1
|
Güler A, Yardımcı BK, Özek NŞ. Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie 2025; 229:69-83. [PMID: 39413900 DOI: 10.1016/j.biochi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Aging is a degenerative, biological, and time-dependent process that affects all organisms. Yeast aging is a physiological phenomenon characterized by the progressive transformation of yeast cells, resulting in modifications to their viability and vitality. Aging in yeast cells is comparable to that in higher organisms in some respects; however, due to their straightforward and well-characterized genetic makeup, these cells present unique advantages when it comes to researching the aging process. Here, we assessed the impact of human anti-apoptotic Bcl-2 and Bcl-xL proteins on aging using a yeast model. The findings clearly showed that these proteins exhibited remarkable anti-aging properties in yeast cells. Our data indicate that the presence of both proteins enhanced the reproductive survival of aging cells, likely by effecting the components functioning as both pro- and anti-oxidants, depending on the stage of yeast cell lifespan. Both proteins partially protected yeast cells from aging-related morphological deformations and cellular damage during the aging period. In particular, Bcl-xL expressing yeast cells reached the maximum activity levels for almost all of the major antioxidant enzymes and the total antioxidant status on the 8th day of lifespan and could provide effective protection at the latest stage of the investigated aging period. The chemometric data analysis of IR spectra confirmed the findings of the morphological and biochemical analyses. In this regard, specifically, understanding the mechanism of action on the cellular redox state of Bcl-xL in yeast may facilitate comprehension of its indirect antioxidant function in higher eukaryotes.
Collapse
Affiliation(s)
- Ayşenur Güler
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| | - Berna Kavakcıoğlu Yardımcı
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey; Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| | - Nihal Şimşek Özek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Jochems F, Baltira C, MacDonald JA, Daniels V, Mathur A, de Gooijer MC, van Tellingen O, Letai A, Bernards R. Senolysis by ABT-263 is associated with inherent apoptotic dependence of cancer cells derived from the non-senescent state. Cell Death Differ 2024:10.1038/s41418-024-01439-7. [PMID: 39706991 DOI: 10.1038/s41418-024-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Cellular senescence is a stress response that cells can employ to resist cell death. Senescent cells rely on anti-apoptotic signaling for their survival, which can be targeted by senolytic agents, like the BCL-XL, BCL-2, BCL-W inhibitor ABT-263. However, the response to ABT-263 of senescent cancer cells ranges from highly sensitive to refractory. Using BH3 profiling, we identify here apoptotic blocks in cancer cells that are resistant to this senolytic treatment and discover a correlation between mitochondrial apoptotic priming and cellular sensitivity to ABT-263 in senescence. Intriguingly, ABT-263 sensitivity correlates with overall mitochondrial apoptotic priming, not only in senescence but also in the parental state. Moreover, we confirm that ABT-263 exposure increases dependency on MCL-1, which is most enhanced in ABT-263 sensitive cells. ABT-263 resistant cells however upregulate MCL-1, while sensitive cells exhibit low levels of this anti-apoptotic protein. Overall, our data indicate that the response of senescent cells to ABT-263 is predetermined by the mitochondrial apoptotic priming state of the parental cells, which could serve as a predictive biomarker for response to senolytic therapy.
Collapse
Affiliation(s)
- Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Chrysiida Baltira
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Julie A MacDonald
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Veerle Daniels
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Abhijeet Mathur
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester; The Christie NHS Foundation Trust, Manchester, UK
| | - Olaf van Tellingen
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Anthony Letai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.
