1
|
Uijttewaal ECH, Lee J, Sell AC, Botay N, Vainorius G, Novatchkova M, Baar J, Yang J, Potzler T, van der Leij S, Lowden C, Sinner J, Elewaut A, Gavrilovic M, Obenauf A, Schramek D, Elling U. CRISPR-StAR enables high-resolution genetic screening in complex in vivo models. Nat Biotechnol 2024:10.1038/s41587-024-02512-9. [PMID: 39681701 DOI: 10.1038/s41587-024-02512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Pooled genetic screening with CRISPR-Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.
Collapse
Affiliation(s)
- Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joonsun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Annika Charlotte Sell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Naomi Botay
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Juliane Baar
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Jiaye Yang
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Potzler
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophie van der Leij
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Christopher Lowden
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Julia Sinner
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anais Elewaut
- Vienna BioCenter PhD Program, University of Vienna and Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Milanka Gavrilovic
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria
| | - Anna Obenauf
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), Vienna, Austria
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), Vienna, Austria.
- Viverita Discovery, Vienna, Austria.
| |
Collapse
|
2
|
Ji X, Wu Q, Cao X, Liu S, Zhang J, Chen S, Shan J, Zhang Y, Li B, Zhao H. Helicobacter pylori East Asian type CagA hijacks more SHIP2 by its EPIYA-D motif to potentiate the oncogenicity. Virulence 2024; 15:2375549. [PMID: 38982595 PMCID: PMC11238919 DOI: 10.1080/21505594.2024.2375549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
CagA is a significant oncogenic factor injected into host cells by Helicobacter pylori, which is divided into two subtypes: East Asian type (CagAE), characterized by the EPIYA-D motif, and western type (CagAW), harboring the EPIYA-C motif. CagAE has been reported to have higher carcinogenicity than CagAW, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagAE. Co-Immunoprecipitation and Pull-down assays showed that CagAE bind more SHIP2 than CagAW. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagAE to the plasma membrane catalyzes the conversion of PI(3,4,5)P3 into PI(3,4)P2. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagAE and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagAE and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagAE into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagAE hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of H. pylori CagAE.
Collapse
Affiliation(s)
- Xiaofei Ji
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Qianwen Wu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xinying Cao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Shuzhen Liu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Jianhui Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Si Chen
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Jiangfan Shan
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Ying Zhang
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Huilin Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
3
|
El Sayed A, Gomes N, Czerwińska A, Azzi A. Drugs targeting SHIP2 demonstrate potent antiproliferative effects irrespective of SHIP2 inhibition. Life Sci 2024; 357:123101. [PMID: 39366554 DOI: 10.1016/j.lfs.2024.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
The SH2-containing inositol 5'-phosphatase SHIP2 plays a crucial role in negative regulation of the PI3K/AKT signaling pathway. Putative small molecule inhibitors of SHIP2, AS1949490 and K149 have been reported to elicit a range of beneficial effects in treating or preventing obesity as well as killing cancer cells. However, whether these effects are direct results of SHIP2 inhibition has not been carefully assessed, e.g., in the absence of expression of the protein. Here, we show that these inhibitors alter the PI3K/AKT signaling pathway irrespective of SHIP2 protein expression. Moreover, we found that AS1949490 and K149 alter cell growth in normal and cancer cells lacking both SHIP1 and SHIP2. Overall, our data provide evidence that the antiproliferative effects of AS1949490 and K149 cannot be attributed to SHIP1/2 inhibition.
Collapse
Affiliation(s)
- Abdulrahman El Sayed
- Laboratory of Lipids and Chronobiology, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783 Warsaw, Poland
| | - Nelson Gomes
- Laboratory of Lipids and Chronobiology, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783 Warsaw, Poland
| | - Areta Czerwińska
- Laboratory of Lipids and Chronobiology, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783 Warsaw, Poland
| | - Abdelhalim Azzi
- Laboratory of Lipids and Chronobiology, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783 Warsaw, Poland.
| |
Collapse
|
4
|
Wang M, Sun J, Yan X, Yang W, Wang W, Li Y, Wang L, Song L. CgSHIP2 negatively regulates the mRNA expressions of CgIL-17s in response to Vibrio splendidus stimulation in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109612. [PMID: 38705548 DOI: 10.1016/j.fsi.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.
