1
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Wang C, Martens DS, Bustamante M, Alfano R, Plusquin M, Maitre L, Wright J, McEachan RRC, Lepeule J, Slama R, Vafeiadi M, Chatzi L, Grazuleviciene R, Gutzkow KB, Keun H, Borràs E, Sabidó E, Carracedo A, Escarami G, Anguita-Ruiz A, Pelegrí-Sisó D, Gonzalez JR, Vrijheid M, Nawrot TS. The multi-omics signatures of telomere length in childhood. BMC Genomics 2025; 26:75. [PMID: 39871190 PMCID: PMC11771044 DOI: 10.1186/s12864-025-11209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Telomere length is an important indicator of biological age and a complex multi-factor trait. To date, the telomere interactome for comprehending the high-dimensional biological aspects linked to telomere regulation during childhood remains unexplored. Here we describe the multi-omics signatures associated with childhood telomere length. METHODS This study included 1001 children aged 6 to 11 years from the Human Early-life Exposome (HELIX) project. Telomere length was quantified via qPCR in peripheral blood of the children. Blood DNA methylation, gene expression, miRNA expression, plasma proteins and serum and urinary metabolites were measured through microarrays or (semi-) targeted assays. The association between each individual omics feature and telomere length was assessed in omics-wide association analyses. In addition, a literature-guided, sparse supervised integration method was applied to multiple omics, and latent components were extracted as predictors of child telomere length. The association of these latent components with early-life aging risk factors (child lifestyle, body mass index (BMI), exposure to smoking, etc.), were interrogated. RESULTS After multiple-testing correction, only two CpGs (cg23686403 and cg16238918 at PARD6G gene) out of all the omics features were significantly associated with child telomere length. The supervised multi-omics integration approach revealed robust associations between latent components and child BMI, with metabolites and proteins emerging as the primary contributing features. In these latent components, the contributing molecular features were known as involved in metabolism and immune regulation-related pathways. CONCLUSIONS Findings of this multi-omics study suggested an intricate interplay between telomere length, metabolism and immune responses, providing valuable insights into the molecular underpinnings of the early-life biological aging.
Collapse
Affiliation(s)
- Congrong Wang
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rossella Alfano
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium
| | - Lea Maitre
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hector Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER-ISCIII), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Georgia Escarami
- CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, Institute for Global Health, Barcelona, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Juan R Gonzalez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tim S Nawrot
- Centre for Environmental Health, Hasselt University, Hasselt, Belgium.
- Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Doolittle BR, Britt KC, Lekwauwa R, Sebu J, Boateng A. The association of telomere length and religiosity: A systematic review. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2025:1-14. [PMID: 39760184 DOI: 10.1080/19485565.2024.2448946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Religiosity is a complex construct comprised observance, intrinsic beliefs, meditative practice, and communal elements. Religiosity has been associated with reduced mortality and improved overall health, but understanding the underlying biological associations is evolving. As increased telomere length has been associated with increased longevity, this project presents a systematic review of studies investigating the relationship between religiosity and telomere length. DESIGN The study protocol was registered prior to the search. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was followed. Seven databases were employed using relevant criteria: PubMed, PSYCHinfo, CINAHL, ATLA, Scopus, Sociological Abstracts, and the Cochrane Central Register of Controlled Clinical. RESULTS A total of 381 studies were identified and 46 studies met full screening. Eight studies met the final inclusion criteria. Of these eight studies, two showed no relationship between religiosity and telomere length, three showed a positive relationship, and three showed an equivocal or ambivalent relationship. Meta-analysis was not possible due to the heterogeneity of the studies. CONCLUSION Religiosity may be associated with telomere length, but results vary widely across the diverse studies included. Longitudinal studies with adequate sample size are needed to determine this association more rigorously.
Collapse
Affiliation(s)
- Benjamin R Doolittle
- Internal Medicine and Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Katherine Carroll Britt
- NewCourtland Center for Transitions and Health Population Aging Research Center (PARC) Research Fellow, Associate Fellow Leonard Davis Institute of Health Economics University of Pennsylvania, School of Nursing
| | - Ruby Lekwauwa
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joshua Sebu
- School of Economics, University of Cape Coast, Cape Coast, Ghana
| | - Augustine Boateng
- Department of Biobehavioral Health Science, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Anand S, Patel TN. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discov Oncol 2024; 15:779. [PMID: 39692821 DOI: 10.1007/s12672-024-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The progressive globalization of sedentary lifestyles and diets rich in lipids and processed foods has caused two major public health hazards-diabetes and obesity. The strong interlink between obesity and type 2 diabetes mellitus and their combined burden encompass them into a single term 'Diabesity'. They have also been tagged as the drivers for the onset of cancer. The clinical association between diabetes, obesity, and several types of human cancer demands an assessment of vital junctions correlating the three. This review focuses on revisiting the molecular axis linking diabetes and obesity to cancer through pathways that get imbalanced owing to metabolic upheaval. We also attempt to describe the functional disruptions of DNA repair mechanisms due to overwhelming oxidative DNA damage caused by diabesity. Genomic instability, a known cancer hallmark results when DNA repair does not work optimally, and as will be inferred from this review the obtruded metabolic homeostasis in diabetes and obesity creates a favorable microenvironment supporting metabolic reprogramming and enabling malignancies. Altered molecular and hormonal landscapes in these two morbidities provide a novel connection between metabolomics and oncogenesis. Understanding various aspects of the tumorigenic process in diabesity-induced cancers might help in the discovery of new biomarkers and prompt targeted therapeutic interventions.
Collapse
Affiliation(s)
- Shrikirti Anand
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
6
|
Denham J, Bliss ES, Bryan TM, O'Brien BJ, Mills D. Exercise to combat cancer: focusing on the ends. Physiol Genomics 2024; 56:869-875. [PMID: 39374082 DOI: 10.1152/physiolgenomics.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy have improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis, and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off-target side effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in normal cells, which is associated with healthy aging. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumor growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumors after exercise could reveal novel therapeutic targets for tumor-specific telomere maintenance and offer important evidence that may refine current physical activity and exercise guidelines for all stages of cancer care.
Collapse
Affiliation(s)
- Joshua Denham
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Edward S Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Brendan J O'Brien
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, Victoria, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| |
Collapse
|
7
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
8
|
Luo S, Xu J, Mo C, Gong W, Li C, Hou X, Ou M. High-throughput sequencing reveals twelve cell death pattern prognostic target genes as potential drug-response-associated genes in the treatment of colorectal cancer cells with palmatine hydrochloride. ONCOLOGIE 2024. [DOI: 10.1515/oncologie-2024-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Objectives
Palmatine Hydrochloride (PaH), an isoquinoline alkaloid from Phellodendron amurense and Coptis chinensis, has analgesic, anti-inflammatory, and anticancer properties. This study aimed to assess PaH’s effectiveness against SW480 colorectal cancer (CRC) cells and explore its molecular mechanisms.
Methods
PaH’s effects on SW480 CRC cells were evaluated using MTT assays for proliferation, scratch assays for migration, and flow cytometry for apoptosis. Differentially expressed genes (DEGs) were identified through high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assessed DEG roles. Prognostic significance related to programmed cell death (PCD) was analyzed using R-Package with TCGA data. RT-qPCR validated key genes identified.
Results
PaH significantly inhibited SW480 cell growth, invasion, and apoptosis. The MTT assay showed inhibition rates increased from 5.49 % at 25 μg/mL to 52.48 % at 400 μg/mL. Scratch assays indicated reduced cell invasion over 24, 48, and 72 h. Apoptosis rose from 12.36 % in controls to 45.54 % at 400 μg/mL. Sequencing identified 3,385 significant DEGs, primarily in cancer pathways (p=0.004). Among 35 PCD-related DEGs, Lasso Cox regression highlighted 12 key genes, including TERT, TGFBR1, WNT4, and TP53. RT-qPCR confirmed TERT and TGFBR1 downregulation (0.614-fold, p=0.008; 0.41-fold, p<0.001) and TP53 and WNT4 upregulation (5.634-fold, p<0.001; 5.124-fold, p=0.002).
