/α-SMA ratio was applied as an immunotherapeutic predictive biomarker in a real-world lung cancer cohort. Results Compared with normal tissue, CAFs were enriched in cancer tissue, and the amount of CAFs was overwhelmingly higher than that in other immune cells. CAFs are positively correlated with the extent of immune infiltration. A higher CFR was strongly associated with improved survival in lung cancer, melanoma, and urothelial cancer immunotherapy cohorts. Within most cohorts, there was no clear evidence for an association between CFR and programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB). Compared with TMB and PD-L1, a higher correlation coefficient was observed between CFR and the ORR following pembrolizumab monotherapy in 20 solid tumor types (Spearman's r = 0.69 vs. 0.44 and 0.21). In a real-world cohort, patients with a high CFR detected by IHC benefited considerably from immunotherapy as compared with those with a low CFR (hazard ratio, 0.37; 95% confidence interval, 0.19-0.75; p < 0.001). Conclusions CFR is a newly found and simple parameter that can be used for identifying patients unlikely to benefit from immunotherapy. Future studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Xinlong Zheng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Kan Jiang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Weijin Xiao
- Department of Pathology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Dongqiang Zeng
- Department of Oncology, Southern Medical University, Guangzhou, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Jing Bai
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Pansong Li
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Longfeng Zhang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Xiaobin Zheng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Qian Miao
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Haibo Wang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Shiwen Wu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Haipeng Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Chao Li
- Department of Pathology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Lifeng Li
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xuan Gao
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Suya Zheng
- Chinese People’s Liberation Army 92403 Unit Support Department, Navy Fujian Base Hospital, Fuzhou, China
| | - Junhui Li
- Department of Medical Genetics and Genomics, National Protein Science Center, Beijing, China
| | - Deqiang Wang
- Department of Medical Oncology, Cancer Therapy Center, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Zhou
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xuefeng Xia
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Shanshan Yang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yujing Li
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Ling Chen
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| |
Collapse
|
34
|
Venkatesiah SS, Augustine D, Mishra D, Gujjar N, Haragannavar VC, Awan KH, Patil S. Immunology of Oral Squamous Cell Carcinoma-A Comprehensive Insight with Recent Concepts. Life (Basel) 2022; 12:1807. [PMID: 36362963 PMCID: PMC9695443 DOI: 10.3390/life12111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
This review aims to understand the concept of oral cancer immunology through the notion of immune profiling, immunoediting and immunotherapy, and to gain knowledge regarding its application for the management of oral cancer patients. Oral cancer is an immunogenic tumor where the cells of the tumor microenvironment play an important role in tumorigenesis. Understanding the mechanism of these modulations can help design immunotherapeutic strategies in oral cancer patients. This article gives an overview of immunomodulation in the oral cancer tumor microenvironment, with concepts of immune profiling, immunoediting and immunotherapy. English literature searches via Google Scholar, Web of Science, EBSCO, Scopus, and PubMed database were performed with the key words immunology, tumor microenvironment, cells, cross talk, immune profiling, biomarkers, inflammation, gene expression, techniques, immunoediting, immunosurveillance, tumor escape, immunotherapy, immune checkpoint inhibitors, vaccines in cancer, oral cancer, and head and neck cancer. Original research articles, reviews, and case reports published from 2016-2021 (n = 81) were included to appraise different topics, and were discussed under the following subsections. Literature published on oral cancer immunology reveals that oral cancer immune profiling with appropriate markers and techniques and knowledge on immunoediting concepts can help design and play an effective role in immunotherapeutic management of oral cancer patients. An evaluation of oral cancer immunology helps to determine its role in tumorigenesis, and immunotherapy could be the emerging drift in the effective management of oral cancer.