| |
Collapse
|
3
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
6
|
Smer-Barreto V, Quintanilla A, Elliott RJR, Dawson JC, Sun J, Campa VM, Lorente-Macías Á, Unciti-Broceta A, Carragher NO, Acosta JC, Oyarzún DA. Discovery of senolytics using machine learning. Nat Commun 2023; 14:3445. [PMID: 37301862 PMCID: PMC10257182 DOI: 10.1038/s41467-023-39120-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular senescence is a stress response involved in ageing and diverse disease processes including cancer, type-2 diabetes, osteoarthritis and viral infection. Despite growing interest in targeted elimination of senescent cells, only few senolytics are known due to the lack of well-characterised molecular targets. Here, we report the discovery of three senolytics using cost-effective machine learning algorithms trained solely on published data. We computationally screened various chemical libraries and validated the senolytic action of ginkgetin, periplocin and oleandrin in human cell lines under various modalities of senescence. The compounds have potency comparable to known senolytics, and we show that oleandrin has improved potency over its target as compared to best-in-class alternatives. Our approach led to several hundred-fold reduction in drug screening costs and demonstrates that artificial intelligence can take maximum advantage of small and heterogeneous drug screening data, paving the way for new open science approaches to early-stage drug discovery.
Collapse
Affiliation(s)
- Vanessa Smer-Barreto
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK.
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN. C/ Albert Einstein 22, Santander, 39011, Spain
| | - Richard J R Elliott
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Jiugeng Sun
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB, UK
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN. C/ Albert Einstein 22, Santander, 39011, Spain
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN. C/ Albert Einstein 22, Santander, 39011, Spain.
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB, UK.
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
- The Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK.
| |
Collapse
|
7
|
Barriuso D, Alvarez-Frutos L, Gonzalez-Gutierrez L, Motiño O, Kroemer G, Palacios-Ramirez R, Senovilla L. Involvement of Bcl-2 Family Proteins in Tetraploidization-Related Senescence. Int J Mol Sci 2023; 24:ijms24076374. [PMID: 37047342 PMCID: PMC10094710 DOI: 10.3390/ijms24076374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The B-cell lymphoma 2 (Bcl-2) family of proteins is the main regulator of apoptosis. However, multiple emerging evidence has revealed that Bcl-2 family proteins are also involved in cellular senescence. On the one hand, the different expression of these proteins determines the entry into senescence. On the other hand, entry into senescence modulates the expression of these proteins, generally conferring resistance to apoptosis. With some exceptions, senescent cells are characterized by the upregulation of antiapoptotic proteins and downregulation of proapoptotic proteins. Under physiological conditions, freshly formed tetraploid cells die by apoptosis due to the tetraploidy checkpoint. However, suppression of Bcl-2 associated x protein (Bax), as well as overexpression of Bcl-2, favors the appearance and survival of tetraploid cells. Furthermore, it is noteworthy that our laboratory has shown that the joint absence of Bax and Bcl-2 antagonist/killer (Bak) favors the entry into senescence of tetraploid cells. Certain microtubule inhibitory chemotherapies, such as taxanes and vinca alkaloids, induce the generation of tetraploid cells. Moreover, the combined use of inhibitors of antiapoptotic proteins of the Bcl-2 family with microtubule inhibitors increases their efficacy. In this review, we aim to shed light on the involvement of the Bcl-2 family of proteins in the senescence program activated after tetraploidization and the possibility of using this knowledge to create a new therapeutic strategy targeting cancer cells.
Collapse
|
8
|
Jaber S, Warnier M, Leers C, Vernier M, Goehrig D, Médard JJ, Vindrieux D, Ziegler DV, Bernard D. Targeting chemoresistant senescent pancreatic cancer cells improves conventional treatment efficacy. MOLECULAR BIOMEDICINE 2023; 4:4. [PMID: 36739330 PMCID: PMC9899302 DOI: 10.1186/s43556-023-00116-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/15/2023] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the deadliest cancers owing to its late diagnosis and of the strong resistance to available treatments. Despite a better understanding of the disease in the last two decades, no significant improvement in patient care has been made. Senescent cells are characterized by a stable proliferation arrest and some resistance to cell death. Increasing evidence suggests that multiple lines of antitumor therapy can induce a senescent-like phenotype in cancer cells, which may participate in treatment resistance. In this study, we describe that gemcitabine, a clinically-used drug against pancreatic cancer, induces a senescent-like phenotype in highly chemoresistant pancreatic cancer cells in vitro and in xenografted tumors in vivo. The use of ABT-263, a well-described senolytic compound targeting Bcl2 anti-apoptotic proteins, killed pancreatic gemcitabine-treated senescent-like cancer cells in vitro. In vivo, the combination of gemcitabine and ABT-263 decreased tumor growth, whereas their individual administration had no effect. Together these data highlight the possibility of improving the efficacy of conventional chemotherapies against pancreatic cancer by eliminating senescent-like cancer cells through senolytic intervention. Further studies testing different senolytics or their combination with available treatments will be necessary to optimize preclinical data in mouse models before transferring these findings to clinical trials.