Collapse
Affiliation(s)
- Mengjia Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Müller SM, Jücker M. The Functional Roles of the Src Homology 2 Domain-Containing Inositol 5-Phosphatases SHIP1 and SHIP2 in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:5254. [PMID: 38791291 PMCID: PMC11121230 DOI: 10.3390/ijms25105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The src homology 2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are two proteins involved in intracellular signaling pathways and have been linked to the pathogenesis of several diseases. Both protein paralogs are well known for their involvement in the formation of various kinds of cancer. SHIP1, which is expressed predominantly in hematopoietic cells, has been implicated as a tumor suppressor in leukemogenesis especially in myeloid leukemia, whereas SHIP2, which is expressed ubiquitously, has been implicated as an oncogene in a wider variety of cancer types and is suggested to be involved in the process of metastasis of carcinoma cells. However, there are numerous other diseases, such as inflammatory diseases as well as allergic responses, Alzheimer's disease, and stroke, in which SHIP1 can play a role. Moreover, SHIP2 overexpression was shown to correlate with opsismodysplasia and Alzheimer's disease, as well as metabolic diseases. The SHIP1-inhibitor 3-α-aminocholestane (3AC), and SHIP1-activators, such as AQX-435 and AQX-1125, and SHIP2-inhibitors, such as K161 and AS1949490, have been developed and partly tested in clinical trials, which indicates the importance of the SHIP-paralogs as possible targets in the therapy of those diseases. The aim of this article is to provide an overview of the current knowledge about the involvement of SHIP proteins in the pathogenesis of cancer and other human diseases and to create awareness that SHIP1 and SHIP2 are more than just tumor suppressors and oncogenes.
Collapse
Affiliation(s)
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
6
|
López-Collazo E, del Fresno C. Endotoxin tolerance and trained immunity: breaking down immunological memory barriers. Front Immunol 2024; 15:1393283. [PMID: 38742111 PMCID: PMC11089161 DOI: 10.3389/fimmu.2024.1393283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER), Respiratory Diseases (CIBRES), Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
7
|
Carvalho Silva R, Martini P, Hohoff C, Mattevi S, Bortolomasi M, Menesello V, Gennarelli M, Baune BT, Minelli A. DNA methylation changes in association with trauma-focused psychotherapy efficacy in treatment-resistant depression patients: a prospective longitudinal study. Eur J Psychotraumatol 2024; 15:2314913. [PMID: 38362742 PMCID: PMC10878335 DOI: 10.1080/20008066.2024.2314913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Background: Stressful events increase the risk for treatment-resistant depression (TRD), and trauma-focused psychotherapy can be useful for TRD patients exposed to early life stress (ELS). Epigenetic processes are known to be related to depression and ELS, but there is no evidence of the effects of trauma-focused psychotherapy on methylation alterations.Objective: We performed the first epigenome-wide association study to investigate methylation changes related to trauma-focused psychotherapies effects in TRD patients.Method: Thirty TRD patients assessed for ELS underwent trauma-focused psychotherapy, of those, 12 received trauma-focused cognitive behavioural therapy, and 18 Eye Movement Desensitization and Reprocessing (EMDR). DNA methylation was profiled with Illumina Infinium EPIC array at T0 (baseline), after 8 weeks (T8, end of psychotherapy) and after 12 weeks (T12 - follow-up). We examined differentially methylated CpG sites and regions, as well as pathways analysis in association with the treatment.Results: Main results obtained have shown 110 differentially methylated regions (DMRs) with a significant adjusted p-value area associated with the effects of trauma-focused psychotherapies in the entire cohort. Several annotated genes are related to inflammatory processes and psychiatric disorders, such as LTA, GFI1, ARID5B, TNFSF13, and LST1. Gene enrichment analyses revealed statistically significant processes related to tumour necrosis factor (TNF) receptor and TNF signalling pathway. Stratified analyses by type of trauma-focused psychotherapy showed statistically significant adjusted p-value area in 141 DMRs only for the group of patients receiving EMDR, with annotated genes related to inflammation and psychiatric disorders, including LTA, GFI1, and S100A8. Gene set enrichment analyses in the EMDR group indicated biological processes related to inflammatory response, particularly the TNF signalling pathway.Conclusion: We provide preliminary valuable insights into global DNA methylation changes associated with trauma-focused psychotherapies effects, in particular with EMDR treatment.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