Collapse
Affiliation(s)
- Sowmya Samudrala Venkatesiah
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Deepika Mishra
- Department of Oral Pathology & Microbiology, Centre for Dental Education and Research, All India Institute of Medical Sciences (AIIMS), Delhi 110608, India
| | - Neethi Gujjar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
| |
Collapse
|
35
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
36
|
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022; 12:961637. [PMID: 36212414 PMCID: PMC9545774 DOI: 10.3389/fonc.2022.961637] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor microenvironment (TME), which is characterized by hypoxia, widely exists in solid tumors. As a current research hotspot in the TME, hypoxia is expected to become a key element to break through the bottleneck of tumor treatment. More and more research results show that a variety of biological behaviors of tumor cells are affected by many factors in TME which are closely related to hypoxia. In order to inhibiting the immune response in TME, hypoxia plays an important role in tumor cell metabolism and anti-apoptosis. Therefore, exploring the molecular mechanism of hypoxia mediated malignant tumor behavior and therapeutic targets is expected to provide new ideas for anti-tumor therapy. In this review, we discussed the effects of hypoxia on tumor behavior and its interaction with TME from the perspectives of immune cells, cell metabolism, oxidative stress and hypoxia inducible factor (HIF), and listed the therapeutic targets or signal pathways found so far. Finally, we summarize the current therapies targeting hypoxia, such as glycolysis inhibitors, anti-angiogenesis drugs, HIF inhibitors, hypoxia-activated prodrugs, and hyperbaric medicine.
Collapse
Affiliation(s)
- Gaoqi Chen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Kaiwen Wu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hao Li
- Deparment of Neurology, Affiliated Hospital of Jiangsu University, Jiang Su University, Zhenjiang, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| | - Tianlin He
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| |
Collapse
|
37
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
38
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
39
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
40
|
Liu X, Wang C. Pan-Cancer Analysis Identified Homologous Recombination Factor With OB-Fold (HROB) as a Potential Biomarker for Various Tumor Types. Front Genet 2022; 13:904060. [PMID: 35903352 PMCID: PMC9315351 DOI: 10.3389/fgene.2022.904060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background: By recruiting the MCM8–MCM9 helicase to DNA damage site, the Homologous Recombination Factor With OB-Fold (HROB) is involved in the repair of inter-strand crosslink and homologous recombination. Previous studies have shown that HROB may play an oncogenic role by promoting cell proliferation and chemoresistance in several tumor types. However, the potential diagnostic and prognostic values of HROB have not been systemically explored in pan-cancer. Methods: We analyzed the expression pattern of HROB among tumor tissues and normal tissues in several public databases, including Human Protein Atlas and the Cancer Genome Atlas (TCGA) and investigated the association between the HROB expression and pathological stage and patient prognosis. We also analyzed the association between HROB expression and cancer stemness and immune infiltration of cancer-associated fibroblasts (CAFs) and CD8+ T cells in pan-cancer. Finally, we explored the potential biological function of HROB through pathway enrichment analysis. Results: In most tumor types, HROB is overexpressed in tumor tissues compared with non-tumor tissues. High HROB expression was correlated with poor prognosis and advanced pathological stages. HROB expression was robustly correlated with cancer stemness. Moreover, significant correlations between CAFs, CD8+ T-cell infiltration, and HROB expression were observed in several tumor types. Pathway enrichment analysis revealed that cell cycle and mitotic-regulated pathways were strongly enriched in HROB co-expressed genes. Conclusion: HROB may be a potential diagnostic and prognostic biomarker in pan-cancer, which may play a role in tumorigenesis and disease progression by affecting the cancer stemness of tumor tissues and immune cell infiltration.