Collapse
Affiliation(s)
- Sara Jaber
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Marine Warnier
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Christopher Leers
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Mathieu Vernier
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Delphine Goehrig
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Jean-Jacques Médard
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - David Vindrieux
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Dorian V. Ziegler
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,grid.9851.50000 0001 2165 4204Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - David Bernard
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| |
Collapse
|
9
|
Malaquin N, Rodier F. Dynamic and scalable assessment of the senescence-associated secretory phenotype (SASP). Methods Cell Biol 2022; 181:181-195. [PMID: 38302239 DOI: 10.1016/bs.mcb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dual-faced cellular senescence is responsible for beneficial biological processes and for age-related pathologies. Senescent cells under stable proliferation arrest develop numerous senescence-associated phenotypes such as the potent pro-inflammatory secretome called the senescence-associated secretory phenotype (SASP). The SASP shapes the senescent microenvironment and influences the biology of adjacent cells, including the modulation of proliferation and migration/invasion, reinforcement/induction of peripheral senescence, and immune cell activity or recruitment. The SASP is a dynamic process with multiple waves of secreted factors described to interlace over a period of many days. Whether the senescence phenotype reaches a mature stable state remains controversial. Overall, the complexity of the context-dependent and timely SASP compositions and its varied microenvironmental impact demonstrate the importance of properly assessing SASP over time. In this chapter, we focus on scalable and dynamic experimental procedures to prepare SASP conditioned medium over time from cells receiving senescence-inducing stimuli. This SASP-containing conditioned medium can be used to assess the composition of the SASP, study SASP-related signaling pathways or evaluate the paracrine microenvironmental impact of senescent cells.
Collapse
Affiliation(s)
- Nicolas Malaquin
- Centre de recherche du CHUM (CRCHUM) and Institut du cancer de Montréal, Montréal, QC, Canada
| | - Francis Rodier
- Centre de recherche du CHUM (CRCHUM) and Institut du cancer de Montréal, Montréal, QC, Canada; Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
10
|
Bousset L, Gil J. Targeting senescence as an anticancer therapy. Mol Oncol 2022; 16:3855-3880. [PMID: 36065138 PMCID: PMC9627790 DOI: 10.1002/1878-0261.13312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stress response elicited by different molecular insults. Senescence results in cell cycle exit and is characterised by multiple phenotypic changes such as the production of a bioactive secretome. Senescent cells accumulate during ageing and are present in cancerous and fibrotic lesions. Drugs that selectively kill senescent cells (senolytics) have shown great promise for the treatment of age-related diseases. Senescence plays paradoxical roles in cancer. Induction of senescence limits cancer progression and contributes to therapy success, but lingering senescent cells fuel progression, recurrence, and metastasis. In this review, we describe the intricate relation between senescence and cancer. Moreover, we enumerate how current anticancer therapies induce senescence in tumour cells and how senolytic agents could be deployed to complement anticancer therapies. "One-two punch" therapies aim to first induce senescence in the tumour followed by senolytic treatment to target newly exposed vulnerabilities in senescent tumour cells. "One-two punch" represents an emerging and promising new strategy in cancer treatment. Future challenges of "one-two punch" approaches include how to best monitor senescence in cancer patients to effectively survey their efficacy.
