1
|
Chidambaram K, Rekha A, Goyal A, Rana M. Targeting KRAS-G12C in lung cancer: The emerging role of PROTACs in overcoming resistance. Pathol Res Pract 2025; 270:155954. [PMID: 40233529 DOI: 10.1016/j.prp.2025.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
In lung cancer, KRAS mutations, especially the G12C, favor aggressive tumor growth and resistance to standard therapies. Although first-generation inhibitors of KRAS G12C, such as sotorasib and adagrasib, are highly effective in early-phase studies, resistance invariably develops under selective inhibition pressure and rarely leads to sustained long-term treatment benefits. As a novel approach to targeting KRAS mutations in lung cancer, PROTAC (Proteolysis Targeting Chimera) technology is explored in this review. The PROTACs take advantage of the cell's ubiquitin-proteasome system to selectively degrade KRAS proteins, overcoming the dilemma of a lack of traditional binding sites and the means of resistance. We review recent progress with KRAS-specific PROTACs and their mechanisms, clinical application, and effectiveness at targeting primary KRAS oncogenes and secondary drivers and signaling pathways contributing to therapeutic resistance. Also, the synergies between PROTACs and immunotherapies or chemotherapies are further amplified. This review also underscores PROTAC technology's promise to advance precision medicine by providing durable treatment options for KRAS-driven lung cancers. It addresses future directions for optimizing PROTAC efficacy, bioavailability, and patient-specific applications.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - A Rekha
- Dr DY Patil Medical college , Hospital and Research Centre, Pimpri , Pune, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
2
|
Dasharathy S, Pranay, Devadas SK, Tripathi E, Karyala P. Emerging role of deubiquitinases in modulating cancer chemoresistance. Drug Discov Today 2025; 30:104339. [PMID: 40118446 DOI: 10.1016/j.drudis.2025.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Chemotherapy remains a gold standard in cancer treatment by targeting the rapidly dividing cancer cells. However, chemoresistance is a major obstacle to successful cancer treatment, often leading to recurrence, metastasis, and high mortality. Deubiquitinases (DUBs), enzymes that remove ubiquitin and stabilize proteins, have been implicated in chemoresistance and can either promote therapeutic resistance or enhance sensitivity depending on their targets. In this review, we highlight the chemoresistance mechanisms of DUBs in various cancers, including breast, lung, liver, gastrointestinal, colorectal, ovarian, prostate, and blood cancers. Given these mechanisms, the development of DUB inhibitors has gained considerable attention in cancer therapeutics and combination therapies involving these inhibitors show potential to overcome drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Sukeerthi Dasharathy
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Pranay
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Santhosh K Devadas
- Department of Medical Oncology, Ramaiah Medical College and Hospital, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| | - Prashanthi Karyala
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| |
Collapse
|
3
|
Kuhtić I, Mandić Paulić T, Kovačević L, Badovinac S, Jakopović M, Dobrenić M, Hrabak-Paar M. Clinical TNM Lung Cancer Staging: A Diagnostic Algorithm with a Pictorial Review. Diagnostics (Basel) 2025; 15:908. [PMID: 40218258 PMCID: PMC11988785 DOI: 10.3390/diagnostics15070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/13/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
Lung cancer is a prevalent malignant disease with the highest mortality rate among oncological conditions. The assessment of its clinical TNM staging primarily relies on contrast-enhanced computed tomography (CT) of the thorax and proximal abdomen, sometimes with the addition of positron emission tomography/CT scans, mainly for better evaluation of mediastinal lymph node involvement and detection of distant metastases. The purpose of TNM staging is to establish a universal nomenclature for the anatomical extent of lung cancer, facilitating interdisciplinary communication for treatment decisions and research advancements. Recent studies utilizing a large international database and multidisciplinary insights indicate a need to update the TNM classification to enhance the anatomical categorization of lung cancer, ultimately optimizing treatment strategies. The eighth edition of the TNM classification, issued by the International Association for the Study of Lung Cancer (IASLC), transitioned to the ninth edition on 1 January 2025. Key changes include a more detailed classification of the N and M descriptor categories, whereas the T descriptor remains unchanged. Notably, the N2 category will be split into N2a and N2b based on the single-station or multi-station involvement of ipsilateral mediastinal and/or subcarinal lymph nodes, respectively. The M1c category will differentiate between single (M1c1) and multiple (M1c2) organ system involvement for extrathoracic metastases. This review article emphasizes the role of radiologists in implementing the updated TNM classification through CT imaging for correct clinical lung cancer staging and optimal patient management.