Conclusions
PaH inhibits CRC cell proliferation, migration, and invasion by modulating key PCD genes, suggesting its potential as a CRC therapeutic agent.
Collapse
Affiliation(s)
- Sha Luo
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Jiajun Xu
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Chune Mo
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Weiwei Gong
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Chunhong Li
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Xianliang Hou
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Minglin Ou
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| |
Collapse
|
9
|
Ghosh S, Nguyen MT, Choi HE, Stahl M, Kühn AL, Van der Auwera S, Grabe HJ, Völzke H, Homuth G, Myers SA, Hogaboam CM, Noth I, Martinez FJ, Petsko GA, Glimcher LH. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening. Nat Commun 2024; 15:7138. [PMID: 39164231 PMCID: PMC11335878 DOI: 10.1038/s41467-024-51336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Telomere shortening is a prominent hallmark of aging and is emerging as a characteristic feature of Myelodysplastic Syndromes (MDS) and Idiopathic Pulmonary Fibrosis (IPF). Optimal telomerase activity prevents progressive shortening of telomeres that triggers DNA damage responses. However, the upstream regulation of telomerase holoenzyme components remains poorly defined. Here, we identify RIOK2, a master regulator of human blood cell development, as a critical transcription factor for telomere maintenance. Mechanistically, loss of RIOK2 or its DNA-binding/transactivation properties downregulates mRNA expression of both TRiC and dyskerin complex subunits that impairs telomerase activity, thereby causing telomere shortening. We further show that RIOK2 expression is diminished in aged individuals and IPF patients, and it strongly correlates with shortened telomeres in MDS patient-derived bone marrow cells. Importantly, ectopic expression of RIOK2 alleviates telomere shortening in IPF patient-derived primary lung fibroblasts. Hence, increasing RIOK2 levels prevents telomere shortening, thus offering therapeutic strategies for telomere biology disorders.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Mileena T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ha Eun Choi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annemarie Luise Kühn
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A Petsko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
12
|
Macamo ED, Mkhize-Kwitshana ZL, Mthombeni J, Naidoo P. The Impact of HIV and Parasite Single Infection and Coinfection on Telomere Length: A Systematic Review. Curr Issues Mol Biol 2024; 46:7258-7290. [PMID: 39057072 PMCID: PMC11275449 DOI: 10.3390/cimb46070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
HIV and parasite infections accelerate biological aging, resulting in immune senescence, apoptosis and cellular damage. Telomere length is considered to be one of the most effective biomarkers of biological aging. HIV and parasite infection have been reported to shorten telomere length in the host. This systematic review aimed to highlight work that explored the influence of HIV and parasite single infections and coinfection on telomere length. Using specific keywords related to the topic of interest, an electronic search of several online databases (Google Scholar, Web of Science, Scopus, Science Direct and PubMed) was conducted to extract eligible articles. The association between HIV infection or parasite infection and telomere length and the association between HIV and parasite coinfection and telomere length were assessed independently. The studies reported were mostly conducted in the European countries. Of the 42 eligible research articles reviewed, HIV and parasite single infections were independently associated with telomere length shortening. Some studies found no association between antiretroviral therapy (ART) and telomere length shortening, while others found an association between ART and telomere length shortening. No studies reported on the association between HIV and parasite coinfection and telomere length. HIV and parasite infections independently accelerate telomere length shortening and biological aging. It is possible that coinfection with HIV and parasites may further accelerate telomere length shortening; however, this is a neglected field of research with no reported studies to date.
Collapse
Affiliation(s)
- Engelinah D. Macamo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| | - Julian Mthombeni
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
13
|
Rahimi D, Sharifi R, Jaberie H, Naghibalhossaini F. Antiproliferative and Antitelomerase Effects of Silymarin on Human Colorectal and Hepatocellular Carcinoma Cells. PLANTA MEDICA 2024; 90:298-304. [PMID: 38219733 DOI: 10.1055/a-2244-8788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both in vitro and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC50 values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC50 concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.
Collapse
Affiliation(s)
- Daruosh Rahimi
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Roya Sharifi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | |
Collapse
|
14
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
15
|
Dogan F, Forsyth NR. TERT Promoter Methylation Is Oxygen-Sensitive and Regulates Telomerase Activity. Biomolecules 2024; 14:131. [PMID: 38275760 PMCID: PMC10813121 DOI: 10.3390/biom14010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Telomere repeats protect linear chromosomes from degradation, and telomerase has a prominent role in their maintenance. Telomerase has telomere-independent effects on cell proliferation, DNA replication, differentiation, and tumorigenesis. TERT (telomerase reverse transcriptase enzyme), the catalytic subunit of telomerase, is required for enzyme activity. TERT promoter mutation and methylation are strongly associated with increased telomerase activation in cancer cells. TERT levels and telomerase activity are downregulated in stem cells during differentiation. The link between differentiation and telomerase can provide a valuable tool for the study of the epigenetic regulation of TERT. Oxygen levels can affect cellular behaviors including proliferation, metabolic activity, stemness, and differentiation. The role of oxygen in driving TERT promoter modifications in embryonic stem cells (ESCs) is poorly understood. We adopted a monolayer ESC differentiation model to explore the role of physiological oxygen (physoxia) in the epigenetic regulation of telomerase and TERT. We further hypothesized that DNMTs played a role in physoxia-driven epigenetic modification. ESCs were cultured in either air or a 2% O2 environment. Physoxia culture increased the proliferation rate and stemness of the ESCs and induced a slower onset of differentiation than in ambient air. As anticipated, downregulated TERT expression correlated with reduced telomerase activity during differentiation. Consistent with the slower onset of differentiation in physoxia, the TERT expression and telomerase activity were elevated in comparison to the air-oxygen-cultured ESCs. The TERT promoter methylation levels increased during differentiation in ambient air to a greater extent than in physoxia. The chemical inhibition of DNMT3B reduced TERT promoter methylation and was associated with increased TERT gene and telomerase activity during differentiation. DNMT3B ChIP (Chromatin immunoprecipitation) demonstrated that downregulated TERT expression and increased proximal promoter methylation were associated with DNMT3B promoter binding. In conclusion, we have demonstrated that DNMT3B directly associates with TERT promoter, is associated with differentiation-linked TERT downregulation, and displays oxygen sensitivity. Taken together, these findings help identify novel aspects of telomerase regulation that may play a role in better understanding developmental regulation and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatma Dogan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK
- Vice Principals Office, Kings College, University of Aberdeen, Aberdeen AB24 3FX, UK
| |
Collapse
|
16
|
Kiewa J, Meltzer-Brody S, Milgrom J, Guintivano J, Hickie IB, Whiteman DC, Olsen CM, Medland SE, Martin NG, Wray NR, Byrne EM. Comprehensive Sex-Stratified Genetic Analysis of 28 Blood Biomarkers and Depression Reveals a Significant Association between Depression and Low Levels of Total Protein in Females. Complex Psychiatry 2024; 10:19-34. [PMID: 38584764 PMCID: PMC10997320 DOI: 10.1159/000538058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Major depression (MD) is more common amongst women than men, and MD episodes have been associated with fluctuations in reproductive hormones amongst women. To investigate biological underpinnings of heterogeneity in MD, the associations between depression, stratified by sex and including perinatal depression (PND), and blood biomarkers, using UK Biobank (UKB) data, were evaluated, and extended to include the association of depression with biomarker polygenic scores (PGS), generated as proxy for each biomarker. Method Using female (N = 39,761) and male (N = 38,821) UKB participants, lifetime MD and PND were tested for association with 28 blood biomarkers. A GWAS was conducted for each biomarker and genetic correlations with depression subgroups were estimated. Using independent data from the Australian Genetics of Depression Study, PGS were constructed for each biomarker, and tested for association with depression status (n [female cases/controls] = 9,006/6,442; n [male cases/controls] = 3,106/6,222). Regions of significant local genetic correlation between depression subgroups and biomarkers highlighted by the PGS analysis were identified. Results Depression in females was significantly associated with levels of twelve biomarkers, including total protein (OR = 0.90, CI = [0.86, 0.94], p = 3.9 × 10-6) and vitamin D (OR = 0.94, CI = [0.90, 0.97], p = 2.6 × 10-4), and PND with five biomarker levels, also including total protein (OR = 0.88, CI = [0.81, 0.96], p = 4.7 × 10-3). Depression in males was significantly associated with levels of eleven biomarkers. In the independent Australian Genetics of Depression Study, PGS analysis found significant associations for female depression and PND with total protein (female depression: OR = 0.93, CI = [0.88, 0.98], p = 3.6 × 10-3; PND: OR = 0.91, CI = [0.86, 0.96], p = 1.1 × 10-3), as well as with vitamin D (female depression: OR = 0.93, CI = [0.89, 0.97], p = 2.0 × 10-3; PND: OR = 0.92, CI = [0.87, 0.97], p = 1.4 × 10-3). The male depression sample did not report any significant results, and the point estimate of total protein (OR = 0.98, CI = [0.92-1.04], p = 4.7 × 10-1) did not indicate any association. Local genetic correlation analysis highlighted significant genetic correlation between PND and total protein, located in 5q13.3 (rG = 0.68, CI = [0.33, 1.0], p = 3.6 × 10-4). Discussion and Conclusion Multiple lines of evidence from genetic analysis highlight an association between total serum protein levels and depression in females. Further research involving prospective measurement of total protein and depressive symptoms is warranted.