Collapse
Affiliation(s)
- Laura Bousset
- MRC London Institute of Medical Sciences (LMS)UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS)Imperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS)Imperial College LondonUK
| |
Collapse
|
11
|
L'Hôte V, Mann C, Thuret JY. From the divergence of senescent cell fates to mechanisms and selectivity of senolytic drugs. Open Biol 2022; 12:220171. [PMID: 36128715 PMCID: PMC9490338 DOI: 10.1098/rsob.220171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cellular stress response that involves prolonged cell survival, a quasi-irreversible proliferative arrest and a modification of the transcriptome that sometimes includes inflammatory gene expression. Senescent cells are resistant to apoptosis, and if not eliminated by the immune system they may accumulate and lead to chronic inflammation and tissue dysfunction. Senolytics are drugs that selectively induce cell death in senescent cells, but not in proliferative or quiescent cells, and they have proved a viable therapeutic approach in multiple mouse models of pathologies in which senescence is implicated. As the catalogue of senolytic compounds is expanding, novel survival strategies of senescent cells are uncovered, and variations in sensitivity to senolysis between different types of senescent cells emerge. We propose herein a mechanistic classification of senolytic drugs, based on the level at which they target senescent cells: directly disrupting BH3 protein networks that are reorganized upon senescence induction; downregulating survival-associated pathways essential to senescent cells; or modulating homeostatic processes whose regulation is challenged in senescence. With this approach, we highlight the important diversity of senescent cells in terms of physiology and pathways of apoptosis suppression, and we describe possible avenues for the development of more selective senolytics.
Collapse
Affiliation(s)
- Valentin L'Hôte
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Carl Mann
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| |
Collapse
|
12
|
Rysanek D, Vasicova P, Kolla JN, Sedlak D, Andera L, Bartek J, Hodny Z. Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging (Albany NY) 2022; 14:6381-6414. [PMID: 35951353 PMCID: PMC9467395 DOI: 10.18632/aging.204207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.
Collapse
Affiliation(s)
- David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Andera
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Biocev, Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
14
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:biomedicines10051088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|
15
|
Lee JH, Lee J. Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic β-Cell Dysfunction and Senescence in Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23094843. [PMID: 35563231 PMCID: PMC9104816 DOI: 10.3390/ijms23094843] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
An increased life span and accompanying nutritional affluency have led to a rapid increase in diseases associated with aging, such as obesity and type 2 diabetes, imposing a tremendous economic and health burden on society. Pancreatic β-cells are crucial for controlling glucose homeostasis by properly producing and secreting the glucose-lowering hormone insulin, and the dysfunction of β-cells determines the outcomes for both type 1 and type 2 diabetes. As the native structure of insulin is formed within the endoplasmic reticulum (ER), ER homeostasis should be appropriately maintained to allow for the proper metabolic homeostasis and functioning of β-cells. Recent studies have found that cellular senescence is critically linked with cellular stresses, including ER stress, oxidative stress, and mitochondrial stress. These studies implied that β-cell senescence is caused by ER stress and other cellular stresses and contributes to β-cells’ dysfunction and the impairment of glucose homeostasis. This review documents and discusses the current understanding of cellular senescence, β-cell function, ER stress, its associated signaling mechanism (unfolded protein response), and the effect of ER stress on β-cell senescence and dysfunction.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence:
| |
Collapse
|
16
|
Ahmadinejad F, Bos T, Hu B, Britt E, Koblinski J, Souers AJ, Leverson JD, Faber AC, Gewirtz DA, Harada H. Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Mol Pharmacol 2022; 101:168-180. [PMID: 34907000 PMCID: PMC8969145 DOI: 10.1124/molpharm.121.000354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor regression and tumor stasis. However, local and distant metastasis and disease relapse are common in HNSCC patients. In the current work, we demonstrate that cisplatin treatment induces senescence in both p53 wild-type HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor cells can escape from senescence both in vitro and in vivo. We further establish the effectiveness of the senolytic, ABT-263 (Navitoclax), in elimination of senescent tumor cells after cisplatin treatment. Navitoclax increased apoptosis by 3.3-fold (P ≤ 0.05) at day 7 compared with monotherapy by cisplatin. Additionally, we show that ABT-263 interferes with the interaction between B-cell lymphoma-x large (BCL-XL) and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, suggesting that ABT-263-induced apoptotic cell death is mediated through BAX. Our in vivo studies also confirm senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled with a significant delay of tumor growth after sequential treatment with ABT-263. Sequential treatment with cisplatin followed by ABT-263 extended the humane endpoint to ∼130 days compared with cisplatin alone, where mice survived ∼75 days. These results support the premise that senolytic agents could be used to eliminate residual senescent tumor cells after chemotherapy and thereby potentially delay disease recurrence in head and neck cancer patients. SIGNIFICANCE STATEMENT: Disease recurrence is the most common cause of death in head and neck cancer patients. B-cell lymphoma-x large inhibitors such as ABT-263 (Navitoclax) have the capacity to be used in combination with cisplatin in head and neck cancer patients to eliminate senescent cells and possibly prevent disease relapse.