8
|
DA Costa Machado AK, Machado CB, DE Pinho Pessoa FMC, Barreto IV, Gadelha RB, DE Sousa Oliveira D, Ribeiro RM, Lopes GS, DE Moraesfilho MO, DE Moraes MEA, Khayat AS, Moreira-Nunes CA. Development and Clinical Applications of PI3K/AKT/mTOR Pathway Inhibitors as a Therapeutic Option for Leukemias. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:9-24. [PMID: 38173664 PMCID: PMC10758851 DOI: 10.21873/cdp.10279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Leukemias are hematological neoplasms characterized by dysregulations in several cellular signaling pathways, prominently including the PI3K/AKT/mTOR pathway. Since this pathway is associated with several important cellular mechanisms, such as proliferation, metabolism, survival, and cell death, its hyperactivation significantly contributes to the development of leukemias. In addition, it is a crucial prognostic factor, often correlated with therapeutic resistance. Changes in the PI3K/AKT/mTOR pathway are identified in more than 50% of cases of acute leukemia, especially in myeloid lineages. Furthermore, these changes are highly frequent in cases of chronic lymphocytic leukemia, especially those with a B cell phenotype, due to the correlation between the hyperactivation of B cell receptors and the abnormal activation of PI3Kδ. Thus, the search for new therapies that inhibit the activity of the PI3K/AKT/mTOR pathway has become the objective of several clinical studies that aim to replace conventional oncological treatments that have high rates of toxicities and low specificity with target-specific therapies offering improved patient quality of life. In this review we describe the PI3K/AKT/mTOR signal transduction pathway and its implications in leukemogenesis. Furthermore, we provide an overview of clinical trials that employed PI3K/AKT/mTOR inhibitors either as monotherapy or in combination with other cytotoxic agents for treating patients with various types of leukemias. The varying degrees of treatment efficacy are also reported.
Collapse
Affiliation(s)
- Anna Karolyna DA Costa Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Flávia Melo Cunha DE Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renan Brito Gadelha
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Manoel Odorico DE Moraesfilho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
- Clementino Fraga Group, Central Unity, Molecular Biology Laboratory, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Meyer ST, Fernandes S, Anderson RE, Pacherille A, Toms B, Kerr WG, Chisholm JD. Structure-Activity Studies on Bis-Sulfonamide SHIP1 Activators. Molecules 2023; 28:8048. [PMID: 38138538 PMCID: PMC10745928 DOI: 10.3390/molecules28248048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) enzyme opposes the activity of PI3K and therefore is of interest in the treatment of inflammatory disorders. Recent results also indicate that SHIP1 promotes phagolysosomal degradation of lipids by microglia, suggesting that the enzyme may be a target for the treatment of Alzheimer's disease. Therefore, small molecules that increase SHIP1 activity may have benefits in these areas. Recently we discovered a bis-sulfonamide that increases the enzymatic activity of SHIP1. A series of similar SHIP1 activators have been synthesized and evaluated to determine structure-activity relationships and improve in vivo stability. Some new analogs have now been found with improved potency. In addition, both the thiophene and the thiomorpholine in the parent structure can be replaced by groups without a low valent sulfur atom, which provides a way to access activators that are less prone to oxidative degradation.
