1
|
Liu R, Zou Z, Zhang Z, He H, Xi M, Liang Y, Ye J, Dai Q, Wu Y, Tan H, Zhong W, Wang Z, Liang Y. Evaluation of glucocorticoid-related genes reveals GPD1 as a therapeutic target and regulator of sphingosine 1-phosphate metabolism in CRPC. Cancer Lett 2024; 605:217286. [PMID: 39413958 DOI: 10.1016/j.canlet.2024.217286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression.
Collapse
Affiliation(s)
- Ren Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China
| | - Zhengrong Zhang
- Department of Urology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Huichan He
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Yingke Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qishan Dai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huijing Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China; Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Zongren Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiang Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
3
|
Takei T, Hamamura Y, Hongo H, Tashiro E, Imoto M, Kosaka T, Oya M. Selective killing of castration-resistant prostate cancer cells by formycin A via the ATF4-CHOP axis. Cancer Sci 2024. [PMID: 39327674 DOI: 10.1111/cas.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer is initially androgen-dependent but often relapses to an androgen-independent state called castration-resistant prostate cancer (CRPC). Currently approved therapies have limited efficacy against CRPC, highlighting the need for novel therapeutic strategies. To address this need, we conducted a drug screen in our previously established aggressive CRPC cell model. We found that formycin A induced cell death in CRPC model cells but not in parental prostate cancer cells. In addition, formycin A upregulated death receptor 5 through the induction of endoplasmic reticulum stress, activating the "extrinsic" apoptosis pathway in CRPC model cells. Moreover, formycin A showed in vivo antitumor efficacy against CRPC xenografts in castrated nude mice. Thus, our findings highlight the potential of formycin A as a CRPC therapeutic.
Collapse
Affiliation(s)
- Tomoki Takei
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Hamamura
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Kostos L, Tran B, Azad AA. Combination of PARP Inhibitors and Androgen Receptor Pathway Inhibitors in Metastatic Castration-Resistant Prostate Cancer. Drugs 2024; 84:1093-1109. [PMID: 39060912 PMCID: PMC11438617 DOI: 10.1007/s40265-024-02071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Despite recent advances in the treatment of metastatic prostate cancer, progression to a castration-resistant state remains inevitable for most and prognosis is limited. Genetic testing for homologous recombination repair pathway alterations is recommended for all patients with advanced prostate cancer given that a mutation is present in up to 25% of cases. Poly(ADP-ribose) polymerase (PARPis) are now approved for use in patients with metastatic castration-resistant prostate cancer who have progressed on an androgen receptor pathway inhibitor (ARPI) and harbour a germline or somatic homologous recombination repair mutation. Preclinical data support a synergistic effect with an ARPI and PARPi, and various ARPI-PARPi combinations have therefore been explored in phase III clinical trials. Despite heterogeneous findings, a clear hierarchy of benefit is evident, with patients harbouring a BRCA mutation deriving the greatest magnitude of benefit, followed by any homologous recombination repair mutation. The benefit in homologous recombination repair-proficient cohort is less clear, and questions remain about whether ARPI-PARPi combination therapy should be offered to patients without a homologous recombination repair mutation. With ARPIs now considered standard-of-care for metastatic hormone-sensitive prostate cancer, ARPI-PARPi combination therapy is currently being explored earlier in the treatment paradigm. The purpose of this review is to discuss the rationale behind ARPI-PARPi combination therapy, summarise the results of key clinical trials, and discuss clinical considerations and future perspectives.
Collapse
Affiliation(s)
- Louise Kostos
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
7
|
Murphy KC, DeMarco KD, Zhou L, Lopez-Diaz Y, Ho YJ, Li J, Bai S, Simin K, Zhu LJ, Mercurio AM, Ruscetti M. MYC and p53 alterations cooperate through VEGF signaling to repress cytotoxic T cell and immunotherapy responses in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604943. [PMID: 39091883 PMCID: PMC11291169 DOI: 10.1101/2024.07.24.604943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Patients with castration-resistant prostate cancer (CRPC) are generally unresponsive to tumor targeted and immunotherapies. Whether genetic alterations acquired during the evolution of CRPC impact immune and immunotherapy responses is largely unknown. Using our innovative electroporation-based mouse models, we generated distinct genetic subtypes of CRPC found in patients and uncovered unique immune microenvironments. Specifically, mouse and human prostate tumors with MYC amplification and p53 disruption had weak cytotoxic lymphocyte infiltration and an overall dismal prognosis. MYC and p53 cooperated to induce tumor intrinsic secretion of VEGF, which by signaling through VEGFR2 expressed on CD8+ T cells, could directly inhibit T cell activity. Targeting VEGF-VEGFR2 signaling in vivo led to CD8+ T cell-mediated tumor and metastasis growth suppression and significantly increased overall survival in MYC and p53 altered CPRC. VEGFR2 blockade also led to induction of PD-L1, and in combination with PD-L1 immune checkpoint blockade produced anti-tumor efficacy in multiple preclinical CRPC mouse models. Thus, our results identify a genetic mechanism of immune suppression through VEGF signaling in prostate cancer that can be targeted to reactivate immune and immunotherapy responses in an aggressive subtype of CRPC. Significance Though immune checkpoint blockade (ICB) therapies can achieve curative responses in many treatment-refractory cancers, they have limited efficacy in CRPC. Here we identify a genetic mechanism by which VEGF contributes to T cell suppression, and demonstrate that VEGFR2 blockade can potentiate the effects of PD-L1 ICB to immunologically treat CRPC.
Collapse
Affiliation(s)
- Katherine C. Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly D. DeMarco
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yvette Lopez-Diaz
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yu-jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Junhui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shi Bai
- Department of Pathology, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M. Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
9
|
Gebrael G, Hage Chehade C, Sayegh N, Tripathi N, Chigarira B, Goel D, Nordblad B, McFarland TR, Narang A, Srivastava A, Tandar C, Dal E, Jo Y, Galarza Fortuna G, Mathew Thomas V, Sahu KK, Li H, Maughan BL, Swami U, Agarwal N. Natural course of metastatic castration-resistant prostate cancer in the era of intensified androgen deprivation therapy in the hormone-sensitive setting. Prostate 2024; 84:888-892. [PMID: 38561317 DOI: 10.1002/pros.24696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) intensification (ADTi) (i.e., ADT with androgen receptor pathway inhibitor or docetaxel, or both) has significantly improved survival outcomes of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, the impact of prior ADTi in the mHSPC setting on the disease presentation and survival outcomes in metastatic castration-resistant prostate cancer (mCRPC) is not well characterized. In this study, our objective was to compare the disease characteristics and survival outcomes of patients with new mCRPC with respect to receipt of intensified or nonintensified ADT in the mHSPC setting. METHODS In this institutional review board-approved retrospective study, eligibility criteria were as follows: patients diagnosed with mCRPC, treated with an approved first-line mCRPC therapy, and who received either intensified or nonintensified ADT in the mHSPC setting. Progression-free survival (PFS) was defined from the start of first-line therapy for mCRPC to progression per Prostate Cancer Working Group 2 criteria or death, and overall survival (OS) was defined from the start of first-line therapy for mCRPC to death or censored at the last follow-up. A multivariable analysis using the Cox proportional hazards model was used, adjusting for potential confounders. RESULTS Patients (n = 387) treated between March 20, 2008, and August 18, 2022, were eligible and included: 283 received nonintensified ADT, whereas 104 were treated with ADTi. At mCRPC diagnosis, patients in the ADTi group were significantly younger, had more visceral metastasis, lower baseline prostate-specific antigen (all p < 0.01), and lower hemoglobin (p = 0.027). Furthermore, they had significantly shorter PFS (median 4.8 vs. 8.4 months, adjusted hazard ratio [HR]: 1.46, 95% confidence interval [95% CI]: 1.07-2, p = 0.017) and OS (median 21.3 vs. 33.1 months, adjusted HR: 1.53, 95% CI: 1.06-2.21, p = 0.022) compared to patients in the nonintensified ADT group. CONCLUSION Patients treated with ADTi in the mHSPC setting and experiencing disease progression to mCRPC had more aggressive disease features of mCRPC (characterized by a higher number of poor prognostic factors at mCRPC presentation). They also had shorter PFS on first-line mCRPC treatment and shorter OS after the onset of mCRPC compared to those not receiving ADTi in the mHSPC setting. Upon external validation, these findings may impact patient counseling, prognostication, treatment selection, and design of future clinical trials in the mCRPC setting. There remains an unmet need to develop novel life-prolonging therapies with new mechanisms of action to improve mCRPC prognosis in the current era.