Collapse
Affiliation(s)
- Ivana Kuhtić
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Tinamarel Mandić Paulić
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lucija Kovačević
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Sonja Badovinac
- Department of Pulmonology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marko Jakopović
- Department of Pulmonology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Margareta Dobrenić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Nuclear Medicine and Radiation Protection, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Maja Hrabak-Paar
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Kiruthiga C, Jafni S, Preethi S, Kannan NR, Pandima Devi K. Oral toxicity assessment and the mitigation of lung carcinogenesis by phytol and α-bisabolol combination treatment in swiss albino mice: insights into redox enzyme modulation and caspase-dependent cell death mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3881-3894. [PMID: 39367984 DOI: 10.1007/s00210-024-03484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
This study examined the safety and potential anti-lung cancer effects of combinations of phytol and α-bisabolol in Swiss albino mice. Both acute and subacute toxicity assessments showed that the combination of phytol and α-bisabolol is safe, with no adverse effects observed at higher concentrations. Hematological, biochemical, and histopathological tests showed no signs of toxicity in the heart, lungs, liver, spleen, and kidneys. The LD50 was greater than 2000 mg/kg, indicating a large safety margin. Histopathological analysis confirmed cancer induction in the B(a)P-induced group, which had significantly altered relative lung weights. Lung weight increased slightly pre and post-treatment, but histopathology showed normal alveolar epithelium. GSH and SOD levels increased significantly in B(a)P-exposed groups, indicating an adaptive antioxidant response. CAT levels increased significantly in the post-treatment group, demonstrating the role of combination of phytol and α-bisabolol in protecting against B(a)P-induced oxidative damage. Upregulation of Bax and downregulation of Bcl-2 caused a pro-apoptotic environment, suggesting a way to inhibit malignant cell survival. Modulation of caspase-3 and caspase-9 showed the complexity of carcinogen-induced apoptotic signaling. In conclusion, phytol and α-bisabolol were found to be safe and organ-protective, and demonstrated no acute or subacute toxicity. They modulate antioxidant defenses and apoptotic pathways, which may help prevent and treat lung cancer.
Collapse
Affiliation(s)
| | - Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Shankar Preethi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | | | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
5
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
6
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
7
|
Bao J, Li Z, Zhang D. β-elemene: A promising natural compound in lung cancer therapy. Eur J Pharmacol 2025; 997:177399. [PMID: 40064226 DOI: 10.1016/j.ejphar.2025.177399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Lung cancer, a leading cause of cancer-related mortality globally, presents complex challenges in treatment and disease management. This review explores β-elemene, a sesquiterpene from Curcuma wenyujin, emphasising its pharmacological effects and therapeutic mechanisms in lung cancer. Focusing on its roles in modulating cellular pathways, this study details β-elemene's influence on apoptosis, autophagy, ferroptosis, hypoxic responses, metabolic shifts, and cell cycle arrest, as well as its impact on the tumour microenvironment and regulatory pathways (including PI3K/AKT, STAT3, AMPK/MAPK) and non-coding RNAs. The potential of β-elemene as a complementary agent in chemotherapy, radiotherapy, and hyperthermia therapy is examined, underscoring its capability to bolster treatment efficacy and counter drug resistance. The review also addresses current obstacles in clinical use, notably bioavailability issues, and explores innovative delivery systems like liposomes and microemulsions designed to enhance therapeutic delivery. Although preclinical studies indicate significant anti-tumor effects, further research is needed to address clinical translation challenges. Collectively, this review highlights β-elemene's multi-targeted therapeutic potential in lung cancer, advocating for ongoing research to refine its clinical use and optimize patient outcomes.