Collapse
Affiliation(s)
- Shea T. Meyer
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Sandra Fernandes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Angela Pacherille
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Bonnie Toms
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - William G. Kerr
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D. Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
10
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Terzioglu G, Young-Pearse TL. Microglial function, INPP5D/SHIP1 signaling, and NLRP3 inflammasome activation: implications for Alzheimer's disease. Mol Neurodegener 2023; 18:89. [PMID: 38017562 PMCID: PMC10685641 DOI: 10.1186/s13024-023-00674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Recent genetic studies on Alzheimer's disease (AD) have brought microglia under the spotlight, as loci associated with AD risk are enriched in genes expressed in microglia. Several of these genes have been recognized for their central roles in microglial functions. Increasing evidence suggests that SHIP1, the protein encoded by the AD-associated gene INPP5D, is an important regulator of microglial phagocytosis and immune response. A recent study from our group identified SHIP1 as a negative regulator of the NLRP3 inflammasome in human iPSC-derived microglial cells (iMGs). In addition, we found evidence for a connection between SHIP1 activity and inflammasome activation in the AD brain. The NLRP3 inflammasome is a multiprotein complex that induces the secretion of pro-inflammatory cytokines as part of innate immune responses against pathogens and endogenous damage signals. Previously published studies have suggested that the NLRP3 inflammasome is activated in AD and contributes to AD-related pathology. Here, we provide an overview of the current understanding of the microglial NLRP3 inflammasome in the context of AD-related inflammation. We then review the known intracellular functions of SHIP1, including its role in phosphoinositide signaling, interactions with microglial phagocytic receptors such as TREM2 and evidence for its intersection with NLRP3 inflammasome signaling. Through rigorous examination of the intricate connections between microglial signaling pathways across several experimental systems and postmortem analyses, the field will be better equipped to tailor newly emerging therapeutic strategies targeting microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Jesudason CD, Mason ER, Chu S, Oblak AL, Javens-Wolfe J, Moussaif M, Durst G, Hipskind P, Beck DE, Dong J, Amarasinghe O, Zhang ZY, Hamdani AK, Singhal K, Mesecar AD, Souza S, Jacobson M, Salvo JD, Soni DM, Kandasamy M, Masters AR, Quinney SK, Doolen S, Huhe H, Rizzo SJS, Lamb BT, Palkowitz AD, Richardson TI. SHIP1 therapeutic target enablement: Identification and evaluation of inhibitors for the treatment of late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12429. [PMID: 38023622 PMCID: PMC10655782 DOI: 10.1002/trc2.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.