Collapse
Affiliation(s)
- Xianming Liu
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Cunchuan Wang,
| |
Collapse
|
41
|
Xiang X, Niu YR, Wang ZH, Ye LL, Peng WB, Zhou Q. Cancer-associated fibroblasts: Vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev 2022; 67:35-48. [DOI: 10.1016/j.cytogfr.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/17/2022]
|
42
|
Martín-Otal C, Navarro F, Casares N, Lasarte-Cía A, Sánchez-Moreno I, Hervás-Stubbs S, Lozano T, Lasarte JJ. Impact of tumor microenvironment on adoptive T cell transfer activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:1-31. [PMID: 35798502 DOI: 10.1016/bs.ircmb.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in immunotherapy have revolutionized the treatment of cancer. The use of adoptive cell therapies (ACT) such as those based on tumor infiltrating lymphocytes (TILs) or genetically modified cells (transgenic TCR lymphocytes or CAR-T cells), has shown impressive results in the treatment of several types of cancers. However, cancer cells can exploit mechanisms to escape from immunosurveillance resulting in many patients not responding to these therapies or respond only transiently. The failure of immunotherapy to achieve long-term tumor control is multifactorial. On the one hand, only a limited percentage of the transferred lymphocytes is capable of circulating through the bloodstream, interacting and crossing the tumor endothelium to infiltrate the tumor. Metabolic competition, excessive glucose consumption, the high level of lactic acid secretion and the extracellular pH acidification, the shortage of essential amino acids, the hypoxic conditions or the accumulation of fatty acids in the tumor microenvironment (TME), greatly hinder the anti-tumor activity of the immune cells in ACT therapy strategies. Therefore, there is a new trend in immunotherapy research that seeks to unravel the fundamental biology that underpins the response to therapy and identifies new approaches to better amplify the efficacy of immunotherapies. In this review we address important aspects that may significantly affect the efficacy of ACT, indicating also the therapeutic alternatives that are currently being implemented to overcome these drawbacks.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Flor Navarro
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aritz Lasarte-Cía
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
43
|
Koppensteiner L, Mathieson L, O’Connor RA, Akram AR. Cancer Associated Fibroblasts - An Impediment to Effective Anti-Cancer T Cell Immunity. Front Immunol 2022; 13:887380. [PMID: 35479076 PMCID: PMC9035846 DOI: 10.3389/fimmu.2022.887380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of functionally efficient cytotoxic T lymphocytes (CTL) in the Tumour nest is crucial in mediating a successful immune response to cancer. The detection and elimination of cancer cells by CTL can be impaired by cancer-mediated immune evasion. In recent years, it has become increasingly clear that not only neoplastic cells themselves, but also cells of the tumour microenvironment (TME) exert immunosuppressive functions and thereby play an integral part in the immune escape of cancer. The most abundant stromal cells of the TME, cancer associated fibroblasts (CAFs), promote tumour progression via multiple pathways and play a role in dampening the immune response to cancer. Recent research indicates that T cells react to CAF signalling and establish bidirectional crosstalk that plays a significant role in the tumour immune response. This review discusses the various mechanisms by which the CAF/T cell crosstalk may impede anti-cancer immunity.
Collapse
Affiliation(s)
- Lilian Koppensteiner
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Layla Mathieson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers (Basel) 2022; 14:cancers14061519. [PMID: 35326670 PMCID: PMC8946545 DOI: 10.3390/cancers14061519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Tumor cells struggle to survive following treatment. The struggle ends in either of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs, which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable component of resistance to the treatment, are one of the most logical targets within tumors that eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts in the development of drug resistance in solid tumors. In the future, we will establish the specific mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-fibroblast-inclusive personalized therapy. Abstract In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized by these transformed tumor cells. Cancer cells undergo several reprogramming events towards adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy involves changes within the transformed tumors cells as well as in their neighboring non-transformed extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs interact in unison with both tumor cells and all other components of the TME towards the progression of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome of the disease is their participation in the development of resistance to treatment. CAFs resist therapy in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy. Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with their role in orchestrating the development of resistance to different chemotherapies and targeted therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in light of their dialogue with tumor cells and the two components of the TME, the immune component, and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development of treatment resistance will impact our future strategies and ability to design improved therapies inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
Collapse
|
45
|
Salkeni MA, Shin JY, Gulley JL. Resistance to Immunotherapy: Mechanisms and Means for Overcoming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:45-80. [PMID: 34972962 DOI: 10.1007/978-3-030-79308-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immune checkpoint blockade transformed cancer therapy during the last decade. However, durable responses remain uncommon, early and late relapses occur over the course of treatment, and many patients with PD-L1-expressing tumors do not respond to PD-(L)1 blockade. In addition, while some malignancies exhibit inherent resistance to treatment, others develop adaptations that allow them to evade antitumor immunity after a period of response. It is crucial to understand the pathophysiology of the tumor-immune system interplay and the mechanisms of immune escape in order to circumvent primary and acquired resistance. Here we provide an outline of the most well-defined mechanisms of resistance and shed light on ongoing efforts to reinvigorate immunoreactivity.