Collapse
Affiliation(s)
- Jacqueline Kiewa
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Jeannette Milgrom
- Parent-Infant Research Institute, Austin Health, Melbourne, VIC, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jerry Guintivano
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ian B. Hickie
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | | | | | - Sarah E. Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Enda M. Byrne
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Yu M, Yang D, Chen C, Xia H. Effects of SETD2 on telomere length and malignant transformation property of Met-5A after one-month crocidolite exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:121-134. [PMID: 37899647 DOI: 10.1080/26896583.2023.2271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crocidolite is a carcinogen contributing to the pathogenesis of malignant mesothelioma. This study aimed to characterize the possible telomere-related events mediating the malignant transformation of mesothelial cells with and without SETD2 under crocidolite exposure. The crocidolite concentration resulting in 90% viable SETD2 knockout Met-5A (Met-5ASETD2-KO) and Met-5A were estimated to be 0.71 μg/cm2 and 1.8 μg/cm2, respectively, during 72 h of exposure, which was further employed in chronical crocidolite exposure during a 72 h exposure interval per time up to 1 month. Chronical crocidolite-exposed Met-5ASETD2-KO (chronical Cro-Met-5ASETD2-KO) had higher colony formation and increased telomerase reverse transcriptase (TERT) protein levels than chronical crocidolite-exposed Met-5A (chronical Cro-Met-5A) and Met-5ASETD2-KO. Chronical Cro-Met-5ASETD2-KO had longer telomere length (TL) than chronical Cro-Met-5A, although there were no changes in TL for either chronical Cro-Met-5A or chronical Cro-Met-5ASETD2-KO compared with their corresponding cells without crocidolite exposure. BIBR 1532, an inhibitor targeting TERT, partially reduced colony formation and TL for chronical Cro-Met-5ASETD2-KO, while BIBR 1532 reduced TL but had no effect on colony formation for chronical Cro-Met-5A. Therefore, SETD2 deficient mesothelial cells are susceptible to malignant transformation during chronical crocidolite exposure, and TERT-dependent TL modification likely partially drives SETD2 loss-mediated early onset of mesothelial malignant transformation.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Health & Radiation Hygiene, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, Zhejiang, China
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dan Yang
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chiyun Chen
- Department of Pulmonary and Critical Care Medicine, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, Zhejiang, China
| | - Hailing Xia
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
19
|
Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello AL. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol 2023; 11:1286683. [PMID: 38033865 PMCID: PMC10684755 DOI: 10.3389/fcell.2023.1286683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
20
|
Gold NM, Okeke MN, He Y. Involvement of Inheritance in Determining Telomere Length beyond Environmental and Lifestyle Factors. Aging Dis 2023; 15:2470-2490. [PMID: 37962459 PMCID: PMC11567259 DOI: 10.14336/ad.2023.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
All linear chromosomal ends have specific DNA-protein complexes called telomeres. Telomeres serve as a "molecular clock" to estimate the potential length of cell replication. Shortening of telomere length (TL) is associated with cellular senescence, aging, and various age-related diseases in humans. Here we reviewed the structure, function, and regulation of telomeres and the age-related diseases associated with telomere attrition. Among the various determinants of TL, we highlight the connection between TL and heredity to provide a new overview of genetic determinants for TL. Studies across multiple species have shown that maternal and paternal TL influence the TL of their offspring, and this may affect life span and their susceptibility to age-related diseases. Hence, we reviewed the linkage between TL and parental influences and the proposed mechanisms involved. More in-depth studies on the genetic mechanism for TL attrition are needed due to the potential application of this knowledge in human medicine to prevent premature frailty at its earliest stage, as well as promote health and longevity.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Michael Ngozi Okeke
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Center for Nanomedical Technology Research, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Rohr P, Campanelli Dos Santos I, van Helvoort Lengert A, Alves de Lima M, Manuel Reis R, Barbosa F, Cesar Santejo Silveira H. Absolute telomere length in peripheral blood lymphocytes of workers exposed to construction environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:949-957. [PMID: 35466826 DOI: 10.1080/09603123.2022.2066069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Construction environment is composed of various substances classified as carcinogens. Thus, workers exposed in this environment can be susceptible to genomic instability that can be evaluated by absolute telomere length (TL). In this work, we evaluated TL in construction workers compared to a non-exposed group performed by qPCR assay. The TL was evaluated in 59 men exposed to the construction environment (10 years of exposure) and 49 men non-exposed. Our data showed that individuals exposed to the construction environment exhibited a significantly lower TL in relation to non-exposed group (p = 0.009). Also, on the multiple linear regression model, we observed that TL was significantly influenced by the construction environment exposure (p ≤ 0.001). Additionally, the arsenic exposure is associated to a shortening telomere (p ≤ 0.001), and the lead exposure caused an increase in TL (p ≤ 0.001). Thus, our findings suggest a modulation in TL by construction environment exposure, mainly by arsenic and lead exposure.
Collapse
Affiliation(s)
- Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | | | - Marcos Alves de Lima
- Epidemiology and Biostatistics Nucleus, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Barbosa
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
22
|
Karaviti E, Kontogiannis A, Anastopoulos A, Kotteas E, Gomatou G. An overview of the role of telomeres and telomerase in pre‑neoplastic lesions (Review). Mol Clin Oncol 2023; 19:61. [PMID: 37424625 PMCID: PMC10326563 DOI: 10.3892/mco.2023.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Telomeres are tandem repeats of DNA sequences protecting the end of linear chromosomes. Replicative senescence due to telomere attrition is considered a tumor-preventing mechanism in differentiated somatic cells. However, telomere shortening is associated with genome instability and several disease entities. During carcinogenesis, the development of a telomere maintenance mechanism, predominately through the activation of the telomerase enzyme, represents a hallmark of cancer, since it enables cancer cells to avert senescence and divide indefinitely. Although research of the involvement of telomeres and telomerase in various malignant neoplasms has gained a large amount of interest, the timing and relevance of their role in pre-neoplastic lesions remain to be determined. The present narrative review aims to summarize the evidence regarding the role of telomeres and telomerase in pre-neoplasia across different types of tissues.