Collapse
Affiliation(s)
- Georges Gebrael
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Chadi Hage Chehade
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Nicolas Sayegh
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Nishita Tripathi
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Beverly Chigarira
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Divyam Goel
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Blake Nordblad
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Taylor R McFarland
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Arshit Narang
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Ayana Srivastava
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Clara Tandar
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Emre Dal
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Yeonjung Jo
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Gliceida Galarza Fortuna
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Vinay Mathew Thomas
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Kamal K Sahu
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Haoran Li
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Cancer Center, Westwood, Kansas, USA
| | - Benjamin L Maughan
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Umang Swami
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Neeraj Agarwal
- Department of Internal Medicine, Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Gasperoni L, Giunta EF, Montanari D, Masini C, De Giorgi U. New-generation androgen receptor signaling inhibitors (ARSIs) in metastatic hormone-sensitive prostate cancer (mHSPC): pharmacokinetics, drug-drug interactions (DDIs), and clinical impact. Expert Opin Drug Metab Toxicol 2024; 20:491-502. [PMID: 38778707 DOI: 10.1080/17425255.2024.2353749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The therapeutic scenario of metastatic hormone-sensitive prostate cancer (mHSPC) has dramatically changed in recent years, with the approval of new-generation Androgen Receptor Signaling Inhibitors (ARSIs), in combination with the androgen deprivation therapy (ADT), which was the previous standard of care. Despite showing a similar clinical efficacy, ARSIs, all of which are administered orally, are different in terms of pharmacokinetic and drug-drug interactions (DDIs). AREAS COVERED This review covers the main pharmacokinetic characteristics of ARSIs that have been approved for the first-line therapy of mHSPC patients, underlying the differences among these molecules and focusing on the known or possible interactions with other drugs. Full-text articles and abstracts were searched in PubMed. EXPERT OPINION Since prostate cancer occurs mainly in older age, comorbidities and the consequent polypharmacy increase the DDI risk in mHSPC patients who are candidates for ARSI. Waiting for new therapeutic options, in the absence of direct comparisons, pharmacokinetic knowledge is essential to guide clinicians in prescribing ARSI in this setting.
Collapse
Affiliation(s)
- Lorenzo Gasperoni
- Oncological Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola (FC), Italy
| | - Emilio Francesco Giunta
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola (FC), Italy
| | - Daniela Montanari
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola (FC), Italy
| | - Carla Masini
- Oncological Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola (FC), Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola (FC), Italy
| |
Collapse
|
11
|
Zhang W, Fan Y, Zhang Y, Feng Y, Luo Y, Zhou X, Chen Z, Wang C, Lu T, Tang F, Chen Y, Li H, Jiao Y. Discovery of novel biphenyl derivatives as androgen receptor degraders for the treatment of enzalutamide-resistant prostate cancer. Bioorg Chem 2024; 148:107433. [PMID: 38754311 DOI: 10.1016/j.bioorg.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Second-generation AR antagonists, such as enzalutamide, are the primary therapeutic agents for advanced prostate cancer. However, the development of both primary and secondary drug resistance leads to treatment failures and patient mortality. Bifunctional agents that simultaneously antagonize and degrade AR block the AR signaling pathway more completely and exhibit excellent antiproliferative activity against wild-type and drug-resistant prostate cancer cells. Here, we reported the discovery and optimization of a series of biphenyl derivatives as androgen receptor antagonists and degraders. These biphenyl derivatives exhibited potent antiproliferative activity against LNCaP and 22Rv1 cells. Our discoveries enrich the diversity of small molecule AR degraders and offer insights for the development of novel AR degraders for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yawen Fan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yan Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China; Jiangsu Simcere Pharmaceutical Co, Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China
| | - Yunrui Feng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiaoyu Zhou
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Zhuolin Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenxiao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China; Jiangsu Simcere Pharmaceutical Co, Ltd, 699-18 Xuan Wu Avenue, Nanjing 210042, PR China.
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
12
|
McKay RR, Morgans AK, Shore ND, Dunshee C, Devgan G, Agarwal N. First-line combination treatment with PARP and androgen receptor-signaling inhibitors in HRR-deficient mCRPC: Applying clinical study findings to clinical practice in the United States. Cancer Treat Rev 2024; 126:102726. [PMID: 38613872 DOI: 10.1016/j.ctrv.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.
Collapse
Affiliation(s)
- Rana R McKay
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Alicia K Morgans
- Harvard Medical School, Dana-Farber Cancer Institute, 450 Brookline Ave, Dana 09-930, Boston, MA 02215, USA.
| | - Neal D Shore
- Carolina Urologic Research Center, 823 82nd Parkway, Suite B, Myrtle Beach, SC 29572, USA.
| | - Curtis Dunshee
- Urology Specialists, 2260 W. Orange Grove Road, Tucson, AZ 85741, USA.
| | - Geeta Devgan
- Pfizer Inc., 66 Hudson Blvd East, New York, NY 10001, USA.
| | - Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, 2000 Circle of Hope Drive, Suite 5726, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Wang R, Ma S, Xu N, Gan Y, Li P, Zhang J, Zhang Z, Gu Q, Xiang J. Developing a Novel Enzalutamide-Resistant Prostate Cancer Model via AR F877L Mutation in LNCaP Cells. Curr Protoc 2024; 4:e1033. [PMID: 38652202 DOI: 10.1002/cpz1.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Prostate cancer is a leading diagnosis and major cause of cancer-related deaths in men worldwide. As a typical hormone-responsive disease, prostate cancer is commonly managed with androgen deprivation therapy (ADT) to curb its progression and potential metastasis. Unfortunately, progression to castration-resistant prostate cancer (CRPC), a notably more aggressive phase of the disease, occurs within a timeframe of 2-3 years following ADT. Enzalutamide, a recognized androgen receptor (AR) antagonist, has been employed as a standard of care for men with metastatic castration-resistant prostate cancer (mCRPC) since it was first approved in 2012, due to its ability to prolong survival. However, scientific evidence suggests that sustained treatment with AR antagonists may induce acquired AR mutations or splice variants, such as AR F877L, T878A, and H875Y, leading to drug resistance and thereby diminishing the therapeutic efficacy of these agents. Thus, the establishment of prostate cancer models incorporating these particular mutations is essential for developing new therapeutic strategies to overcome such resistance and evaluate the efficacy of next-generation AR-targeting drugs. We have developed a CRISPR (clustered regularly interspaced short palindromic repeats)-based knock-in technology to introduce an additional F877L mutation in AR into the human prostate cell line LNCaP. This article provides comprehensive descriptions of the methodologies for cellular gene editing and establishment of an in vivo model. Using these methods, we successfully identified an enzalutamide-resistant phenotype in both in vitro and in vivo models. We also assessed the efficacy of target protein degraders (TPDs), such as ARV-110 and ARV-667, in both models, and the corresponding validation data are also included here. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Generation of AR F877L-mutated LNCaP cell line using CRISPR technology Basic Protocol 2: Validation of drug resistance in AR F877L-mutated LNCaP cell line using the 2D CTG assay Support Protocol: Testing of sgRNA efficiency in HEK 293 cells Basic Protocol 3: Validation of drug resistance in AR F877L-mutated LNCaP cell line in vivo.
Collapse
Affiliation(s)
- Ruifeng Wang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
- Organ Transplant Center & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shuhua Ma
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Nengwei Xu
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Yumiao Gan
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Pengya Li
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Jingying Zhang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Zhixiang Zhang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Qingyang Gu
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| | - Jian Xiang
- Oncology and Immunology Unit (OIU), WuXi Biology, WuXi AppTec, China
| |
Collapse
|
14
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
15
|
Mosalem O, Tan W, Bryce AH, Dronca RS, Childs DS, Pagliaro LC, Orme JJ, Kase AM. A real-world experience of pembrolizumab monotherapy in microsatellite instability-high and/or tumor mutation burden-high metastatic castration-resistant prostate cancer: outcome analysis. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00799-y. [PMID: 38341460 DOI: 10.1038/s41391-024-00799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The efficacy of pembrolizumab monotherapy in metastatic castration-resistant prostate cancer patients (mCRPC) when stratified by MSI-H and/or TMB-H is poorly defined. Additionally, outcomes based on sequencing source (i.e., tissue or liquid biopsy) have not been well described. We sought to assess outcomes of pembrolizumab monotherapy in patients with mCRPC and compare efficacy based on MSI-H and/or TMB-H when identified by tissue or liquid biopsy. METHODS A retrospective analysis was performed of mCRPC patients treated at Mayo Clinic with pembrolizumab monotherapy between 2018 and 2023. Objective response rates (ORR), median progression-free survival (mPFS), and overall survival (mOS), were determined by RECIST v1.1 criteria. RESULTS Twenty-two patients with mCRPC received pembrolizumab monotherapy for at least 3 cycles for a MSI-H or TMB-H indication. All patients had next generation sequencing (NGS) performed via tissue (n = 11) or liquid (n = 10) biopsy source. The ORR was 50% (27.3% complete response and 22.7% had partial response). The mPFS for TMB 10-14.9 mut/Mb (n = 4), TMB 15-24.9 mut/Mb (n = 6), and TMB ≥ 25 mut/Mb (n = 10) was 2.1, not reached (NR), and NR, respectively (p = 0.0003). The mOS for these same groups was 5.1 months, 20.5 months, and not reached, respectively. Among patients with TMB-H without co-occurring MSI-H or CDK12 (n = 6), none experienced a response and only one patient had stable disease compared to patients with MSI-H (n = 12) for whom the ORR was 75%. Immunotherapy responsive alterations such as ATRX and PTCH1 mutations were frequently noticed among patients who had complete response (CR). CONCLUSIONS Our hypothesis-generating study suggests that MSI-H drives the efficacy of pembrolizumab in mCRPC with better survival outcomes as TMB increases. Clinicians should consider alternative treatment strategies for advanced prostate cancer when TMB-H is present without co-occurring MSI-H or CDK12.
Collapse
Affiliation(s)
- Osama Mosalem
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Winston Tan
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Alan H Bryce
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Roxana S Dronca
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Daniel S Childs
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Lance C Pagliaro
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jacob J Orme
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Adam M Kase
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
16
|
Campanelli G, Deabel RA, Puaar A, Devarakonda LS, Parupathi P, Zhang J, Waxner N, Yang C, Kumar A, Levenson AS. Molecular Efficacy of Gnetin C as Dual-Targeted Therapy for Castrate-Resistant Prostate Cancer. Mol Nutr Food Res 2023; 67:e2300479. [PMID: 37863824 DOI: 10.1002/mnfr.202300479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Indexed: 10/22/2023]
Abstract
SCOPE Resistance of castrate-resistant prostate cancer (CRPC) to enzalutamide (Enz) involves the expression of constitutively active androgen receptor splice variant (AR-V7). In addition to altered AR pathways, CRPC is characterized by "non-AR-driven" signaling, which includes an overexpression of metastasis-associated protein 1 (MTA1). Combining natural compounds with anticancer drugs may enhance drug effectiveness while reducing adverse effects. In this study, the in vitro and in vivo anticancer effects of Gnetin C (GnC) alone and in combination with Enz against CRPC are examined. METHODS AND RESULTS The effects of GnC alone and in combination with Enz are assessed by cell viability, clonogenic survival, cell migration, and AR and MTA1 expression using 22Rv1 cells. The tumor growth in vivo is assessed by bioluminescent imaging, western blots, RT-PCR, and IHC. GnC alone and in combined treatment inhibit cell viability, clonogenic survival and migration, and AR and MTA1 expression in 22Rv1 cells. The underlying AR- and MTA1-targeted anticancer mechanisms of treatments in vivo involve inhibition of proliferation and angiogenesis, and induction of apoptosis. CONCLUSION The findings demonstrate that GnC alone and GnC combined with Enz effectively inhibits AR- and MTA1-promoted tumor-progression in advanced CRPC, which indicates its potential as a novel therapeutic approach for CRPC.
Collapse
Affiliation(s)
- Gisella Campanelli
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Rabab Al Deabel
- School of Health Professions and Nursing, Long Island University, Brookville, NY, USA
| | - Anand Puaar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Prashanth Parupathi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Noah Waxner
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Ching Yang
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Anait S Levenson
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| |
Collapse
|
17
|
Huang JL, Yan XL, Huang D, Gan L, Gao H, Fan RZ, Li S, Yuan FY, Zhu X, Tang GH, Chen HW, Wang J, Yin S. Discovery of a highly potent and orally available importin- β1 inhibitor that overcomes enzalutamide-resistance in advanced prostate cancer. Acta Pharm Sin B 2023; 13:4934-4944. [PMID: 38045040 PMCID: PMC10692375 DOI: 10.1016/j.apsb.2023.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023] Open
Abstract
Nuclear transporter importin-β1 is emerging as an attractive target by virtue of its prevalence in many cancers. However, the lack of druggable inhibitors restricts its therapeutic proof of concept. In the present work, we optimized a natural importin-β1 inhibitor DD1 to afford an improved analog DD1-Br with better tolerability (>25 folds) and oral bioavailability. DD1-Br inhibited the survival of castration-resistant prostate cancer (CRPC) cells with sub-nanomolar potency and completely prevented tumor growth in resistant CRPC models both in monotherapy (0.5 mg/kg) and in enzalutamide-combination therapy. Mechanistic study revealed that by targeting importin-β1, DD1-Br markedly inhibited the nuclear accumulation of multiple CRPC drivers, particularly AR-V7, a main contributor to enzalutamide resistance, leading to the integral suppression of downstream oncogenic signaling. This study provides a promising lead for CRPC and demonstrates the potential of overcoming drug resistance in advanced CRPC via targeting importin-β1.