Collapse
Affiliation(s)
- Jiahui Bao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhiliang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
8
|
Njotu FN, Pougoue Ketchemen J, Babeker H, Henning N, Tikum AF, Nwangele E, Monzer A, Hassani N, Gray BD, Pak KY, Torlakovic EE, Uppalapati M, Fonge H. Preclinical safety and effectiveness of a long-acting somatostatin analogue [ 225Ac]Ac-EBTATE against small cell lung cancer and pancreatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2025; 52:1305-1320. [PMID: 39627348 DOI: 10.1007/s00259-024-07011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/24/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE We report the preclinical evaluation of potent long-acting [225Ac]Ac-EBTATE against SSTR2-positive small cell lung cancer (SCLC) and pancreatic neuroendocrine tumors (pan-NETs). METHODS The pharmacokinetic, biodistribution, and safety studies were evaluated in healthy female and/or male BALB/c mice after intravenous injections of [225Ac]Ac-EBTATE. Further biodistribution and radioligand therapy were investigated in female athymic BALB/c nude mice bearing high or low SSTR2-expressing subcutaneous SCLC models NCI-H524 or NCI-H727, respectively, and in a pan-NET model QGP1.SSTR2. RESULTS Pharmacokinetics confirmed a prolonged clearance half-life (40.27 ± 9.23 h) while biodistribution in healthy male and female BALB/c mice was similar, with prolonged blood circulation that peaked at 6 h. Biodistribution in subcutaneous xenograft models of NCI-H524 and NCI-H727 showed consistent tumor-uptake with SSTR2-overexpression while the projected human effective doses for males and females were 61.7 and 83.7 millisievert/megabecquerel, respectively. 2 × 34 kBq of [225Ac]Ac-EBTATE administered 10 days (d) apart, was generally tolerated for 28 days in healthy BALB/c mice as revealed by blood biochemistry, complete blood count, and histopathological examination of H&E-stained organs. Targeted alpha therapy at 2 × 30 kBq of [225Ac]Ac-EBTATE, injected 10 days apart, resulted in 100% survivals and 80% and 20% complete remissions for NCI-H524 and QGP1.SSTR2 models, respectively. Additionally, [225Ac]Ac-EBTATE had a dose-dependent response in the NCI-H727 model, with median survivals for 2 × 30 kBq and 2 × 15 kBq groups being 63 d (p < 0.0007), and 47 d (p = 0.0148), respectively. CONCLUSIONS [225Ac]Ac-EBTATE is safe and effective against SCLC and pan-NET and therefore warrants clinical investigation.
Collapse
Affiliation(s)
- Fabrice N Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Anjong F Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada
| | - Alissar Monzer
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Nava Hassani
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Brian D Gray
- Molecular Targeting Technologies, Inc. West Chester, West Chester, PA, 19380, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc. West Chester, West Chester, PA, 19380, USA
| | - Emina E Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
- Department of Pathology, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada.
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, 2250 Boul. Henri-Bourassa, Québec, QC, G1J 5B3, Canada.
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, 1050 Av. de la Medicine, Québec, QC, G1V 0A6, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
9
|
Su M, Zhu J, Bai L, Cao Y, Wang S. Exploring manzamine a: a promising anti-lung cancer agent from marine sponge Haliclona sp. Front Pharmacol 2025; 16:1525210. [PMID: 40070571 PMCID: PMC11893592 DOI: 10.3389/fphar.2025.1525210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Manzamine A (MA), a bioactive compound derived from the marine sponge Haliclona sp., shows considerable therapeutic potential, particularly in the treatment of various cancer types. Extracted with acetone and purified through chromatography, MA exhibits a bioavailability of 20.6% when administered orally in rats, underscoring its feasibility for therapeutic use. This compound disrupts key cellular mechanisms essential for cancer progression, including microtubule dynamics and DNA replication enzymes, demonstrating strong anti-proliferative effects against multiple cancer cell lines while sparing normal cells. Additionally, network pharmacology and molecular docking studies reveal MA's interactions with important targets related to lung cancer progression, such as EGFR and SRC, bolstering its potential as a novel anti-lung cancer agent. Pathway analyses further indicate that MA influences critical signaling pathways involved in tumor growth and metastasis. Given the urgent need for effective treatments against drug-resistant cancers and the limited toxicity profile of MA, further exploration of its pharmacological benefits and mechanism could pave the way for new therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Min Su
- School of Pharmacy, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jie Zhu
- Department of Scientific Research Management and Foreign Affairs, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Luyuan Bai