Collapse
Affiliation(s)
| | - Emily R Mason
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Shaoyou Chu
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Adrian L Oblak
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| | | | | | | | | | - Daniel E Beck
- Institute for Drug Discovery Purdue University West Lafayette Indiana USA
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Ovini Amarasinghe
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery Purdue University West Lafayette Indiana USA
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Adam K Hamdani
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Kratika Singhal
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Andrew D Mesecar
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | | | | | | | - Disha M Soni
- Indiana University School of Medicine Indianapolis Indiana USA
| | | | | | - Sara K Quinney
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Suzanne Doolen
- University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | - Hasi Huhe
- University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | | | - Bruce T Lamb
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| | - Alan D Palkowitz
- Indiana University School of Medicine Indianapolis Indiana USA
- Indiana Biosciences Research Institute Indianapolis Indiana USA
| | - Timothy I Richardson
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
- Indiana Biosciences Research Institute Indianapolis Indiana USA
| |
Collapse
|
13
|
Li H, Yang S, Zeng K, Guo J, Wu J, Jiang H, Xie Y, Hu Z, Lu J, Yang J, Su XZ, Cui J, Yu X. SHIP1 modulates antimalarial immunity by bridging the crosstalk between type I IFN signaling and autophagy. mBio 2023; 14:e0351222. [PMID: 37366613 PMCID: PMC10470592 DOI: 10.1128/mbio.03512-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Stringent control of the type I interferon (IFN-I) signaling is critical for host immune defense against infectious diseases, yet the molecular mechanisms that regulate this pathway remain elusive. Here, we show that Src homology 2 containing inositol phosphatase 1 (SHIP1) suppresses IFN-I signaling by promoting IRF3 degradation during malaria infection. Genetic ablation of Ship1 in mice leads to high levels of IFN-I and confers resistance to Plasmodium yoelii nigeriensis (P.y.) N67 infection. Mechanistically, SHIP1 promotes the selective autophagic degradation of IRF3 by enhancing K63-linked ubiquitination of IRF3 at lysine 313, which serves as a recognition signal for NDP52-mediated selective autophagic degradation. In addition, SHIP1 is downregulated by IFN-I-induced miR-155-5p upon P.y. N67 infection and severs as a feedback loop of the signaling crosstalk. This study reveals a regulatory mechanism between IFN-I signaling and autophagy, and verifies SHIP1 can be a potential target for therapeutic intervention against malaria and other infectious diseases. IMPORTANCE Malaria remains a serious disease affecting millions of people worldwide. Malaria parasite infection triggers tightly controlled type I interferon (IFN-I) signaling that plays a critical role in host innate immunity; however, the molecular mechanisms underlying the immune responses are still elusive. Here, we discover a host gene [Src homology 2-containing inositol phosphatase 1 (SHIP1)] that can regulate IFN-I signaling by modulating NDP52-mediated selective autophagic degradation of IRF3 and significantly affect parasitemia and resistance of Plasmodium-infected mice. This study identifies SHIP1 as a potential target for immunotherapies in malaria and highlights the crosstalk between IFN-I signaling and autophagy in preventing related infectious diseases. SHIP1 functions as a negative regulator during malaria infection by targeting IRF3 for autophagic degradation.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiayin Guo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Cabral-Dias R, Antonescu CN. Control of phosphatidylinositol-3-kinase signaling by nanoscale membrane compartmentalization. Bioessays 2023; 45:e2200196. [PMID: 36567275 DOI: 10.1002/bies.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/12/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that produce 3-phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3-phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K-derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence for specific recruitment of PI3Ks, PTEN, and other related enzymes to membrane nanodomains and endocytic compartments. We then examine the hypothesis that scaffolding of the sources (PI3Ks), terminators (PTEN), and effectors of these lipid signals with a common plasma membrane nanodomain may achieve highly localized lipid signaling and ensure selective activation of specific effectors. This highlights the importance of spatial regulation of PI3K signaling in various physiological and disease contexts.
Collapse
Affiliation(s)
- Rebecca Cabral-Dias
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:428. [PMID: 36672378 PMCID: PMC9856444 DOI: 10.3390/cancers15020428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a frequent type of childhood hematological malignancy. The disease is classified into several subtypes according to genetic abnormalities. MicroRNAs (miRNAs) are involved in pathological processes (e.g., proliferation, apoptosis, differentiation). A miRNA is a group of short non-coding RNAs with relevant regulatory effects on gene expression achieved by suppression of the translation or degradation of messenger RNA (mRNA). These molecules act as tumor suppressors and/or oncogenes in the pathogenesis of pediatric leukemias. The characteristic features of miRNAs are their stable form and the possibility of secretion to the circulatory system. The role of miRNA in BCP-ALL pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. The dysregulation of some miRNAs involved in childhood acute lymphoid leukemia, such as miR-155, miR-200c, miR-100, miR-181a, miR125b, and miR146a is discussed, showing their possible employment as therapeutic targets. In the current review, the capabilities of miRNAs in non-invasive diagnostics and their prognostic potential as biomarkers are presented.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Lejman
- Independent Public Health Care Facility of The Ministry of Internal Affairs and Administration in Lublin, 20-331 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
16
|
Fernandes S, Meyer ST, Shah JP, Adhikari AA, Kerr WG, Chisholm JD. N1-Benzyl Tryptamine Pan-SHIP1/2 Inhibitors: Synthesis and Preliminary Biological Evaluation as Anti-Tumor Agents. Molecules 2022; 27:8451. [PMID: 36500543 PMCID: PMC9738565 DOI: 10.3390/molecules27238451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Inhibition of phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP) with small molecule inhibitors leads to apoptosis in tumor cells. Inhibitors that target both SHIP1 and SHIP2 (pan-SHIP1/2 inhibitors) may have benefits in these areas since paralog compensation is not possible when both SHIP paralogs are being inhibited. A series of tryptamine-based pan-SHIP1/2 inhibitors have been synthesized and evaluated for their ability to inhibit the SHIP paralogs. The most active compounds were also evaluated for their effects on cancer cell lines.