Collapse
Affiliation(s)
- Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou 550025, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huahua Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Run-Zhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Wu Chen
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Lyles RDZ, Martinez MJ, Sherman B, Schürer S, Burnstein KL. Automation, live-cell imaging, and endpoint cell viability for prostate cancer drug screens. PLoS One 2023; 18:e0287126. [PMID: 37815978 PMCID: PMC10564233 DOI: 10.1371/journal.pone.0287126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 10/12/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard of care for high risk and advanced prostate cancer; however, disease progression from androgen-dependent prostate cancer (ADPC) to lethal and incurable castration-resistant prostate cancer (CRPC) and (in a substantial minority of cases) neuroendocrine prostate cancer (NEPC) is common. Identifying effective targeted therapies is challenging because of acquired resistance to established treatments and the vast heterogeneity of advanced prostate cancer (PC). To streamline the identification of potentially active prostate cancer therapeutics, we have developed an adaptable semi-automated protocol which optimizes cell growth and leverages automation to enhance robustness, reproducibility, and throughput while integrating live-cell imaging and endpoint viability assays to assess drug efficacy in vitro. In this study, culture conditions for 72-hr drug screens in 96-well plates were established for a large, representative panel of human prostate cell lines including: BPH-1 and RWPE-1 (non-tumorigenic), LNCaP and VCaP (ADPC), C4-2B and 22Rv1 (CRPC), DU 145 and PC3 (androgen receptor-null CRPC), and NCI-H660 (NEPC). The cell growth and 72-hr confluence for each cell line was optimized for real-time imaging and endpoint viability assays prior to screening for novel or repurposed drugs as proof of protocol validity. We demonstrated effectiveness and reliability of this pipeline through validation of the established finding that the first-in-class BET and CBP/p300 dual inhibitor EP-31670 is an effective compound in reducing ADPC and CRPC cell growth. In addition, we found that insulin-like growth factor-1 receptor (IGF-1R) inhibitor linsitinib is a potential pharmacological agent against highly lethal and drug-resistant NEPC NCI-H660 cells. This protocol can be employed across other cancer types and represents an adaptable strategy to optimize assay-specific cell growth conditions and simultaneously assess drug efficacy across multiple cell lines.
Collapse
Affiliation(s)
- Rolando D. Z. Lyles
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
| | - Maria J. Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Benjamin Sherman
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kerry L. Burnstein
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
19
|
Gulliver C, Huss S, Semjonow A, Baillie GS, Hoffmann R. Loss of PDE4D7 expression promotes androgen independence, neuroendocrine differentiation and alterations in DNA repair: implications for therapeutic strategies. Br J Cancer 2023; 129:1462-1476. [PMID: 37740039 PMCID: PMC10628190 DOI: 10.1038/s41416-023-02417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Androgen signalling remains the seminal therapeutic approach for the management of advanced prostate cancer. However, most tumours eventually shift towards an aggressive phenotype, characterised by androgen independence and treatment resistance. The cyclic adenosine monophosphate (cAMP) pathway plays a crucial role in regulating various cellular processes, with the phosphodiesterase PDE4D7 being a vital modulator of cAMP signalling in prostate cancer cells. METHODS Using shRNA-mediated PDE4D7 knockdown in LNCaP cells and downstream analysis via RNA sequencing and phenotypic assays, we replicate clinical observations that diminished PDE4D7 expression promotes an aggressive prostate cancer phenotype. RESULTS Our study provides evidence that loss of PDE4D7 expression represents a pivotal switch driving the transition from an androgen-sensitive state to hormone unresponsiveness and neuroendocrine differentiation. In addition, we demonstrate that PDE4D7 loss affects DNA repair pathways, conferring resistance to poly ADP ribose polymerase (PARP) inhibitors. CONCLUSION Reinstating PDE4D7 expression sensitises prostate cancer cells to anti-androgens, DNA damage response inhibitors, and cytotoxic therapies. These findings provide significant insight into the regulatory role of PDE4D7 in the development of lethal prostate cancer and the potential of its modulation as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chloe Gulliver
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK.
| | - Sebastian Huss
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, 48149, Münster, Germany
| | - Axel Semjonow
- Prostate Center, University Hospital Münster, 48149, Münster, Germany
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK
| | - Ralf Hoffmann
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK.
- Oncology Solutions, Philips Research Europe, High Tech Campus 34, 5656AE, Eindhoven, The Netherlands.
| |
Collapse
|
20
|
Alvarez-Artime A, Garcia-Soler B, Gonzalez-Menendez P, Fernandez-Vega S, Cernuda-Cernuda R, Hevia D, Mayo JC, Sainz RM. Castration promotes the browning of the prostate tumor microenvironment. Cell Commun Signal 2023; 21:267. [PMID: 37770940 PMCID: PMC10536697 DOI: 10.1186/s12964-023-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Adipose tissue has gained attention due to its potential paracrine role. Periprostatic adipose tissue surrounds the prostate and the prostatic urethra, and it is an essential player in prostate cancer progression. Since obesity is directly related to human tumor progression, and adipose tissue depots are one of the significant components of the tumor microenvironment, the molecular mediators of the communication between adipocytes and epithelial cells are in the spotlight. Although periprostatic white adipose tissue contributes to prostate cancer progression, brown adipose tissue (BAT), which has beneficial effects in metabolic pathologies, has been scarcely investigated concerning cancer progression. Given that adipose tissue is a target of androgen signaling, the actual role of androgen removal on the periprostatic adipose tissue was the aim of this work. METHODS Surgical castration of the transgenic adenocarcinoma of the mouse prostate (TRAMP) was employed. By histology examination and software analysis, WAT and BAT tissue was quantified. 3T3-like adipocytes were used to study the role of Casodex® in modifying adipocyte differentiation and to investigate the function of the secretome of adipocytes on the proliferation of androgen-dependent and independent prostate cancer cells. Finally, the role of cell communication was assayed by TRAMP-C1 xenograft implanted in the presence of 3T3-like adipocytes. RESULTS Androgen removal increases brown/beige adipose tissue in the fat immediately surrounding the prostate glands of TRAMP mice, concomitant with an adjustment of the metabolism. Castration increases body temperature, respiratory exchange rate, and energy expenditure. Also, in vitro, it is described that blocking androgen signaling by Casodex® increases the uncoupling protein 1 (UCP1) marker in 3T3-like adipocytes. Finally, the effect of brown/beige adipocyte secretome was studied on the proliferation of prostate cancer cells in vivo and in vitro. The secretome of brown/beige adipocytes reduces the proliferation of prostate cancer cells mediated partly by the secretion of extracellular vesicles. CONCLUSIONS Consequently, we concluded that hampering androgen signaling plays a crucial role in the browning of the periprostatic adipose tissue. Also, the presence of brown adipocytes exhibits the opposite effect to that of white adipocytes in vitro regulating processes that govern the mechanisms of cell proliferation of prostate cancer cells. And finally, promoting the browning of adipose tissue in the periprostatic adipose tissue might be a way to handle prostate cancer cell progression. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Alvarez-Artime
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Belen Garcia-Soler
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Sheila Fernandez-Vega
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - David Hevia
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Juan C Mayo
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain.