Collapse
Affiliation(s)
- Eleftheria Karaviti
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios Kontogiannis
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Aristotelis Anastopoulos
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
23
|
Lin F, Huang J, Zhu W, Jiang T, Guo J, Xia W, Chen M, Guo L, Deng W, Lin H. Prognostic value and immune landscapes of TERT promoter methylation in triple negative breast cancer. Front Immunol 2023; 14:1218987. [PMID: 37575241 PMCID: PMC10416624 DOI: 10.3389/fimmu.2023.1218987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Treatment options for patients with triple-negative breast cancer (TNBC) remain limited to mainstay therapies owing to a lack of efficacious therapeutic targets. Accordingly, there is an urgent need to discover and identify novel molecular targets for the treatment and diagnosis of this disease. In this study, we analyzed the correlation of telomerase reverse transcriptase (TERT) methylation status with TERT expression, prognosis, and immune infiltration in TNBC and identified the role of TERT methylation in the regulation TNBC prognosis and immunotherapy. Methods Data relating to the transcriptome, clinicopathological characteristics and methylation of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) database. TERT expression levels and differential methylation sites (DMSs) were detected. The correlations between TERT expression and DMSs were calculated. Kaplan-Meier curves was plotted to analyze the relationship between the survival of TNBC patients and the DMSs. The correlations of DMSs and TERT expression with several immunological characteristics of immune microenvironment (immune cell infiltration, immunomodulators, immune-related biological pathways, and immune checkpoints) were assessed. The results were validated using 40 TNBC patients from Sun Yat-sen University Cancer Center (SYSUCC). Results Six DMSs were identified. Among them, four sites (cg11625005, cg07380026, cg17166338, and cg26006951) were within the TERT promoter, in which two sites (cg07380026 and cg26006951) were significantly related to the prognosis of patients with TNBC. Further validation using 40 TNBC samples from SYSUCC showed that the high methylation of the cg26006951 CpG site was associated with poor survival prognosis (P=0.0022). TERT expression was significantly correlated with pathological N stage and clinical stage, and cg07380026 were significantly associated with pathological T and N stages in the TCGA cohort. Moreover, the methylation site cg26006951, cg07380026 and TERT expression were significantly correlated with immune cell infiltration, common immunomodulators, and the level of the immune checkpoint receptor lymphocyte activation gene 3 (LAG-3) in TNBC patients. Conclusion TERT promotertypermethylation plays an important role in TERT expression regulation and tumor microenvironment in TNBC. It is associated with overall survival and LAG-3 expression. TERT promoter hypermethylation may be a potential molecular biomarker for predicting response to the TERT inhibitors and immune checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Hung KC, Yao WC, Liu YL, Yang HJ, Liao MT, Chong K, Peng CH, Lu KC. The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease. Biomedicines 2023; 11:2076. [PMID: 37509715 PMCID: PMC10377042 DOI: 10.3390/biomedicines11072076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with chronic kidney disease (CKD) often experience a high accumulation of protein-bound uremic toxins (PBUTs), specifically indoxyl sulfate (IS) and p-cresyl sulfate (pCS). In the early stages of CKD, the buildup of PBUTs inhibits bone and muscle function. As CKD progresses, elevated PBUT levels further hinder bone turnover and exacerbate muscle wasting. In the late stage of CKD, hyperparathyroidism worsens PBUT-induced muscle damage but can improve low bone turnover. PBUTs play a significant role in reducing both the quantity and quality of bone by affecting osteoblast and osteoclast lineage. IS, in particular, interferes with osteoblastogenesis by activating aryl hydrocarbon receptor (AhR) signaling, which reduces the expression of Runx2 and impedes osteoblast differentiation. High PBUT levels can also reduce calcitriol production, increase the expression of Wnt antagonists (SOST, DKK1), and decrease klotho expression, all of which contribute to low bone turnover disorders. Furthermore, PBUT accumulation leads to continuous muscle protein breakdown through the excessive production of reactive oxygen species (ROS) and inflammatory cytokines. Interactions between muscles and bones, mediated by various factors released from individual tissues, play a crucial role in the mutual modulation of bone and muscle in CKD. Exercise and nutritional therapy have the potential to yield favorable outcomes. Understanding the underlying mechanisms of bone and muscle loss in CKD can aid in developing new therapies for musculoskeletal diseases, particularly those related to bone loss and muscle wasting.
Collapse
Affiliation(s)
- Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Medical Education and Clinical Research, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Yi-Lien Liu
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Hung-Jen Yang
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Keong Chong
- Division of Endocrinology and Metabolism, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Ching-Hsiu Peng
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
25
|
Zhu X, Li Z, Wang Z, Guo C, Qian Y, Wang Z, Li X, Wei Y. Associations between exposure to ambient air pollution and changes in blood telomeres in young people: A repeated-measure study. CHEMOSPHERE 2023:139053. [PMID: 37245595 DOI: 10.1016/j.chemosphere.2023.139053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Telomere length (TL) is one of the early biomarkers of aging. Air pollutants play an important role in promoting the aging process. However, few studies have explored how they adversely affect human health by altering telomeres. This study aims to investigate the associations between telomere alterations and exposure to ambient air pollutants, thereby shedding light on the intrinsic and profound link between these pollutants and aging. We recruited 26 healthy young people and conducted 7 repeated measure studies from 2019 to 2021, and TL and telomerase (TA) in the blood samples. We analyzed the associations between air pollutants, including ozone (O3), particulate matter in diameter smaller than 2.5 μm (PM2.5) and 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) and telomere variability, and explored the lagged effects by linear mixed-effects model. The result showed that short-term exposure to O3 was negatively associated with TL, and this effect in the lag days went up to around 0. In contrast, the associations between O3 and TA presented positive tendency and gradually decreased to around 0 in the lag days. The association between PM2.5 and TL showed positive tendency and gradually decreased to negative. There was no statistically significant association between PM2.5 and TA. Other pollutants (PM10, NO2, SO2, CO) showed similar patterns of variation to that of PM2.5. Our findings suggest that short-term exposure to O3 shortens TL, which can be gradually recovered through activating TA activity, while exposure to PM2.5, PM10, NO2, SO2 and CO lengthens TL and then becomes shorter over time. This implies that the human body has some ability to self-repair telomere changes after exposure to air pollutants, and predictably, when this exposure exceeds a certain threshold, it cannot be repaired, leading to aging of the body.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
26
|
Pérez-López FR, Ulloque-Badaracco JR, López-Baena MT, Yuan J, Alarcón-Braga EA, Benites-Zapata VA. Endometrial telomerase activity in women with either endometrial cancer or hyperplasia: A systematic review and meta-analysis. Maturitas 2023; 174:57-66. [PMID: 37295252 DOI: 10.1016/j.maturitas.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
AIM We performed a systematic review and meta-analysis to assess whether endometrial telomerase activity is associated with endometrial cancer or hyperplasia. METHODS PubMed, Web of Science, Embase, Scielo, LILAC, and CNKI databases were searched to obtain relevant literature for articles published through June 2022, following PRISMA guidelines and a registered PROSPERO protocol. We included observational studies reporting endometrial telomerase activity in patients with either endometrial cancer or hyperplasia compared with benign endometrial tissue (control women). The Newcastle-Ottawa Scale was used to evaluate the quality of studies. Data were expressed as the odds ratios (OR) and 95 % confidence intervals (CI). Random effects and inverse variance methods were used to meta-analyze associations. The I2 test was used to assess heterogeneity. RESULTS There were significant associations between endometrial telomerase activity and either endometrial cancer (20 studies, OR = 10.65, 95 % CI 6.39, 17.75, p = 0.00001, I2 = 21 %) or endometrial hyperplasia (nine studies, OR = 3.62, 95 % CI 1.61, 8.13, p = 0.002, I2 = 36 %) compared to women without endometrial cancer and hyperplasia. There was not a significant difference in telomerase activity in women with endometrial cancer compared to those with endometrial hyperplasia (seven studies, OR = 1.03; 95 % CI 0.31, 3.37, p = 0.96, I2 = 49 %). In subgroup analyses, there were no significant differences in telomerase activity in patients with endometrial cancer by type of observational studies and by countries of the studies. CONCLUSION Endometrial telomerase activity is higher in women with either endometrial cancer or endometrial hyperplasia compared to control women without those lesions.