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Cao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Wang J, Liu L, Gao X, Liu X, Dai Y, Mao Z, Huang S, Li J, Wang D, Qi Y, Han Y, Xu Y, Chua CYX, Grattoni A, Xie W, Yang H, Huang G. A novel pathway for stemness propagation and chemoresistance in non-small cell lung cancer via phosphorylated PKM2-loaded small extracellular vesicles. Theranostics 2025; 15:3439-3461. [PMID: 40093893 PMCID: PMC11905138 DOI: 10.7150/thno.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Non-small cell lung cancer (NSCLC) is a predominant cause of cancer-related mortality, with its progression and treatment resistance significantly influenced by cancer stem cells (CSCs) and their complex intercellular communication mechanisms. Small extracellular vesicles (sEVs) have emerged as pivotal mediators of intercellular signaling, affecting tumor microenvironment modulation and therapeutic resistance. This study investigates the role of CSC-derived sEVs in transmitting stemness traits through the selective sorting of pyruvate kinase M2 phosphorylated at the Y105 site (pY105-PKM2), mediated by the adaptor protein IQGAP1, which supports CSC maintenance and drug resistance in NSCLC. Methods: In vitro and in vivo experiments, including proteomic and transcriptomic analyses, were conducted to identify key regulators of sEV-mediated signaling. Immunoprecipitation, proximity ligation assays, and immunofluorescence were used to examine the role of IQGAP1 in the sorting of pY105-PKM2 into sEVs. Functional assays, including sphere formation, chemoresistance tests, metabolic assessments, and cell cycle analysis, were conducted to evaluate the effects of sEV-mediated delivery of pY105-PKM2 on recipient cells. Additionally, immunohistochemistry and survival analysis were performed on tumor samples from NSCLC patients to establish clinical correlations. Results: We unveiled a novel mechanism by which CSC-derived sEVs transmit stemness traits to replenish the CSC pool in NSCLC. CSC-derived sEVs were enriched with pY105-PKM2, correlating with enhanced stemness, chemoresistance, and poor clinical outcomes. Mechanistically, IQGAP1 was identified as an adaptor facilitating the selective sorting of pY105-PKM2 into sEVs through interactions with the ESCRT component TSG101. Recipient cells treated with CSC-derived sEVs exhibited metabolic reprogramming, slower cell cycle progression, and enhanced chemoresistance. The synergistic role of IQGAP1 and pY105-PKM2 was confirmed, highlighting their critical contributions to CSC maintenance and malignant progression. Conclusion: This study highlights the critical role of CSC-derived sEVs in NSCLC progression and therapy resistance through the IQGAP1-mediated selective sorting of pY105-PKM2. By uncovering this novel pathway, our findings provide valuable insights into CSC pool replenishment and therapeutic resistance mechanisms in NSCLC, identifying IQGAP1 and pY105-PKM2 as promising therapeutic targets for mitigating CSC-driven malignancy and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Gao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiyu Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yitian Dai
- Laboratory of Stem Cell Biology and Engineering, New York Blood Center, New York, NY 10065, USA
| | - Zijun Mao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shengzhe Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Junjian Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yu Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yingwen Han
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunjing Xu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
11
|
Figueroa Rosado MM, Muñoz Forti K, Rodríguez-Rodríguez P, Arroyo-Martínez G, Rodríguez-Irizarry VJ, Ruiz-Rivera A, Quinones-Rodriguez JI, Santiago-Cardona PG, Rodriguez Martinez OM, Almodovar S, Castro ME, Suárez Martínez E. Calcium Sulfide Nanoclusters Trigger DNA Damage and Induce Cell Cycle Arrest in Non-Small-Cell Lung Adenocarcinoma Cells. Int J Mol Sci 2025; 26:1665. [PMID: 40004132 PMCID: PMC11855498 DOI: 10.3390/ijms26041665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains the most common malignancy independent of sex. Here, we focused on unraveling the molecular mechanisms of CaS nanoclusters inducing cytotoxicity by investigating DNA damage, the cell cycle, oxidative stress, and cellular repair mechanisms in non-small-cell lung carcinoma (NSCLC) cells compared to healthy lung fibroblasts. Our previous studies have demonstrated the therapeutic potential of calcium sulfide (CaS) nanostructures in skin and breast cancer models, leading to a significant reduction in cancer cell proliferation. However, how CaS nanoclusters enhance their therapeutic effects on cancer cells while minimizing damage to healthy cells remains unknown. Our results show that CaS nanoclusters, once dissociated into Ca2+ and H2S in an acidic microenvironment, selectively allow extracellular calcium to enter, leading to an increase in free calcium entry, triggering oxidative stress and limiting DNA repair mechanisms in NSCLC. Furthermore, CaS nanoclusters selectively arrest NSCLC cells in the G0-G1 and S phases of the cell cycle without affecting healthy cells' cycles. Here, we also show that the selective effects of CaS nanoclusters on lung adenocarcinoma are less likely to be regulated by intrinsic apoptotic or mitochondrial pathways. They are, rather, caused by an increase in Ca2+ and ROS, causing double-stranded DNA breakages. This selectivity for malignant cells is pH-dependent because it occurs in the acidic microenvironment characteristic of these cells. Overall, this is the first piece of evidence that CaS disrupts genomic stability, prevents the replication of damaged cells, and ultimately influences cell fate decisions such as cell cycle arrest or cell death including mitotic catastrophe and necroptotic simultaneous events.