| | - Rosa M Sainz
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain.
| |
Collapse
|
21
|
Giesen A, Baekelandt L, Devlies W, Devos G, Dumez H, Everaerts W, Claessens F, Joniau S. Double trouble for prostate cancer: synergistic action of AR blockade and PARPi in non-HRR mutated patients. Front Oncol 2023; 13:1265812. [PMID: 37810962 PMCID: PMC10551452 DOI: 10.3389/fonc.2023.1265812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men worldwide. Despite better and more intensive treatment options in earlier disease stages, a large subset of patients still progress to metastatic castration-resistant PCa (mCRPC). Recently, poly-(ADP-ribose)-polymerase (PARP)-inhibitors have been introduced in this setting. The TALAPRO-2 and PROpel trials both showed a marked benefit of PARPi in combination with an androgen receptor signaling inhibitor (ARSI), compared with an ARSI alone in both the homologous recombination repair (HRR)-mutated, as well as in the HRR-non-mutated subgroup. In this review, we present a comprehensive overview of how maximal AR-blockade via an ARSI in combination with a PARPi has a synergistic effect at the molecular level, leading to synthetic lethality in both HRR-mutated and HRR-non-mutated PCa patients. PARP2 is known to be a cofactor of the AR complex, needed for decompacting the chromatin and start of transcription of AR target genes (including HRR genes). The inhibition of PARP thus reinforces the effect of an ARSI. The deep androgen deprivation caused by combining androgen deprivation therapy (ADT) with an ARSI, induces an HRR-like deficient state, often referred to as "BRCA-ness". Further, PARPi will prevent the repair of single-strand DNA breaks, leading to the accumulation of DNA double-strand breaks (DSBs). Due to the induced HRR-deficient state, DSBs cannot be repaired, leading to apoptosis.
Collapse
Affiliation(s)
- Alexander Giesen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Herlinde Dumez
- Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
22
|
Biernacka KM, Barker R, Sewell A, Bahl A, Perks CM. A role for androgen receptor variant 7 in sensitivity to therapy: Involvement of IGFBP-2 and FOXA1. Transl Oncol 2023; 34:101698. [PMID: 37307644 PMCID: PMC10276180 DOI: 10.1016/j.tranon.2023.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths in men. Localised PCa can be treated effectively, but most patients relapse/progress to more aggressive disease. One possible mechanism underlying this progression is alternative splicing of the androgen receptor, with AR variant 7(ARV7) considered to play a major role. Using viability assays, we confirmed that ARV7-positive PCa cells were less sensitive to treatment with cabazitaxel and an anti-androgen-enzalutamide. Also, using live-holographic imaging, we showed that PCa cells with ARV7 exhibited an increased rate of cell division, proliferation, and motility, which could potentially contribute to a more aggressive phenotype. Furthermore, protein analysis demonstrated that ARV7 knock-down was associated with a decrease in insulin-like growth factor-2 (IGFBP-2) and forkhead box protein A1(FOXA1). This correlation was confirmed in-vivo using PCa tissue samples. Spearman rank correlation analysis showed significant positive associations between ARV7 and IGFBP-2 or FOXA1 in tissue from patients with PCa. This association was not present with the AR. These data suggest an interplay of FOXA1 and IGFBP-2 with ARV7-mediated acquisition of an aggressive prostate cancer phenotype.
Collapse
Affiliation(s)
- K M Biernacka
- Cancer Endocrinology Group, Translational Health Sciences, University of Bristol Southmead Hospital, BS10 5NB, Bristol, UK
| | - R Barker
- Cancer Endocrinology Group, Translational Health Sciences, University of Bristol Southmead Hospital, BS10 5NB, Bristol, UK
| | - A Sewell
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - A Bahl
- Bristol Haematology and Oncology Centre, Department of Clinical Oncology, University Hospitals Bristol, Bristol BS2 8ED, UK
| | - C M Perks
- Cancer Endocrinology Group, Translational Health Sciences, University of Bristol Southmead Hospital, BS10 5NB, Bristol, UK.
| |
Collapse
|
23
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
24
|
Lowentritt B, Pilon D, Waters D, Rossi C, Muser E, Kurteva S, Shah A, Khilfeh I, Du S, Ellis L, Lefebvre P, Brown G. Comparison of prostate-specific antigen response in patients with metastatic castration-sensitive prostate cancer initiated on apalutamide or abiraterone acetate: A retrospective cohort study. Urol Oncol 2023; 41:252.e19-252.e27. [PMID: 37080833 DOI: 10.1016/j.urolonc.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Deep prostate-specific antigen (PSA) response (≥90% reduction in PSA [PSA90]) is an important early response indicator of radiographic progression-free survival and overall survival in patients with metastatic castration-sensitive prostate cancer (mCSPC). This study compared PSA90 responses by 6 months between patients with mCSPC at first use of apalutamide or abiraterone acetate, both androgen receptor signaling inhibitors. METHODS Clinical data from 77 community urology practices in the United States were analyzed. Patients with mCSPC were classified into treatment cohorts based on their first filled prescription (index date) for apalutamide or abiraterone acetate on or after September 17, 2019 (approval date of apalutamide for mCSPC). Patients were followed from the index date until the earliest of index treatment discontinuation, treatment switch, end of clinical activity, or end of data availability (September 17, 2021). Inverse probability of treatment weighting (IPTW) was used to ensure similarity in distribution of baseline characteristics between cohorts. PSA90 was defined as the earliest attainment of ≥90% reduction in PSA relative to baseline (most recent value within 13 weeks pre-index). Time to PSA90 between cohorts was compared by weighted Kaplan-Meier analysis and with Cox proportional hazards models. RESULTS A total of 364 patients treated with apalutamide and 147 treated with abiraterone acetate met the study criteria. Patient characteristics were well balanced after IPTW. By 6 months post-index, patients initiated on apalutamide were 53% more likely to achieve PSA90 than those initiated on abiraterone acetate (P = 0.016). Similar results were observed by 9 and 12 months post-index (both P ≤ 0.019). The median time to PSA90 was 3.5 months for the apalutamide cohort and not reached for the abiraterone acetate cohort. CONCLUSIONS In real-world patients with mCSPC, significantly more patients achieved PSA90 with apalutamide than with abiraterone acetate, and this response was achieved earlier with apalutamide.