Collapse
Affiliation(s)
- Mohamad A Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA.
| | - John Y Shin
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Hellevik T, Berzaghi R, Lode K, Islam A, Martinez-Zubiaurre I. Immunobiology of cancer-associated fibroblasts in the context of radiotherapy. J Transl Med 2021; 19:437. [PMID: 34663337 PMCID: PMC8524905 DOI: 10.1186/s12967-021-03112-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) still represents a mainstay of treatment in clinical oncology. Traditionally, the effectiveness of radiotherapy has been attributed to the killing potential of ionizing radiation (IR) over malignant cells, however, it has become clear that therapeutic efficacy of RT also involves activation of innate and adaptive anti-tumor immune responses. Therapeutic irradiation of the tumor microenvironment (TME) provokes profound cellular and biological reconfigurations which ultimately may influence immune recognition. As one of the major constituents of the TME, cancer-associated fibroblasts (CAFs) play central roles in cancer development at all stages and are recognized contributors of tumor immune evasion. While some studies argue that RT affects CAFs negatively through growth arrest and impaired motility, others claim that exposure of fibroblasts to RT promotes their conversion into a more activated phenotype. Nevertheless, despite the well-described immunoregulatory functions assigned to CAFs, little is known about the interplay between CAFs and immune cells in the context of RT. In this review, we go over current literature on the effects of radiation on CAFs and the influence that CAFs have on radiotherapy outcomes, and we summarize present knowledge on the transformed cellular crosstalk between CAFs and immune cells after radiation.
Collapse
Affiliation(s)
- Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Kristin Lode
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Ashraful Islam
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
47
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 984] [Impact Index Per Article: 246.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
De Silva P, Bano S, Pogue BW, Wang KK, Maytin EV, Hasan T. Photodynamic priming with triple-receptor targeted nanoconjugates that trigger T cell-mediated immune responses in a 3D in vitro heterocellular model of pancreatic cancer. NANOPHOTONICS 2021; 10:3199-3214. [PMID: 37485044 PMCID: PMC10361703 DOI: 10.1515/nanoph-2021-0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic priming (PDP), a collateral effect of photodynamic therapy, can transiently alter the tumor microenvironment (TME) beyond the cytotoxic zone. Studies have demonstrated that PDP increases tumor permeability and modulates immune-stimulatory effects by inducing immunogenic cell death, via the release of damage-associated molecular patterns and tumor-associated antigens. Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of cancers with a stubborn immunosuppressive TME and a dense stroma, representing a challenge for current molecular targeted therapies often involving macromolecules. We, therefore, tested the hypothesis that PDP's TME modulation will enable targeted therapy and result in immune stimulation. Using triple-receptor-targeted photoimmuno-nanoconjugate (TR-PINs)-mediated PDP, targeting epidermal growth factor receptor, transferrin receptor, and human epidermal growth factor receptor 2 we show light dose-dependent TR-PINs mediated cytotoxicity inhuman PDA Ccells (MIAPaCa-2),co-cultured with human pancreatic cancer-associated fibroblasts (PCAFs) in spheroids. Furthermore, TR-PINs induced the expression of heat shock proteins (Hsp60, Hsp70), Calreticulin, and high mobility group box 1 in a light dose and time-dependent manner.TR-PINs-mediated T cell activation was observed in co-cultures of immune cells with the MIA PaCa-2-PCAF spheroids. Both CD4+ T and CD8+ T cells showed light dose and time-dependant antitumor reactivity by upregulating degranulation marker CD107a and interferon-gamma post-PDP. Substantial tumor cell death in immune cell-spheroid co-cultures by day 3 shows the augmentation by antitumor T cell activation and their ability to recognize tumors for a light dose-dependent kill. These data confirm enhanced destruction of heterogeneous pancreatic spheroids mediated by PDP-induced phototoxicity, TME modulation and increased immunogenicity with targeted nanoconstructs.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kenneth K. Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Edward V. Maytin