Collapse
Affiliation(s)
- Faustino R Pérez-López
- University of Zaragoza Faculty of Medicine, Domingo Miral s/n, Zaragoza 50009, Spain; Aragón Health Research Institute, San Juan Bosco 13, Zaragoza 50009, Spain.
| | | | | | - Junhua Yuan
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingado, China
| | - Esteban A Alarcón-Braga
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru; Sociedad Científica de Estudiantes de Medicina, Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Vicente A Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
27
|
Moon JH, Nikas IP, Moon KC, Kim B, Ryu HS. Clinical application of the anti-human telomerase reverse transcriptase (hTERT) antibody (SCD-A7) immunocytochemistry in liquid-based urine cytology: A prospective, single institute study. Cancer Med 2023; 12:10363-10370. [PMID: 36916414 DOI: 10.1002/cam4.5767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVES Urine cytology is the most widely used noninvasive screening tool for urothelial carcinoma diagnosis and surveillance. Although highly specific, urine cytology exhibits suboptimal sensitivity. This study aimed to determine whether hTERT immunocytochemistry (ICC) could be applicable as an ancillary test in routine cytology practice. METHODS A total of 561 urinary tract samples were initially screened in this study. All of them were prepared using SurePath liquid-based cytology (LBC), while additional LBC slides were made and subsequently used for hTERT (SCD-A7) ICC. RESULTS From the 561 samples screened, 337 were finally analyzed, all having an adequate cellularity and available follow-up histology. The hTERT ICC-positive rate was 95.9% (n = 208/217), 96% (n = 24/25), and 100% (n = 4/4) in cytology samples with high-grade urothelial carcinoma, carcinoma in situ, and low-grade urothelial carcinoma subsequent histology. Among the 64 atypical cytology cases histologically confirmed as urothelial carcinomas, 92.2% (n = 59/64) were immunoreactive to hTERT, whereas the two histologically benign cases were ICC-negative. 87/90 (96.7%) of the cytology cases confirmed to be benign in follow-up were hTERT-negative. The overall sensitivity and specificity of hTERT ICC were 96.3% and 98.8%, respectively (AUROC = 0.963; 95% CI = 0.960-0.967). CONCLUSIONS The hTERT ICC test exhibited consistent and intense staining in malignant urothelial cells, suggesting its value as an ancillary test in liquid-based urine cytology.
Collapse
Affiliation(s)
- Ji Hye Moon
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
28
|
da Mota THA, Camargo R, Biojone ER, Guimarães AFR, Pittella-Silva F, de Oliveira DM. The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:genes14030691. [PMID: 36980962 PMCID: PMC10048576 DOI: 10.3390/genes14030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Collapse
Affiliation(s)
- Tales Henrique Andrade da Mota
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
- Correspondence:
| | - Ricardo Camargo
- Brasília Children’s Hospital José Alencar, Brasilia 70684-831, Brazil
| | | | - Ana Flávia Reis Guimarães
- Laboratory of Molecular Analysis, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, Brazil
| | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
29
|
Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol 2023; 133:56-75. [PMID: 35700749 DOI: 10.1016/j.humpath.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023]
Abstract
The telomerase reverse transcriptase (TERT) promoter mutations are associated with increased TERT mRNA and TERT protein levels, telomerase activity, and shorter but stable telomere length. TERT promoter mutation is the most common mutation that occurs in approximately 60-80% of patients with bladder cancer. The TERT promoter mutations occur in a wide spectrum of urothelial lesions, including benign urothelial proliferation and tumor-like conditions, benign urothelial tumors, premalignant and putative precursor lesions, urothelial carcinoma and its variants, and nonurothelial malignancies. The prevalence and incidence of TERT promoter mutations in a total of 7259 cases from the urinary tract were systematically reviewed. Different platforms of TERT promoter mutation detection were presented. In this review, we also discussed the significance and clinical implications of TERT promoter mutation detection in urothelial tumorigenesis, surveillance and early detection, diagnosis, differential diagnosis, prognosis, prediction of treatment responses, and clinical outcome. Identification of TERT promoter mutations from urine or plasma cell-free DNA (liquid biopsy) will facilitate bladder cancer screening program and optimal clinical management. A better understanding of TERT promoter mutation and its pathway would open new therapeutic avenues for patients with bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University and Lifespan Academic Medical Center, Providence, RI, 02903, USA.
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, University of Cordoba Medical School, Cordoba, E-14004, Spain
| |
Collapse
|
30
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
31
|
Barkhordari A, Jafari-Gharabaghlou D, Turk Z, Zarghami N. Potential Anti-Cancer Effect of Helenalin as a Natural Bioactive Compound on the Growth and Telomerase Gene Expression in Breast Cancer Cell Line. Asian Pac J Cancer Prev 2023; 24:133-140. [PMID: 36708561 PMCID: PMC10152844 DOI: 10.31557/apjcp.2023.24.1.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVE The telomerase gene is overexpressed in the majority of tumors and cancers compared to normal and healthy cells, and on the other hand, this enzymatic protein is overactive, therefore, the telomerase enzyme is considered a primary target for diagnostic and therapeutic purposes in most cancers. This has been hypothesized that Helenalin has anti-telomerase activity in a wide range of cancers and Tumor tissues. In this study, we investigated the inhibitory effect of helenalin extract on telomerase gene expression in the T47D breast cancer cell line. METHODS We used the MTT assay to evaluate the cytotoxic effect of different concentrations of helenalin on the T47D breast cancer cell line at 24, 48, and 72 hours. Besides, the expression of the hTERT gene in T47D cell lines treated with 1.0 and 5.0 µM helenalin after 24, 48, and 72 h incubation times was investigated through real-time PCR. RESULTS According to the MTT assay, the inhibitory effect of helenalin on T47D cell proliferation is time and dose-dependent. Moreover, the results of Real-time PCR showed that exposure of T47D cell lines to helenalin led to a significant Decreasing in the expressional values of the hTERT gene as a time and dose-dependent procedure compared with the control group (P ≤ 0.05). CONCLUSION These preliminary results demonstrated the cytotoxic potential of helenalin through inhibition of hTERT against T47D breast cancer cells.