Collapse
Affiliation(s)
| | | | | | | | - Erik Muser
- Janssen Scientific Affairs, LLC, Horsham, PA
| | | | - Aditi Shah
- Analysis Group, Inc., Montréal, QC, Canada
| | | | - Shawn Du
- Janssen Scientific Affairs, LLC, Horsham, PA
| | - Lorie Ellis
- Janssen Scientific Affairs, LLC, Horsham, PA
| | | | | |
Collapse
|
25
|
Lowentritt B, Pilon D, Khilfeh I, Rossi C, Muser E, Kinkead F, Waters D, Ellis L, Lefebvre P, Brown G. Attainment of early, deep prostate-specific antigen response in metastatic castration-sensitive prostate cancer: A comparison of patients initiated on apalutamide or enzalutamide. Urol Oncol 2023; 41:253.e1-253.e9. [PMID: 37061452 DOI: 10.1016/j.urolonc.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Deep prostate-specific antigen (PSA) response, defined as a ≥90% decline in PSA (PSA90), is an important early response indicator for achieving radiographic progression-free and overall survival in patients with metastatic castration-sensitive prostate cancer (mCSPC) treated with a next-generation androgen signaling inhibitor (ASI), such as apalutamide or enzalutamide. The objective of this study was to compare deep PSA response among patients with mCSPC newly initiated on apalutamide or enzalutamide. METHODS Clinical data from 69 community urology practices in the United States were evaluated. Patients with mCSPC were classified into cohorts based on their first dispensation (index date) for apalutamide or enzalutamide and were followed until the earliest of treatment discontinuation, initiation of a new next-generation androgen receptor signaling inhibitor, end of clinical activity (including death), or end of data availability (03/05/2021). Inverse probability of treatment weights (IPTW) were used to reduce baseline confounding. PSA90 was defined as the earliest ≥90% PSA decline relative to baseline PSA. The proportion of patients achieving PSA90 and time to PSA90 were reported using weighted Kaplan-Meier analysis and weighted Cox proportional hazards models, respectively. RESULTS The apalutamide and enzalutamide cohorts comprised 186 and 165 patients, respectively. Patient characteristics were generally well balanced after IPTW. By 6 months, patients initiated on apalutamide had a 56% greater likelihood of attaining PSA90 than those initiated on enzalutamide (P = 0.014). This result remained significant through the end of the observation period. The median time to achieving PSA90 was 3.1 months with apalutamide and 5.2 months with enzalutamide. CONCLUSIONS This real-world study demonstrated that apalutamide initiation is associated with a significantly higher likelihood of achieving ≥90% reduction in PSA as compared to initiation of enzalutamide. Moreover, this deep PSA response was observed to occur earlier with apalutamide treatment than with enzalutamide.
Collapse
Affiliation(s)
| | | | | | | | - Erik Muser
- Janssen Scientific Affairs, LLC, Horsham, PA
| | | | | | - Lorie Ellis
- Janssen Scientific Affairs, LLC, Horsham, PA
| | | | | |
Collapse
|
26
|
Zhang Z, Xie T, Zhang S, Yin H, Zhang X, Zhang S, Chen W, Yu D, Qiu X, Zhao W, Guo H, Zhuang J. Second generation androgen receptor antagonist, TQB3720 abrogates prostate cancer growth via AR/GPX4 axis activated ferroptosis. Front Pharmacol 2023; 14:1110146. [PMID: 36744249 PMCID: PMC9895946 DOI: 10.3389/fphar.2023.1110146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose: Prostate cancer (PCa) poses a great threat to humans. The study aimed to evaluate the potential of TQB3720 in promoting ferroptosis to suppress prostate cancer, providing a theoretical basis for PCa therapy. Methods: PCa cells and nude mice models were divided into TQB3720, enzalutamide (ENZ), and control groups. Sulforhodamine B assay, colony formation assessment, organoids culture system, and the CCK8 assay were used for detecting proliferation. Western blot assay was processed to detect the expression of androgen receptor (AR), ferroptosis, and apoptosis-related genes. Flow cytometry was applied to measure the intracellular ROS levels. ELISA was performed to determine the cellular oxidized glutathione (GSSG) and malondialdehyde (MDA) levels. RT-qPCR was conducted to detect the mRNA expression of genes in AR signaling. BODIPYTM™ 581/591 was processed for detection of intracellular lipid peroxidation levels. The interaction of AR with other translational factor complex proteins was explored using Co-immunoprecipitation (Co-IP), and the chromatin immunoprecipitation (ChIP) assay was performed to detect the binding of AR-involved translational complex to downstream genes promoter. Luciferase reporter assay was conducted to examine the translation activity of GPX4 promoter, and immunohistochemistry (IHC) was conducted to analyze the levels of c-MYC, Ki-67 and AR in TQB3720-treated cancer tissues. Results: Here, we found TQB3720 inhibits the growth of prostate cancer in vitro and in vivo. TQB3720 treatment induced intracellular levels of GSSG and MDA significantly, by which hints AR antagonist caused ferroptosis-related cell death. Moreover, molecular evidence shown TQB3720 regulates downstream of AR signaling by binding AR resulting in inhibition of AR entry into the nucleus. Additional, we also proved that TQB3720 abrogates the interaction between AR and SP1 and leads to decrease GPX4 transcription. Conclusion: TQB3720 promotes ferroptosis in prostate cancer cells by reducing the AR/SP1 transcriptional complex binding to GPX4 promoter. As a result, it is suggested to be a potential drug for clinic prostate cancer treatment.
Collapse
Affiliation(s)
- Zhongqing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianlei Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shun Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Haoli Yin
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Xuyu Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Chen
- Institute of Urology Nanjing University, Nanjing, China
| | - Ding Yu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Xuefeng Qiu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, Ming DJ, Liu MY, Hu H, Zeng XT. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m 6A reader YTHDC1. Cell Death Dis 2023; 14:7. [PMID: 36609444 PMCID: PMC9822915 DOI: 10.1038/s41419-022-05544-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
SLC12A5, a neuron-specific potassium-chloride co-transporter, has been reported to promote tumor progression, however, the underlying mechanism remains unclear. Here we report that SLC12A5 functions as an oncogene to promote tumor progression and castration resistance of prostate cancer through the N6-methyladenosine (m6A) reader YTHDC1 and the transcription factor HOXB13. We have shown that the level of SLC12A5 was increased in prostate cancer, in comparison to its normal counterparts, and further elevated in castration-resistant prostate cancer (CRPC). The enhanced expression of SLC12A5 mRNA was associated with neuroendocrine prostate cancer (NEPC) progression and poor survival in prostate cancer. Furthermore, we demonstrated that SLC12A5 promoted the castration resistance development of prostate cancer in addition to the cell proliferation and migration. Interestingly, SLC12A5 was detected in the cell nucleus and formed a complex with nuclear m6A reader YTHDC1, which in turn upregulated HOXB13 to promote the prostate cancer progression. Therefore, our findings reveal a mechanism that how the potassium-chloride cotransporter SLC12A5 promotes the tumor progression and provide a therapeutic opportunity for prostate cancer to apply the neurological disorder drug SLC12A5 inhibitors.