Collapse
Affiliation(s)
- Sandra Fernandes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Shea T. Meyer
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jigisha P. Shah
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | | | - William G. Kerr
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D. Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
17
|
LINC01468 drives NAFLD-HCC progression through CUL4A-linked degradation of SHIP2. Cell Death Dis 2022; 8:449. [DOI: 10.1038/s41420-022-01234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
AbstractAccumulating evidence suggests that long noncoding RNAs (lncRNAs) are deregulated in hepatocellular carcinoma (HCC) and play a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the current understanding of the role of lncRNAs in NAFLD-associated HCC is limited. In this study, transcriptomic profiling analysis of three paired human liver samples from patients with NAFLD-driven HCC and adjacent samples showed that LINC01468 expression was significantly upregulated. In vitro and in vivo gain- and loss-of-function experiments showed that LINC01468 promotes the proliferation of HCC cells through lipogenesis. Mechanistically, LINC01468 binds SHIP2 and promotes cullin 4 A (CUL4A)-linked ubiquitin degradation, thereby activating the PI3K/AKT/mTOR signaling pathway, resulting in the promotion of de novo lipid biosynthesis and HCC progression. Importantly, the SHIP2 inhibitor reversed the sorafenib resistance induced by LINC01468 overexpression. Moreover, ALKBH5-mediated N6-methyladenosine (m6A) modification led to stabilization and upregulation of LINC01468 RNA. Taken together, the findings indicated a novel mechanism by which LINC01468-mediated lipogenesis promotes HCC progression through CUL4A-linked degradation of SHIP2. LINC01468 acts as a driver of HCC progression from NAFLD, highlights the potential of the LINC01468-SHIP2 axis as a therapeutic target for HCC.
Collapse
|
18
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
19
|
Dungan OM, Dormann S, Fernandes S, Duffy BC, Effiong DG, Kerr WG, Chisholm JD. Synthetic studies on the indane SHIP1 agonist AQX-1125. Org Biomol Chem 2022; 20:4016-4020. [PMID: 35506893 DOI: 10.1039/d2ob00555g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AQX-1125 is an indane based SHIP1 agonist that has been evaluated in the clinic for the treatment of bladder pain syndrome/interstitial cystitis. To support our own studies on SHIP1 agonists as potential treatments for IBD and Crohn's disease, a new synthetic route to the SHIP1 agonist AQX-1125 has been developed. This sequence utilizes a hydroxy-acid intermediate which allows for ready differentiation of the C6 and C7 positions. The role of the C17 alkene in the biological activity of the system is also investigated, and this functional group is not required for SHIP1 agonist activity. While AQX-1125 shows SHIP1 agonist activity in enzyme assays, it does not show activity in cell based assays similar to other SHIP1 agonists, which limits the utility of this molecule.