Collapse
Affiliation(s)
- Fereshteh Ahmadinejad
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Tasia Bos
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Bin Hu
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Erin Britt
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Jennifer Koblinski
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Andrew J Souers
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Joel D Leverson
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Anthony C Faber
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - David A Gewirtz
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Hisashi Harada
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| |
Collapse
|
17
|
Russo M, Spagnuolo C, Moccia S, Tedesco I, Lauria F, Russo GL. Biochemical and Cellular Characterization of New Radio-Resistant Cell Lines Reveals a Role of Natural Flavonoids to Bypass Senescence. Int J Mol Sci 2021; 23:ijms23010301. [PMID: 35008725 PMCID: PMC8745286 DOI: 10.3390/ijms23010301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the main causes of death worldwide, and, among the most frequent cancer types, osteosarcoma accounts for 56% of bone neoplasms observed in children and colorectal cancer for 10.2% of tumors diagnosed in the adult population. A common and frequent hurdle in cancer treatment is the emergence of resistance to chemo- and radiotherapy whose biological causes are largely unknown. In the present work, human osteosarcoma (SAOS) and colorectal adenocarcinoma (HT29) cell lines were γ-irradiated at doses mimicking the sub-lethal irradiation in clinical settings to obtain two radio-resistant cellular sub-populations named SAOS400 and HT500, respectively. Since “therapy-induced senescence” (TIS) is often associated with tumor response to radiotherapy in cancer cells, we measured specific cellular and biochemical markers of senescence in SAOS400 and HT500 cells. In detail, both cell lines were characterized by a higher level of expression of cyclin-dependent kinase inhibitors p16INK4 and p21CIP1 and increased positivity to SAβ-gal (senescence-associated β-galactosidase) with respect to parental cells. Moreover, the intracellular levels of reactive oxygen species in the resistant cells were significantly lower compared to the parental counterparts. Subsequently, we demonstrated that senolytic agents were able to sensitize SAOS400 and HT500 to cell death induced by γ-irradiation. Employing two natural flavonoids, fisetin and quercetin, and a BH3-mimetic, ABT-263/navitoclax, we observed that their association with γ-irradiation significantly reduced the expression of p16INK4, p21CIP1 and synergistically (combination index < 1) increased cell death compared to radiation mono-alone treatments. The present results reinforce the potential role of senolytics as adjuvant agents in cancer therapy.
Collapse
Affiliation(s)
- Maria Russo
- Correspondence: (M.R.); (G.L.R.); Tel.: +39-0825-299-331 (M.R.)
| | | | | | | | | | | |
Collapse
|
18
|
As Sobeai HM, Alohaydib M, Alhoshani AR, Alhazzani K, Almutairi MM, Saleh T, Gewirtz DA, Alotiabi MR. Sorafenib, rapamycin, and venetoclax attenuate doxorubicin-induced senescence and promote apoptosis in HCT116 cells. Saudi Pharm J 2021; 30:91-101. [PMID: 35145348 PMCID: PMC8802130 DOI: 10.1016/j.jsps.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 µM), rapamycin (100 nM), or venetoclax (10 µM), in the absence or presence of doxorubicin (1 µM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-β-galactosidase staining (SA-β-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah Alohaydib
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali R. Alhoshani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashal M. Almutairi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Moureq R. Alotiabi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author.