Collapse
Affiliation(s)
- Amin Barkhordari
- Cellular and Molecular Research Center, Grash University of Medical Sciences, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynep Turk
- Department of Medicine, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
32
|
Vyas CM, Sadreyev RI, Gatchel JR, Kang JH, Reynolds CF, Mischoulon D, Chang G, Hazra A, Manson JE, Blacker D, Vivo ID, Okereke OI. Pilot Study of Second-Generation DNA Methylation Epigenetic Markers in Relation to Cognitive and Neuropsychiatric Symptoms in Older Adults. J Alzheimers Dis 2023; 93:1563-1575. [PMID: 37212116 PMCID: PMC10336852 DOI: 10.3233/jad-230093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Associations between epigenetic aging with cognitive aging and neuropsychiatric measures are not well-understood. OBJECTIVE 1) To assess cross-sectional correlations between second-generation DNA methylation (DNAm)-based clocks of healthspan and lifespan (i.e., GrimAge, PhenoAge, and DNAm-based estimator of telomere length [DNAmTL]) and cognitive and neuropsychiatric measures; 2) To examine longitudinal associations between change in DNAm markers and change in cognition over 2 years. METHODS Participants were members of VITAL-DEP (VITamin D and OmegA-3 TriaL- Depression Endpoint Prevention) study. From previously ascertained cognitive groups (i.e., cognitively normal and mild cognitive impairment), we randomly selected 45 participants, aged≥60 years, who completed in-person neuropsychiatric assessments at baseline and 2 years. The primary outcome was global cognitive score (averaging z-scores of 9 tests). Neuropsychiatric Inventory severity scores were mapped from neuropsychiatric symptoms (NPS) from psychological scales and structured diagnostic interviews. DNAm was assayed using Illumina MethylationEPIC 850K BeadChip at baseline and 2 years. We calculated baseline partial Spearman correlations between DNAm markers and cognitive and NPS measures. We constructed multivariable linear regression models to examine longitudinal relations between DNAm markers and cognition. RESULTS At baseline, we observed a suggestive negative correlation between GrimAge clock markers and global cognition but no signal between DNAm markers and NPS measures. Over 2 years: each 1-year increase in DNAmGrimAge was significantly associated with faster declines in global cognition; each 100-base pair increase in DNAmTL was significantly associated with better global cognition. CONCLUSION We found preliminary evidence of cross-sectional and longitudinal associations between DNAm markers and global cognition.
Collapse
Affiliation(s)
- Chirag M. Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer R. Gatchel
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jae H. Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles F. Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| | - Aditi Hazra
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Olivia I. Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
Bhatiya M, Pathak S, Jothimani G, Duttaroy AK, Banerjee A. A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell Proliferation. Arch Immunol Ther Exp (Warsz) 2023; 71:6. [PMID: 36807774 PMCID: PMC9941246 DOI: 10.1007/s00005-023-00669-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/02/2022] [Indexed: 02/23/2023]
Abstract
Colon cancer etiology involves a wide spectrum of genetic and epigenetic alterations, finding it challenging to find effective therapeutic strategies. Quercetin exhibits potent anti-proliferative/apoptotic properties. In the present study, we aimed to elucidate the anti-cancer and anti-aging effect of quercetin in colon cancer cell lines. The anti-proliferative effect of quercetin was assessed in vitro by CCK-8 in normal and colon cancer cell lines. To check the anti-aging potential of quercetin, collagenase, elastase, and hyaluronidase inhibitory activity assays were performed. The epigenetic and DNA damage assays were performed using the human NAD-dependent deacetylase Sirtuin-6, proteasome 20S, Klotho, Cytochrome-C, and telomerase ELISA kits. Furthermore, the aging-associated miRNA expression profiling was performed on colon cancer cells. The treatment with quercetin inhibited cell proliferation of colon cancer cells in a dose-dependent manner. Quercetin arrested colon cancer cell growth by modulating expression of aging proteins including Sirtuin-6 and Klotho and also by inhibiting telomerase activity to restrict the telomere length which is evident from qPCR analysis. Quercetin also exhibited DNA damage protection by reducing proteasome 20S levels. The miRNA expression profiling results displayed differential expression of miRNA in colon cancer cell, and in addition, the highly upregulated miRNA was involved in the regulation of cell cycle, proliferation, and transcription. Our data suggest that quercetin treatment inhibited cell proliferation in colon cancer cells through regulating the anti-aging protein expression and provides better understanding for quercetin's potential use in colon cancer treatment.
Collapse
Affiliation(s)
- Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603 103 India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603 103 India
| | - Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu 603 103 India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Tamil Nadu, 603 103, India.
| |
Collapse
|
34
|
WANG YINGYING, ZHOU YING, WANG YU, YU LUSHAN, ZENG SU. Epigenetic Regulation of Drug Transporters in Cancer. DRUG METABOLISM HANDBOOK 2022:573-603. [DOI: 10.1002/9781119851042.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
36
|
Yuan X, Yuan H, Zhang N, Liu T, Xu D. Thyroid carcinoma-featured telomerase activation and telomere maintenance: Biology and translational/clinical significance. Clin Transl Med 2022; 12:e1111. [PMID: 36394204 PMCID: PMC9670192 DOI: 10.1002/ctm2.1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Telomerase is a ribonucleoprotein complex consisting of a catalytic component telomerase reverse transcriptase (TERT), internal RNA template and other co-factors, and its essential function is to synthesize telomeric DNA, repetitive TTAGGG sequences at the termini of linear chromosomes. Telomerase is silent in normal human follicular thyroid cells, primarily due to the TERT gene being tightly repressed. During the development and progression of thyroid carcinomas (TCs), TERT induction and telomerase activation is in general required to maintain telomere length, thereby conferring TC cells with immortal and aggressive phenotypes. METHODS The genomic alterations of the TERT loci including TERT promoter's gain-of-function mutations, copy number gain, fusion and rearrangements, have recently been identified in TCs as mechanisms to induce TERT expression and to activate telomerase. Importantly, numerous studies have consistently shown that TERT promoter mutations and TERT expression occur in all TC subtypes, and are robustly associated with TC malignancy, aggressiveness, treatment failure and poor outcomes. Therefore, the assessment of TERT promoter mutations and TERT expression is highly valuable in TC diagnostics, prognosis, treatment decision, and follow-up design. In addition, the TERT promoter is frequently hypermethylated in TC cells and tumors, which is required to activate TERT transcription and telomerase. Dysregulation of other components in the telomerase complex similarly upregulate telomerase. Moreover, shortened telomeres lead to altered gene expression and metabolism, thereby actively promoting TC aggressiveness. Here we summarize recent findings in TCs to provide the landscape of TC-featured telomere/telomerase biology and discuss underlying implications in TC precision medicine. CONCLUSION Mechanistic insights into telomerase activation and TERT induction in TCs are important both biologically and clinically. The TERT gene aberration and expression-based molecular classification of TCs is proposed, and for such a purpose, the standardization of the assay and evaluation system is required. Moreover, the TERT-based system and 2022 WHO TC classification may be combined to improve TC care.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Laboratory Animal CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Huiyang Yuan
- Department of UrologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Ning Zhang
- Department of Breast SurgeryGeneral Surgery, Qilu Hospital of Shandong UniversityJinanChina
| | - Tiantian Liu
- Department of PathologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Dawei Xu
- Department of MedicineDivision of HematologyBioclinicum and Center for Molecular Medicine (CMM)Karolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
37
|