Collapse
Affiliation(s)
- Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shao-Hua He
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Lu-Yao Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Xi
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin-Hui Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Dan-Qi Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Meng Guo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Haozhe Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuang-Ying Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dao-Jing Ming
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Meng-Yang Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Choupani E, Madjd Z, Saraygord-Afshari N, Kiani J, Hosseini A. Combination of androgen receptor inhibitor enzalutamide with the CDK4/6 inhibitor ribociclib in triple negative breast cancer cells. PLoS One 2022; 17:e0279522. [PMID: 36548336 PMCID: PMC9779032 DOI: 10.1371/journal.pone.0279522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) that currently lacks specific therapy options. Thus, chemotherapy continues to be the primary treatment, and developing novel targets is a top clinical focus. The androgen receptor (AR) has emerged as a therapeutic target in a subtype of TNBC, with substantial clinical benefits shown in various clinical studies. Numerous studies have shown that cancer is associated with changes in components of the cell cycle machinery. Although cell cycle cyclin-dependent kinase (CDK) 4/6 inhibitors are successful in the treatment of ER-positive BC, they are not helpful in the treatment of patients with TNBC. We investigated the possibility of combining CDK4/6 inhibitor(ribociclib) with AR inhibitor(enzalutamide) in the AR-positive TNBC cell line. Ribociclib showed an inhibitory effect in TNBC cells. Additionally, we found that enzalutamide reduced cell migration/invasion, clonogenic capacity, cell cycle progression, and cell growth in AR-positive cells. Enzalutamide therapy could increase the cytostatic impact of ribociclib in AR+ TNBC cells. Furthermore, dual inhibition of AR and CDK4/6 demonstrated synergy in an AR+ TNBC model compared to each treatment alone.
Collapse
Affiliation(s)
- Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
29
|
Ha S, Luo G, Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J Med Chem 2022; 65:16128-16154. [PMID: 36459083 DOI: 10.1021/acs.jmedchem.2c01487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PC), the second most prevalent malignancy in men worldwide, has been proven to depend on the aberrant activation of androgen receptor (AR) signaling. Long-term androgen deprivation for the treatment of PC inevitably leads to castration-resistant prostate cancer (CRPC) in which AR remains a crucial oncogenic driver. Thus, there is an urgent need to develop new strategies to address this unmet medical need. Targeting AR for degradation has recently been in a vigorous development stage, and accumulating clinical studies have highlighted the benefits of AR degraders in CRPC patients. Herein, we provide a comprehensive summary of small-molecule AR degraders with diverse mechanisms of action including proteolysis-targeting chimeras (PROTACs), selective AR degraders (SARDs), hydrophobic tags (HyT), and other AR degraders with distinct mechanisms. Accordingly, their structure-activity relationships, biomedical applications, and therapeutic values are also dissected to provide insights into the future development of promising AR degradation-based therapeutics for CRPC.
Collapse
Affiliation(s)
- Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
30
|
Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213768. [PMID: 36430245 PMCID: PMC9699340 DOI: 10.3390/ijms232213768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant type of liver cancer and a leading cause of cancer-related death globally. It is also a sexually dimorphic disease with a male predominance both in HCC and in its precursors, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of the androgen receptor (AR) in HCC has been well documented; however, AR-targeted therapies have failed to demonstrate efficacy in HCC. Building upon understandings of AR in prostate cancer (PCa), this review examines the role of AR in HCC, non-androgen-mediated mechanisms of induced AR expression, the existence of AR splice variants (AR-SV) in HCC and concludes by surveying current AR-targeted therapeutic approaches in PCa that show potential for efficacy in HCC in light of AR-SV expression.
Collapse
|
31
|
Androgen-Responsive Oncogenic lncRNA RP11-1023L17.1 Enhances c-Myc Protein Stability in Prostate Cancer. Int J Mol Sci 2022; 23:ijms232012219. [PMID: 36293081 PMCID: PMC9603324 DOI: 10.3390/ijms232012219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been found as novel participants in the pathophysiology of prostate cancer (PCa), which is predominantly regulated by androgen and its receptor. The biological function of androgen-responsive lncRNAs remains poorly understood. Here, we identified that lncRNA RP11-1023L17.1, which is highly expressed in PCa. RP11-1023L17.1 expression, can be directly repressed by the androgen receptor in PCa cells. RP11-1023L17.1 depletion inhibited the proliferation, migration, and cell cycle progression, and promoted the apoptosis of PCa cells, indicating that RP11-1023L17.1 acts as an oncogene in PCa cells. Microarray results revealed that RP11-1023L17.1 depletion downregulated the c-Myc transcription signature in PCa cells. RP11-1023L17.1 depletion-induced cellular phenotypes can be overcome by ectopically overexpressed c-Myc. Mechanistically, RP11-1023L17.1 represses FBXO32 mRNA expression, thereby enhancing c-Myc protein stability by blocking FBXO32-mediated c-Myc degradation. Our findings reveal the previously unrecognized roles of RP11-1023L17.1 in c-Myc-dependent PCa tumorigenesis.
Collapse
|
32
|
Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol 2022; 149:2259-2270. [PMID: 36151426 PMCID: PMC10097763 DOI: 10.1007/s00432-022-04371-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Metabolic reprogramming has been recognised as a hallmark in solid tumours. Malignant modification of the tumour's bioenergetics provides energy for tumour growth and progression. Otto Warburg first reported these metabolic and biochemical changes in 1927. In prostate cancer (PCa) epithelial cells, the tumour metabolism also changes during development and progress. These alterations are partly driven by the androgen receptor, the key regulator in PCa development, progress, and survival. In contrast to other epithelial cells of different entities, glycolytic metabolism in prostate cells sustains physiological citrate secretion in the normal prostatic epithelium. In the early stages of PCa, citrate is utilised to power oxidative phosphorylation and fuel lipogenesis, enabling tumour growth and progression. In advanced and incurable castration-resistant PCa, a metabolic shift towards choline, amino acid, and glycolytic metabolism fueling tumour growth and progression has been described. Therefore, even if the metabolic changes are not fully understood, the altered metabolism during tumour progression may provide opportunities for novel therapeutic strategies, especially in advanced PCa stages. This review focuses on the main differences in PCa's metabolism during tumourigenesis and progression highlighting glutamine's role in PCa.
Collapse
|
33
|
Krause W. Resistance to prostate cancer treatments. IUBMB Life 2022; 75:390-410. [PMID: 35978491 DOI: 10.1002/iub.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
A review of the current treatment options for prostate cancer and the formation of resistance to these regimens has been compiled including primary, acquired, and cross-resistance. The diversification of the pathways involved and the escape routes the tumor is utilizing have been addressed. Whereas early stages of tumor can be cured, there is no treatment available after a point of no return has been reached, leaving palliative treatment as the only option. The major reasons for this outcome are the heterogeneity of tumors, both inter- and intra-individually and the nearly endless number of escape routes, which the tumor can select to overcome the effects of treatment. This means that more focus should be applied to the individualization of both diagnosis and therapy of prostate cancer. In addition to current treatment options, novel drugs and ongoing clinical trials have been addressed in this review.