| |
Collapse
|
19
|
Liao Z, Yeo HL, Wong SW, Zhao Y. Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines 2021; 9:1769. [PMID: 34944585 PMCID: PMC8698401 DOI: 10.3390/biomedicines9121769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a complex and multistep biological process which cells can undergo in response to different stresses. Referring to a highly stable cell cycle arrest, cellular senescence can influence a multitude of biological processes-both physiologically and pathologically. While phenotypically diverse, characteristics of senescence include the expression of the senescence-associated secretory phenotype, cell cycle arrest factors, senescence-associated β-galactosidase, morphogenesis, and chromatin remodelling. Persistent senescence is associated with pathologies such as aging, while transient senescence is associated with beneficial programmes, such as limb patterning. With these implications, senescence-based translational studies, namely senotherapy and pro-senescence therapy, are well underway to find the cure to complicated diseases such as cancer and atherosclerosis. Being a subject of major interest only in the recent decades, much remains to be studied, such as regarding the identification of unique biomarkers of senescent cells. This review attempts to provide a comprehensive understanding of the diverse literature on senescence, and discuss the knowledge we have on senescence thus far.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden
| | - Han Lin Yeo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Siaw Wen Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
20
|
Saleh T, El-Sadoni M, Alhesa A, Awad H, Jaradat M, Al-Hazaimeh M, Dawoud R, Mryyian A, Azab B. Expression of Senescence and Apoptosis Biomarkers in Synchronous Bilateral Breast Cancer: A Case Report. ACTA ACUST UNITED AC 2021; 28:3836-3845. [PMID: 34677245 PMCID: PMC8535022 DOI: 10.3390/curroncol28050327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
Background: Synchronous bilateral breast cancer (SBBC) provides a special condition where two independent breast tumors are exposed to cancer pharmacotherapy within a uniform pharmacokinetic milieu. Both senescence and apoptosis are established responses to therapy; however, they have potentially variable contributions to the overall outcome of treatment, which are yet to be determined. Methods: In this report, we describe the clinicopathological picture of two SBBC cases that received standard anticancer treatment and assess their expression profile of several molecular hallmarks of senescence and apoptosis. Results: Our analysis identified that synchronous tumors have variable expression profiles of both senescence- and apoptosis-associated biomarkers, despite comparable pathological responses to neoadjuvant chemotherapy and current survival rates. Conclusions: Our results highlight the variable expression of senescence- and apoptosis-associated markers in breast tumors (despite the shared somatic genetic background) and invites a large-scale assessment of both senescence and apoptosis in breast cancer tissue in vivo and their contribution to the pathological response and overall survival.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (R.D.); (A.M.)
- Correspondence: ; Tel.: +962-53903333 (ext. 5574)
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.E.-S.); (A.A.); (H.A.); (B.A.)
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.E.-S.); (A.A.); (H.A.); (B.A.)
| | - Heyam Awad
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.E.-S.); (A.A.); (H.A.); (B.A.)
| | - Mahmoud Jaradat
- Department of General Surgery, Jordanian Royal Medical Services, Amman 11942, Jordan; (M.J.); (M.A.-H.)
| | - Mohammad Al-Hazaimeh
- Department of General Surgery, Jordanian Royal Medical Services, Amman 11942, Jordan; (M.J.); (M.A.-H.)
| | - Rand Dawoud
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (R.D.); (A.M.)
| | - Amel Mryyian
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (R.D.); (A.M.)
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.E.-S.); (A.A.); (H.A.); (B.A.)
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
21
|
Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12:1821-1835. [PMID: 34504654 PMCID: PMC8416555 DOI: 10.18632/oncotarget.28049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells selectively. It is even more difficult to selectively kill senescent cells than to kill cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, gerostatics do not kill cells but slow down cellular geroconversion to senescence. Numerous studies demonstrated that inhibition of the mTOR pathways by any means (genetic, pharmacological and dietary) extends lifespan. Currently, only two studies demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, life extension by these senolytics can be explained by their slight rapamycin-like (gerostatic) effects.