Collapse
Affiliation(s)
- Otto M Dungan
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Shawn Dormann
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Sandra Fernandes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian C Duffy
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Daniel G Effiong
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - William G Kerr
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA. .,Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| |
Collapse
|
20
|
So EY, Sun C, Wu KQ, Dubielecka PM, Reginato AM, Liang OD. Inhibition of lipid phosphatase SHIP1 expands myeloid-derived suppressor cells and attenuates rheumatoid arthritis in mice. Am J Physiol Cell Physiol 2021; 321:C569-C584. [PMID: 34288720 DOI: 10.1152/ajpcell.00433.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease of unknown cause, characterized by infiltration and accumulation of activated immune cells in the synovial joints where cartilage and bone destructions occur. Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. Src homology 2 domain containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was shown to be involved in the regulation of MDSC differentiation. The purpose of the present study was to investigate the effect of inhibition of SHIP1 on expansion of MDSCs in RA using a collagen-induced inflammatory arthritis (CIA) mouse model. In DBA/1 mice treatment with a small molecule specific SHIP1 inhibitor 3α-aminocholestane (3AC) induced a marked expansion of MDSCs in vivo. Both pre-treatment with 3AC of DBA/1 mice prior to CIA induction and intervention with 3AC during CIA progression significantly reduced disease incidence and severity. Adoptive transfer of MDSCs isolated from 3AC-treated mice, but not naïve MDSCs from normal mice, into CIA mice significantly reduced disease incidence and severity, indicating that the 3AC-induced MDSCs were the cellular mediators of the observed amelioration of the disease. In conclusion, inhibition of SHIP1 expands MDSCs in vivo and attenuates development of CIA in mice. Small molecule specific inhibition of SHIP1 may therefore offer therapeutic benefit to patients with RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Changqi Sun
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
21
|
Wang Z, Zhou H, Yue X, Zhu J, Yang Y, Liu M. An auxiliary binding interface of SHIP2-SH2 for Y292-phosphorylated FcγRIIB reveals diverse recognition mechanisms for tyrosine-phosphorylated receptors involved in different cell signaling pathways. Anal Bioanal Chem 2021; 414:497-506. [PMID: 34021368 DOI: 10.1007/s00216-021-03373-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022]
Abstract
SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) plays an essential role in regulating phosphatidylinositol level in human cell, and is recruited to many phosphotyrosine (pY)-dependent signal transduction pathways by the SH2 domain. In immunity signaling, immunoreceptor FcγRIIB binds to SHIP2-SH2 via its Y292-phosphorylated immunoreceptor tyrosine-based inhibitory motif (ITIM) and transmits inhibitory signal, which regulates B cell and neuronal cell activity and is associated with immune diseases and Alzheimer's disease. To date, the interaction between SHIP2 and FcγRIIB has not been analyzed from a structural point of view. Here, the binding of SHIP2-SH2 with Y292-phosphorylated FcγRIIB-ITIM was analyzed using NMR spectroscopy. The results demonstrated that SHIP2-SH2 mainly utilizes two regions including a pY-binding pocket and a specificity pocket formed by βD, βE, and EF-loop, to bind with FcγRIIB-ITIM in high affinity. In addition to the two regions, the BG-loop of SHIP2-SH2 functions as an auxiliary interface enhancing affinity. By comparing the binding of SHIP2-SH2 with ligands from FcγRIIB and c-MET, a hepatocyte growth factor receptor associated with tumorigenesis, significant differences in interface and affinity were found, suggesting that SHIP2-SH2 applies diverse patterns for binding to different ligand proteins. Moreover, S49, S51, and R70 of SHIP2 were identified to mediate the binding of both FcγRIIB and c-MET, while R28 and Q107 were found to only participate in the binding of c-MET and FcγRIIB respectively. Taken together, this study reveals the diverse mechanisms of SHIP2-SH2 for recognizing different ligands, and provides important clues for selectively manipulating various signaling pathways and specific drug design.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China.,Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|