Collapse
|
34
|
Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis 2022; 13:632. [PMID: 35864113 PMCID: PMC9304354 DOI: 10.1038/s41419-022-05084-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a hormone-dependent malignancy, whose onset and progression are closely related to the activity of the androgen receptor (AR) signaling pathway. Due to this critical role of AR signaling in driving prostate cancer, therapy targeting the AR pathway has been the mainstay strategy for metastatic prostate cancer treatment. The utility of these agents has expanded with the emergence of second-generation AR antagonists, which began with the approval of enzalutamide in 2012 by the United States Food and Drug Administration (FDA). Together with apalutamide and darolutamide, which were approved in 2018 and 2019, respectively, these agents have improved the survival of patients with prostate cancer, with applications for both androgen-dependent and castration-resistant disease. While patients receiving these drugs receive a benefit in the form of prolonged survival, they are not cured and ultimately progress to lethal neuroendocrine prostate cancer (NEPC). Here we summarize the current state of AR antagonist development and highlight the emerging challenges of their clinical application and the potential resistance mechanisms, which might be addressed by combination therapies or the development of novel AR-targeted therapies.
Collapse
Affiliation(s)
- Yanhua Chen
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Qianqian Zhou
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - William Hankey
- grid.10698.360000000122483208Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xiaosheng Fang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 271000 Jinan, Shandong China
| | - Fuwen Yuan
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
35
|
Chen X, Yang G, Liu M, Quan Z, Wang L, Luo C, Wu X, Zheng Y. Lycopene enhances the sensitivity of castration-resistant prostate cancer to enzalutamide through the AKT/EZH2/ androgen receptor signaling pathway. Biochem Biophys Res Commun 2022; 613:53-60. [DOI: 10.1016/j.bbrc.2022.04.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
|
36
|
Lai YL, Liu CH, Wang SC, Huang SP, Cho YC, Bao BY, Su CC, Yeh HC, Lee CH, Teng PC, Chuu CP, Chen DN, Li CY, Cheng WC. Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis. Cancers (Basel) 2022; 14:cancers14061565. [PMID: 35326723 PMCID: PMC8946240 DOI: 10.3390/cancers14061565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Prostate cancer (PC) is the second most common cancer worldwide and steroid hormone plays an important role in prostate carcinogenesis. Most patients with PC are initially sensitive to androgen deprivation therapy (ADT) but eventually become hormone refractory and reflect disease progression. The aim of the study was to investigate the genes which regulate the steroid hormone functional pathways and associate with the disease progression of PC. We identified a panel of eight-gene signatures that modulated steroid-hormone pathways and predicted the prognosis of PC using integrative bioinformatics analysis of multiple datasets validated from external cohorts. This panel could be used for predicting the prognosis of PC patients and might be associated with the drug response of hormonal therapies. Moreover, these genes in the signature could be potential targets to develop a novel treatment for castration-resistant PC therapy. Abstract The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7 was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.
Collapse
Affiliation(s)
- Yo-Liang Lai
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan;
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40403, Taiwan
| | - Chia-Hsin Liu
- Research Center for Cancer Biology, China Medical University, Taichung 40403, Taiwan; (C.-H.L.); (Y.-C.C.)
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Pin Huang
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-P.H.); (H.-C.Y.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chun Cho
- Research Center for Cancer Biology, China Medical University, Taichung 40403, Taiwan; (C.-H.L.); (Y.-C.C.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 40403, Taiwan;
| | - Chia-Cheng Su
- Department of Surgery, Division of Urology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
| | - Hsin-Chih Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-P.H.); (H.-C.Y.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Pai-Chi Teng
- Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350401, Taiwan;
| | - Deng-Neng Chen
- Department Management Information Systems, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (C.-Y.L.); (W.-C.C.)
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan;
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40403, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia, Sinica 40403, Taiwan
- Correspondence: (C.-Y.L.); (W.-C.C.)
| |
Collapse
|
37
|
Xu T, Liu Y, Schulga A, Konovalova E, Deyev S, Tolmachev V, Vorobyeva A. Epithelial cell adhesion molecule‑targeting designed ankyrin repeat protein‑toxin fusion Ec1‑LoPE exhibits potent cytotoxic action in prostate cancer cells. Oncol Rep 2022; 47:94. [PMID: 35315504 PMCID: PMC8968790 DOI: 10.3892/or.2022.8305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Targeted anticancer therapeutics offer the advantage of reducing cytotoxic side effects to normal cells by directing the cytotoxic payload selectively to cancer cells. Designed ankyrin repeat proteins (DARPins) are promising non-immunoglobulin-based scaffold proteins for payload delivery to cancer-associated molecular targets. Epithelial cell adhesion molecule (EpCAM) is overexpressed in 40–60% of prostate cancers (PCs) and is associated with metastasis, increased risk of PC recurrence and resistance to treatment. Here, we investigated the use of DARPin Ec1 for targeted delivery of Pseudomonas exotoxin A variant (LoPE) with low immunogenicity and low non-specific toxicity to EpCAM-expressing prostate cancer cells. Ec1-LoPE fusion protein was radiolabeled with tricarbonyl technetium-99m and its binding specificity, binding kinetics, cellular processing, internalization and cytotoxicity were evaluated in PC-3 and DU145 cell lines. Ec1-LoPE showed EpCAM-specific binding to EpCAM-expressing prostate cancer cells. Rapid internalization mediated potent cytotoxic effect with picomolar IC50 values in both studied cell lines. Taken together, these data support further evaluation of Ec1-LoPE in a therapeutic setting in a prostate cancer model in vivo.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin‑Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| |
Collapse
|
38
|
Guo T, Wang J, Yan S, Meng X, Zhang X, Xu S, Ren S, Huang Y. A combined signature of glycolysis and immune landscape predicts prognosis and therapeutic response in prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1037099. [PMID: 36339430 PMCID: PMC9634133 DOI: 10.3389/fendo.2022.1037099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is a common malignancy that poses a major threat to the health of men. Prostate-specific antigen (PSA) and its derivatives, as FDA-approved detection assays, are insufficient to serve as optimal markers for patient prognosis and clinical decision-making. It is widely acknowledged that aberrant glycolytic metabolism in PCa is related to tumor progression and acidifies the tumor microenvironment (TME). Considering the non-negligible impacts of glycolysis and immune functions on PCa, we developed a combined classifier in prostate cancer. The Glycolysis Score containing 19 genes and TME Score including three immune cells were created, using the univariate and multivariate Cox proportional hazards model, log-rank test, least absolute shrinkage and selection operator (LASSO) regression analysis and the bootstrap approach. Combining the glycolysis and immunological landscape, the Glycolysis-TME Classifier was then constructed. It was observed that the classifier was more accurate in predicting the prognosis of patients than the current biomarkers. Notably, there were significant differences in metabolic activity, signaling pathways, mutational landscape, immunotherapeutic response, and drug sensitivity among the Glycolysishigh/TMElow, Mixed group and Glycolysislow/TMEhigh identified by this classifier. Overall, due to the significant prognostic value and potential therapeutic guidance of the Glycolysis-TME Classifier, we anticipate that this classifier will be clinically beneficial in the management of patients with PCa.
Collapse
Affiliation(s)
- Tao Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shi Yan
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Xiangyu Meng
- Department of Urology , The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaomin Zhang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Shuang Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
- *Correspondence: Yuhua Huang, ; Shancheng Ren,
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- *Correspondence: Yuhua Huang, ; Shancheng Ren,
| |
Collapse
|