Wang J, Dai M, Xing X, Wang X, Qin X, Huang T, Fang Z, Fan Y, Xu D. Genomic, epigenomic, and transcriptomic signatures for telomerase complex components: a pan-cancer analysis. Mol Oncol 2022; 17:150-172. [PMID: 36239411 PMCID: PMC9812836 DOI: 10.1002/1878-0261.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023] Open
Abstract
Telomerase activation is required for malignant transformation. Recent advances in high-throughput technologies have enabled the generation of complex datasets, thus providing alternative approaches to exploring telomerase biology more comprehensively, which has proven to be challenging due to the need for laborious assays required to test for telomerase activity. To solve these issues, several groups have analyzed TCGA pan-cancer tumor datasets by investigating telomerase reverse transcriptase (TERT), the catalytic subunit for telomerase activity, or its surrogates. However, telomerase is a multiunit complex containing not only TERT, but also numerus cofactors required for telomerase function. Here we determined genomic and molecular alterations of 10 well-characterized telomerase components in the TCGA and CCLE datasets. We calculated a telomerase score (TS) based on their expression profiles and clustered tumors into low, high, and intermediate subtypes. To validate the in silico analysis result, we used immunoblotting and telomerase assays. High TS subtypes were significantly associated with stemness, proliferation, epithelial to mesenchymal transition, hyperactivation of oncogenic signaling pathways, shorter patient survival, and infiltration of dysfunctional T-cells or poor response to immunotherapy. Copy number alterations in 10 telomerase components were widespread and associated with the level of their expression. Surprisingly, primary tumors and cancer cell lines frequently displayed a homozygous deletion of the TCAB1 gene, encoding a telomerase protein essential for telomerase trafficking, assembling, and function, as previously reported. However, tumors or cells carrying a TCAB1 deletion still exhibited telomerase activity comparable to or even higher than their wildtype counterparts. Collectively, applying telomerase component-based TS in complex datasets provided a robust tool for telomerase analyses. Our findings also reveal a tight connection between telomerase and other oncogenic signaling pathways; TCAB1 may acts as a dispensable telomerase component. Moreover, TS may serve as a useful biomarker to predict patient outcomes and response to immunotherapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Mingkai Dai
- Division of Hematology, Department of Medicine, Bioclinicum and Center for Molecular MedicineKarolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| | - Xiangling Xing
- Division of Hematology, Department of Medicine, Bioclinicum and Center for Molecular MedicineKarolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| | - Xing Wang
- Department of Urology SurgeryThe First Affiliated Hospital of USTC, Wannan Medical collegeWuhuChina
| | - Xin Qin
- Department of UrologyQilu Hospital of Shandong UniversityJinanChina
| | - Tao Huang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina,Department of Urology SurgeryThe First Affiliated Hospital of USTC, Wannan Medical collegeWuhuChina
| | - Zhiqing Fang
- Department of UrologyQilu Hospital of Shandong UniversityJinanChina
| | - Yidong Fan
- Department of UrologyQilu Hospital of Shandong UniversityJinanChina
| | - Dawei Xu
- Division of Hematology, Department of Medicine, Bioclinicum and Center for Molecular MedicineKarolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
38
|
Azimi Z, Isa MR, Khan J, Wang SM, Ismail Z. Association of zinc level with DNA methylation and its consequences: A systematic review. Heliyon 2022; 8:e10815. [PMID: 36203899 PMCID: PMC9530842 DOI: 10.1016/j.heliyon.2022.e10815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Objectives Method Results Conclusion
Collapse
Affiliation(s)
- Ziauddin Azimi
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry, Faculty of Pharmacy, Kabul University, Jamal Mina, Kabul, Afghanistan
| | - Mohamad Rodi Isa
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Jesmine Khan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Seok Mui Wang
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Center, Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Corresponding author.
| |
Collapse
|
39
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
40
|
Şerifoğlu N, Erbaba B, Adams MM, Arslan-Ergül A. TERT distal promoter GC islands are critical for telomerase and together with DNMT3B silencing may serve as a senescence-inducing agent in gliomas. J Neurogenet 2022; 36:89-97. [PMID: 35997487 DOI: 10.1080/01677063.2022.2106371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is reactivated in the majority of cancers. For instance, in gliomas, it is common that the TERT promoter is mutated. Research on telomere promoter GC islands have been focused primarily on proximal TERT promoter but little is known about the distal promoter. Therefore, in this study, we investigated the proximal and distal TERT promoter, in terms of DNA methylation. We did bisulfite sequencing in zebrafish tissue samples for the distal tert promoter. In the zebrafish brain tissues, we identified a hypomethylation site in the tert promoter, and found that this hypomethylation was associated with aging and shortened telomeres. Through site directed mutagenesis in glioma cell lines, we changed 10 GC spots individually, cloned into a reporter vector, and measured promoter activity. Finally, we silenced DNMT3B and measured telomerase activity along with vidaza and adriamycin treatments. Site directed mutagenesis of glioma cell lines revealed that each of the 10 GC spots are critical for telomerase activity. Changing GC to AT abolished promoter activity in all spots when transfected into glioma cell lines. Then, through silencing of DNMT3B, we observed a reduction in hTERT expression levels, while hTR remained the same, and a major increase in senescence-associated beta-galactosidase activity. Finally, we propose a model regarding the efficacy of two chemotherapeutic drugs, adriamycin and azacytidine, on gliomas. Here, we show that distal TERT promoter is critical; changing even one GC to AT abolishes TERT promoter activity. DNMT3B, a de novo methyltransferase, together with GC islands in distal TERT promoter plays an important role in regulation of telomerase expression and senescence.
Collapse
Affiliation(s)
- Naz Şerifoğlu
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Institute for Research on Cancer and Aging of Nice, French National Centre for Scientific Research, Paris, France
| | - Begün Erbaba
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey
| | - Ayça Arslan-Ergül
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
41
|
Григорян ОР, Фролова ТМ, Михеев РК, Шереметьева ЕВ, Абсатарова ЮС, Ужегова ЖА, Андреева ЕН, Мокрышева НГ. [The dual role of the menopausal hormonal therapy as the enhancer of pleiotropic telomere rejuvenation and the silencer of cellular aging (literature review)]. PROBLEMY ENDOKRINOLOGII 2022; 68:105-112. [PMID: 35841174 PMCID: PMC9762536 DOI: 10.14341/probl12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Present worldwide healthcare researches prove that female patients are more sensitive to the population aging. Menopause or climacteria (climax) - is not as ageing itself, but a physiological unstoppable process. The main task for a physician is to improve life quality for female despite of ageing problems. Menopausal hormone therapy (MHT) due to the estrogen component has an anti-inflammatory, antioxidant effect and promotes the expression of telomerase, which together changes the homeostasis and integrity of telomeres. The use of MHT for five years or more can not only significantly change the quality of life, but also increase its duration. Literature search was carried out in national (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. The priority was free access to the full text of articles. The choice of sources was prioritized for the period from 2019 to 2021. However, taking into account the insufficient knowledge of the chosen topic, the choice of sources dates back to 1989.
Collapse
Affiliation(s)
- О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | - Т. М. Фролова
- Национальный медицинский исследовательский центр эндокринологии
| | - Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - Ж. А. Ужегова
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
42
|
Sonoda S, Yamaza T. A New Target of Dental Pulp-Derived Stem Cell-Based Therapy on Recipient Bone Marrow Niche in Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms23073479. [PMID: 35408840 PMCID: PMC8998830 DOI: 10.3390/ijms23073479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.