Collapse
|
22
|
Hypoxic Jumbo Spheroids On-A-Chip (HOnAChip): Insights into Treatment Efficacy. Cancers (Basel) 2021; 13:cancers13164046. [PMID: 34439199 PMCID: PMC8394550 DOI: 10.3390/cancers13164046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is a key characteristic of the tumor microenvironment, too rarely considered during drug development due to the lack of a user-friendly method to culture naturally hypoxic 3D tumor models. In this study, we used soft lithography to engineer a microfluidic platform allowing the culture of up to 240 naturally hypoxic tumor spheroids within an 80 mm by 82.5 mm chip. These jumbo spheroids on a chip are the largest to date (>750 µm), and express gold-standard hypoxic protein CAIX at their core only, a feature absent from smaller spheroids of the same cell lines. Using histopathology, we investigated response to combined radiotherapy (RT) and hypoxic prodrug Tirapazamine (TPZ) on our jumbo spheroids produced using two sarcoma cell lines (STS117 and SK-LMS-1). Our results demonstrate that TPZ preferentially targets the hypoxic core (STS117: p = 0.0009; SK-LMS-1: p = 0.0038), but the spheroids' hypoxic core harbored as much DNA damage 24 h after irradiation as normoxic spheroid cells. These results validate our microfluidic device and jumbo spheroids as potent fundamental and pre-clinical tools for the study of hypoxia and its effects on treatment response.
Collapse
|
23
|
Zhang JW, Zhang D, Yu BP. Senescent cells in cancer therapy: why and how to remove them. Cancer Lett 2021; 520:68-79. [PMID: 34237406 DOI: 10.1016/j.canlet.2021.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response that imposes a growth arrest on cancer and nonmalignant cells during cancer therapy. By secreting a plethora of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP), therapy-induced senescent cells can promote tumorigenesis. Moreover, the SASP from senescent cells is also able to drive therapy resistance and mediate many adverse effects of cancer therapy. Because senescent cell production often occurs during cancer therapy, it is important to carefully consider these potential detrimental effects. Senotherapy, which refers to selective removal of senescent cells, has been proposed as a promising adjuvant approach to eliminate the adverse effects of senescent cells. Thus, in this review we summarize in detail the mechanisms by which senescent cells contribute to tumorigenesis and therapeutic resistance. Also, we thoroughly discuss the potential strategies regarding how to effectively circumvent the undesirable effects of therapy-induced senescent cells.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, People's Republic of China
| | - Dan Zhang
- Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Bao-Ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
24
|
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther 2021; 230:107943. [PMID: 34182005 DOI: 10.1016/j.pharmthera.2021.107943] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Cell death by apoptosis and permanent cell cycle arrest by senescence serve as barriers to the development of cancer. Chemotherapeutic agents not only induce apoptosis, they can also induce senescence known as therapy-induced senescence (TIS). There are, however, controversies whether TIS improves or worsens therapeutic outcome. Unlike apoptosis, which permanently removes cancer cells, senescent cells are metabolically active, and can contribute to tumor progression and relapse. If senescent cells are not cleared by the immune system or if cancer cells escape senescence, they may acquire resistance to apoptotic stimuli and become highly aggressive. Thus, there have been significant efforts in developing senolytics, drugs that target these pro-survival molecules to eliminate senescent cells. The anti-apoptotic Bcl-2 family proteins not only protect against cell death by apoptosis, but they also allow senescent cells to survive. While combining senolytics with chemotherapeutic drugs is an attractive approach, there are also limitations. Moreover, members of the Bcl-2 family have distinct effects on apoptosis and senescence. The purpose of this review article is to discuss recent literatures on how members of the Bcl-2 family orchestrate the interplay between apoptosis and senescence, and the challenges and progress in targeting these Bcl-2 family proteins for cancer therapy.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
25
|
Saoudaoui S, Bernard M, Cardin GB, Malaquin N, Christopoulos A, Rodier F. mTOR as a senescence manipulation target: A forked road. Adv Cancer Res 2021; 150:335-363. [PMID: 33858600 DOI: 10.1016/bs.acr.2021.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence, cancer and aging are highly interconnected. Among many important molecular machines that lie at the intersection of this triad, the mechanistic (formerly mammalian) target of rapamycin (mTOR) is a central regulator of cell metabolism, proliferation, and survival. The mTOR signaling cascade is essential to maintain cellular homeostasis in normal biological processes or in response to stress, and its dysregulation is implicated in the progression of many disorders, including age-associated diseases. Accordingly, the pharmacological implications of mTOR inhibition using rapamycin or others rapalogs span the treatment of various human diseases from immune disorders to cancer. Importantly, rapamycin is one of the only known pan-species drugs that can extend lifespan. The molecular and cellular mechanisms explaining the phenotypic consequences of mTOR are vast and heavily studied. In this review, we will focus on the potential role of mTOR in the context of cellular senescence, a tumor suppressor mechanism and a pillar of aging. We will explore the link between senescence, autophagy and mTOR and discuss the opportunities to exploit senescence-associated mTOR functions to manipulate senescence phenotypes in age-associated diseases and cancer treatment.