Collapse
Affiliation(s)
| | - Kevin Muñoz Forti
- Department of Biology, University of Puerto Rico, Ponce 00732, Puerto Rico
| | | | | | | | | | | | | | | | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubock, TX 79430, USA
| | - Miguel E. Castro
- Department of Chemistry, University of Puerto Rico, Mayagüez 00680, Puerto Rico
| | - Edu Suárez Martínez
- Department of Biology, University of Puerto Rico, Ponce 00732, Puerto Rico
- Department of Basic Sciences, Ponce Health Sciences University, Ponce 00716, Puerto Rico
| |
Collapse
|
12
|
Baumann AA, Buribayev Z, Wolkenhauer O, Salybekov AA, Wolfien M. Epigenomic Echoes-Decoding Genomic and Epigenetic Instability to Distinguish Lung Cancer Types and Predict Relapse. EPIGENOMES 2025; 9:5. [PMID: 39982247 PMCID: PMC11843950 DOI: 10.3390/epigenomes9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025] Open
Abstract
Genomic and epigenomic instability are defining features of cancer, driving tumor progression, heterogeneity, and therapeutic resistance. Central to this process are epigenetic echoes, persistent and dynamic modifications in DNA methylation, histone modifications, non-coding RNA regulation, and chromatin remodeling that mirror underlying genomic chaos and actively influence cancer cell behavior. This review delves into the complex relationship between genomic instability and these epigenetic echoes, illustrating how they collectively shape the cancer genome, affect DNA repair mechanisms, and contribute to tumor evolution. However, the dynamic, context-dependent nature of epigenetic changes presents scientific and ethical challenges, particularly concerning privacy and clinical applicability. Focusing on lung cancer, we examine how specific epigenetic patterns function as biomarkers for distinguishing cancer subtypes and monitoring disease progression and relapse.
Collapse
Affiliation(s)
- Alexandra A. Baumann
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, 18051 Rostock, Germany; (A.A.B.)
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Zholdas Buribayev
- Department of Computer Science, Faculty of Information Technologies, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, 18051 Rostock, Germany; (A.A.B.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, 80333 Freising, Germany
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7535, South Africa
| | - Amankeldi A. Salybekov
- Regenerative Medicine Division, Cell and Gene Therapy Department, Qazaq Institute of Innovative Medicine, 010000 Astana, Kazakhstan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Markus Wolfien
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry, TUD Dresden University of Technology, 01069 Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), 01069 Dresden, Germany
| |
Collapse
|
13
|
Stawarska A, Bamburowicz-Klimkowska M, Pisklak DM, Gawlak M, Grudzinski IP. A Pilot Study on Qualitative Metabolomics to Characterize Lewis Lung Carcinoma in Mice. Life (Basel) 2025; 15:202. [PMID: 40003611 PMCID: PMC11857005 DOI: 10.3390/life15020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolomics is a powerful tool that can be used to identify different stages in cancer development. In this study, the metabolomic profile of Lewis lung carcinoma (LLC) was characterized in C57BL/6 mice bearing LLC tumors. Magnetic resonance spectroscopy (nuclear magnetic resonance-NMR) was applied using a 400 MHz 1H NMR spectrometer. Two types of metabolites (polar and non-polar) were identified on LLC based on the analysis of methanol/water and chloroform extracts collected from lung cancer samples in mice. The investigated metabolomics show that the neoplastic processes of growing LLC on mice may affect carbohydrate; alanine and glutamate; leucine and isoleucine; lysine; creatine; and choline metabolism, whereas hypoxia states were identified due to elevated lactate in lung cancer tissues. The metabolomic profile of Lewis lung carcinoma could be considered to be a valuable biomarker in translational lung cancer research.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | | | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Maciej Gawlak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
14
|