- Departments of Dermatology and Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tayyaba Hasan
- Corresponding author: Tayyaba Hasan, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, BAR 314A, Boston, MA, 02114, USA; and Division of Health Sciences and Technology, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, 02139, USA,
| |
Collapse
|
49
|
Wang DK, Zuo Q, He QY, Li B. Targeted Immunotherapies in Gastrointestinal Cancer: From Molecular Mechanisms to Implications. Front Immunol 2021; 12:705999. [PMID: 34447376 PMCID: PMC8383067 DOI: 10.3389/fimmu.2021.705999] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is a leading cause of cancer-related mortality and remains a major challenge for cancer treatment. Despite the combined administration of modern surgical techniques and chemoradiotherapy (CRT), the overall 5-year survival rate of gastrointestinal cancer patients in advanced stage disease is less than 15%, due to rapid disease progression, metastasis, and CRT resistance. A better understanding of the mechanisms underlying cancer progression and optimized treatment strategies for gastrointestinal cancer are urgently needed. With increasing evidence highlighting the protective role of immune responses in cancer initiation and progression, immunotherapy has become a hot research topic in the integrative management of gastrointestinal cancer. Here, an overview of the molecular understanding of colorectal cancer, esophageal cancer and gastric cancer is provided. Subsequently, recently developed immunotherapy strategies, including immune checkpoint inhibitors, chimeric antigen receptor T cell therapies, tumor vaccines and therapies targeting other immune cells, have been described. Finally, the underlying mechanisms, fundamental research and clinical trials of each agent are discussed. Overall, this review summarizes recent advances and future directions for immunotherapy for patients with gastrointestinal malignancies.
Collapse
Affiliation(s)
| | | | | | - Bin Li
- Ministry of Education (MOE), Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Ziani L, Buart S, Chouaib S, Thiery J. Hypoxia increases melanoma-associated fibroblasts immunosuppressive potential and inhibitory effect on T cell-mediated cytotoxicity. Oncoimmunology 2021; 10:1950953. [PMID: 34367731 PMCID: PMC8312612 DOI: 10.1080/2162402x.2021.1950953] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) and hypoxia are central players in the complex process of tumor cell-stroma interaction and are involved in the alteration of the anti-tumor immune response by impacting both cancer and immune cell populations. However, even if their independent immunomodulatory properties are now well documented, whether the interaction between these two components of the tumor microenvironment can affect CAFs ability to alter the anti-tumor immune response is still poorly defined. In this study, we provide evidence that hypoxia increases melanoma-associated fibroblasts expression and/or secretion of several immunosuppressive factors (including TGF-β, IL6, IL10, VEGF and PD-L1). Moreover, we demonstrate that hypoxic CAF secretome exerts a more profound effect on T cell-mediated cytotoxicity than its normoxic counterpart. Together, our data suggest that the crosstalk between hypoxia and CAFs is probably an important determinant in the complex immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
| | - Stéphanie Buart
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
| | - Salem Chouaib
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
| |
Collapse
|