Collapse
|
43
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Talebi M, Shanehbandi D, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase inhibition on acute myeloid leukemia stem cell induced apoptosis with both intrinsic and extrinsic pathways. Life Sci 2022; 295:120402. [PMID: 35176279 DOI: 10.1016/j.lfs.2022.120402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
AIMS Acute Myeloid Leukemia (AML) is an invasive and lethal blood cancer caused by a rare population of Leukemia Stem Cells (LSCs). Telomerase activation is a limitless self-renewal process in LSCs. Apart from telomerase role in telomere lengthening, telomerase (especially hTERT subunit) inhibits intrinsic-, extrinsic-, and p53- mediated apoptosis pathways. In this study, the effect of Telomerase Inhibition (TI) on intrinsic-, extrinsic-, p53-mediated apoptosis, and DNMT3a and TET epigenetic markers in stem (CD34+) and differentiated (CD34-) AML cells is evaluated. MAIN METHODS High-purity CD34+ (primary AML and KG-1a) cells were enriched using the Magnetic-Activated Cell Sorting (MACS) system. CD34+ and CD34- (primary AML and KG-1a) cells were treated with BIBR1532 and then, MTT assay, Annexin V/7AAD, Ki-67 assay, Telomere Length (TL) measurement, and transcriptional alterations of p53, hTERT, TET2, DNMT3a were analyzed. Finally, apoptosis-related genes and proteins were studied. KEY FINDINGS TI with the IC50 values of 83.5, 33.2, 54.3, and 24.6 μM in CD34+ and CD34- (primary AML and KG-1a) cells significantly inhibited cell proliferation and induced apoptosis. However, TI had no significant effect on TL. The results also suggested TI induced intrinsic-, extrinsic-, and p53-mediated apoptosis. It was shown that the expression levels of DNMT3a and TET2 epigenetic markers were highly increased following TI. SIGNIFICANCE In total, it was revealed that TI induced apoptosis through intrinsic, extrinsic, and p53 pathways and increased the expression of DNMT3a and TET2 epigenetic markers.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Talebi
- Department of Applied Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
44
|
Hirata M, Fujita K, Fujihara S, Mizuo T, Nakabayashi R, Kono T, Namima D, Fujita N, Yamana H, Kamada H, Tani J, Kobara H, Tsutsui K, Matsuda Y, Ono M, Masaki T. Telomerase Reverse Transcriptase Promoter Mutations in Human Hepatobiliary, Pancreatic and Gastrointestinal Cancer Cell Lines. In Vivo 2022; 36:94-102. [PMID: 34972704 DOI: 10.21873/invivo.12680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM The promoter region of the telomerase reverse transcriptase (TERT) gene is a regulatory element capable of affecting TERT expression, telomerase activity, and telomerase length. Mutations within the TERT promoter region are the most common mutations in many cancers. In this study, we characterized the TERT promoter mutation status in hepatobiliary, pancreatic, and gastrointestinal cancer cell lines. MATERIALS AND METHODS TERT promoter mutation status was assessed by digital PCR in 12 liver cancer, 5 cholangiocarcinoma (CCA), 12 pancreatic cancer, 17 gastrointestinal cancer, and 3 healthy control cell lines. RESULTS The C228T promoter mutation was detected in 9 liver cancer lines, and the C250T TERT mutation was detected in 1 oesophageal squamous cell carcinoma line. CONCLUSION The C228T promoter mutation is specific to liver cancer cell lines among various gastrointestinal cancer cell lines. These data will contribute to future research on the tumorigenic mechanisms and clinical use of digital PCR to detect mutations.
Collapse
Affiliation(s)
- Masahiro Hirata
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Takaaki Mizuo
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Ryota Nakabayashi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Toshiaki Kono
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Daisuke Namima
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Naoki Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hiroki Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Kunihiko Tsutsui
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Yoko Matsuda
- Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan;
| |
Collapse
|
45
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
46
|
Kalasekar SM, VanSant-Webb CH, Evason KJ. Intratumor Heterogeneity in Hepatocellular Carcinoma: Challenges and Opportunities. Cancers (Basel) 2021; 13:5524. [PMID: 34771685 PMCID: PMC8582820 DOI: 10.3390/cancers13215524] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading cause of cancer-related death, but it remains difficult to treat. Intratumor genetic and phenotypic heterogeneity are inherent properties of breast, skin, lung, prostate, and brain tumors, and intratumor heterogeneity (ITH) helps define prognosis and therapeutic response in these cancers. Several recent studies estimate that ITH is inherent to HCC and attribute the clinical intractability of HCC to this heterogeneity. In this review, we examine the evidence for genomic, phenotypic, and tumor microenvironment ITH in HCC, with a focus on two of the top molecular drivers of HCC: β-catenin (CTNNB1) and Telomerase reverse transcriptase (TERT). We discuss the influence of ITH on HCC diagnosis, prognosis, and therapy, while highlighting the gaps in knowledge and possible future directions.
Collapse
Affiliation(s)
| | | | - Kimberley J. Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (S.M.K.); (C.H.V.-W.)
| |
Collapse
|
47
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
48
|
Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021; 11:biom11101451. [PMID: 34680084 PMCID: PMC8533419 DOI: 10.3390/biom11101451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
High Mobility Group Box (HMGB) proteins are small architectural DNA binding proteins that regulate multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere homeostasis, and transcription. In doing so they control both normal cellular functions and impact a myriad of disease states, including cancers and autoimmune diseases. HMGB proteins bind to DNA and nucleosomes to modulate the local chromatin environment, which facilitates the binding of regulatory protein factors to the genome and modulates higher order chromosomal organization. Numerous studies over the years have characterized the structure and function of interactions between HMGB proteins and DNA, both biochemically and inside cells, providing valuable mechanistic insight as well as evidence these interactions influence pathological processes. This review highlights recent studies supporting the roles of HMGB1 and HMGB2 in global organization of the genome, as well as roles in transcriptional regulation and telomere maintenance via interactions with G-quadruplex structures. Moreover, emerging models for how HMGB proteins function as RNA binding proteins are presented. Nuclear HMGB proteins have broad regulatory potential to impact numerous aspects of cellular metabolism in normal and disease states.
Collapse
|
49
|
Leung CT, Yang Y, Yu KN, Tam N, Chan TF, Lin X, Kong RYC, Chiu JMY, Wong AST, Lui WY, Yuen KWY, Lai KP, Wu RSS. Low-Dose Radiation Can Cause Epigenetic Alterations Associated With Impairments in Both Male and Female Reproductive Cells. Front Genet 2021; 12:710143. [PMID: 34408775 PMCID: PMC8365519 DOI: 10.3389/fgene.2021.710143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Humans are regularly and continuously exposed to ionizing radiation from both natural and artificial sources. Cumulating evidence shows adverse effects of ionizing radiation on both male and female reproductive systems, including reduction of testis weight and sperm count and reduction of female germ cells and premature ovarian failure. While most of the observed effects were caused by DNA damage and disturbance of DNA repairment, ionizing radiation may also alter DNA methylation, histone, and chromatin modification, leading to epigenetic changes and transgenerational effects. However, the molecular mechanisms underlying the epigenetic changes and transgenerational reproductive impairment induced by low-dose radiation remain largely unknown. In this study, two different types of human ovarian cells and two different types of testicular cells were exposed to low dose of ionizing radiation, followed by bioinformatics analysis (including gene ontology functional analysis and Ingenuity Pathway Analysis), to unravel and compare epigenetic effects and pathway changes in male and female reproductive cells induced by ionizing radiation. Our findings showed that the radiation could alter the expression of gene cluster related to DNA damage responses through the control of MYC. Furthermore, ionizing radiation could lead to gender-specific reproductive impairment through deregulation of different gene networks. More importantly, the observed epigenetic modifications induced by ionizing radiation are mediated through the alteration of chromatin remodeling and telomere function. This study, for the first time, demonstrated that ionizing radiation may alter the epigenome of germ cells, leading to transgenerational reproductive impairments, and correspondingly call for research in this new emerging area which remains almost unknown.
Collapse
Affiliation(s)
- Chi Tim Leung
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yi Yang
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kwan Ngok Yu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Physics, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Nathan Tam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Richard Yuen Chong Kong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong.,State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Jill Man Ying Chiu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,Department of Biology, Hong Kong Baptist University, Kowloon Tsai, Hong Kong
| | - Alice Sze Tsai Wong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wing Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Keng Po Lai
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong.,State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong.,Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Rudolf Shiu Sun Wu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Hong Kong, China.,State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| |
Collapse
|