Collapse
Affiliation(s)
- Sarah Saoudaoui
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Monique Bernard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Apostolos Christopoulos
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada.
| |
Collapse
|
26
|
Ramu D, Shan TW, Hirpara JL, Pervaiz S. Cellular senescence: Silent operator and therapeutic target in cancer. IUBMB Life 2021; 73:530-542. [PMID: 33675120 DOI: 10.1002/iub.2460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
The process of carcinogenesis and its progression involves an intricate interplay between a number of signaling networks, metabolic pathways and the microenvironment. These include an alteration in the cellular redox metabolism and deregulation of cell cycle checkpoints. Similar to the dichotomy of redox signaling in cancer cell fate and state determination, a diverging effect of an irreversible cell cycle arrest or senescence on carcinogenesis has been demonstrated. In this regard, while overwhelming oxidative stress has a damaging effect on tissue architecture and organ function and promotes death execution, a mild "pro-oxidant" environment is conducive for cell proliferation, growth and survival. Similarly, cellular senescence has been shown to elicit both a tumor suppressor and an oncogenic effect in a context-dependent manner. Notably, there appears to be a crosstalk between these two critical regulators of cell fate and state, particularly from the standpoint of the divergent effects on processes that promote or abate carcinogenesis. This review aims to provide an overview of these overarching themes and attempts to highlight critical intersection nodes, which are emerging as potential diagnostic and/or therapeutic targets for novel anticancer strategies.
Collapse
Affiliation(s)
- Deepika Ramu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teoh Wei Shan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jayshree L Hirpara
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore.,Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore, Singapore.,Faculté de Medicine, University of Paris, Paris, France
| |
Collapse
|
27
|
Senolytics for Cancer Therapy: Is All That Glitters Really Gold? Cancers (Basel) 2021; 13:cancers13040723. [PMID: 33578753 PMCID: PMC7916462 DOI: 10.3390/cancers13040723] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Senescence is an essential component of tumor cell biology and is a primary cell stress response to therapy. While the long-term impact of senescence in cancer therapy is not yet fully understood, the use of senolytics, drugs that selectively kill senescent cells, is an area of active investigation in cancer treatment. Several challenges and unanswered questions have arisen from the current preclinical literature, indicating the need to re-evaluate some of the basic premises and experimental approaches, as well as the potential utility for translating to the clinic the application of senolytics as adjuvants to current cancer therapy. Abstract Senolytics represent a group of mechanistically diverse drugs that can eliminate senescent cells, both in tumors and in several aging-related pathologies. Consequently, senolytic use has been proposed as a potential adjuvant approach to improve the response to senescence-inducing conventional and targeted cancer therapies. Despite the unequivocal promise of senolytics, issues of universality, selectivity, resistance, and toxicity remain to be further clarified. In this review, we attempt to summarize and analyze the current preclinical literature involving the use of senolytics in senescent tumor cell models, and to propose tenable solutions and future directions to improve the understanding and use of this novel class of drugs.
Collapse
|