Shah M, Hussain M, Woo HG. Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. Genomics Inform 2025; 23:1. [PMID: 39833954 PMCID: PMC11744992 DOI: 10.1186/s44342-024-00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer and remains a leading cause of cancer-related deaths worldwide. While traditional approaches like surgical resection and tyrosine kinase inhibitors struggle against the tumor's immune evasion, monoclonal antibody (mAb)-based immunotherapies have emerged as promising alternatives. Several therapeutic antibodies that counter the immunosuppressive tumor microenvironment have demonstrated efficacy in clinical trials, leading to FDA approvals for advanced HCC treatment. A crucial aspect of advancing these therapies lies in understanding the structural interactions between antibodies and their targets. Recent findings indicate that mAbs and bispecific antibodies (bsAbs) can target different, non-overlapping epitopes on immune checkpoints such as PD-1 and CTLA-4. This review delves into the epitope-paratope interactions of structurally unresolved mAbs and bsAbs, and discusses the potential for combination therapies based on their non-overlapping epitopes. By leveraging this unique feature, combination therapies could enhance immune activation, reduce resistance, and improve overall efficacy, marking a new direction for antibody-based immunotherapy in HCC.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Hussain
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, 16499, Republic of Korea.
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Haysom‐McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, Adams J, Dua K, De Rubis G. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Mol Oncol 2025; 19:15-36. [PMID: 39592417 PMCID: PMC11705733 DOI: 10.1002/1878-0261.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
Collapse
Affiliation(s)
- Adam Haysom‐McDowell
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Keshav Raj Paudel
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
- Centre for Inflammation Centenary Institute, Faculty of Science, School of Life SciencesUniversity of Technology SydneyAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Jon Adams
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
16
|
Loo CY, Traini D, Young PM, Yeung S, Leong CR, Lee WH. Evaluation of curcumin nanoparticles of various sizes for targeting multidrug-resistant lung cancer cells via inhalation. Nanomedicine (Lond) 2025; 20:141-153. [PMID: 39660666 PMCID: PMC11731332 DOI: 10.1080/17435889.2024.2439241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Inhalation drug delivery can deliver high doses of chemotherapeutic drugs to the lung tumor. This study evaluates the efficacy and the mechanistic pathways of nebulized Cur NPs at various sizes to treat multidrug resistant lung cancer. METHODS AND RESULTS Cur-NPs (30 nm and 200 nm) were nebulized separately onto the multidrug-resistant lung cancer cells (H69AR). Smaller NPs induced significantly higher cell death owing to a higher rate of particle internalization via dynamin-dependent clathrin-mediated endocytosis. Owing to the higher lysosome trafficking of Cur-NP30 nm compared to Cur-NP200 nm, oxidation of lysosome was higher (0.47 ± 0.08 vs 0.38 ± 0.08), contributing to significantly higher mitochondrial membrane potential loss (1.57 ± 0.17 vs 1.30 ± 0.11). MRP1 level in H69AR cells was reduced from 352 ± 12.3 ng/µg of protein (untreated cells) to 287 ± 12 ng/µg of protein (Cur-NP30 nm) and 303 ± 13.4 ng/µg of protein (Cur-NP200 nm). NF-κB, and various cytokine expressions were reduced after treatment with nebulized Cur-NPs. CONCLUSIONS Nebulized Cur-NPs formulations could be internalized into the H69AR cells. The Cur-NPs toxicity toward the H69AR was size and time-dependent. Cur-NP30 nm was more effective than Cur-NP200 nm to retain within the cells to exert higher oxidative stresss-induced cell death.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Chean Ring Leong
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Melaka, Malaysia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia
| |
Collapse
|
17
|
Raungrut P, Tanyapattrapong S, Masjon T, Maungchanburi S, Thongsuksai P. Transcriptomic Profiling of Carboplatin- and Paclitaxel-Resistant Lung Adenocarcinoma Cells Reveals CSF3 as a Potential Biomarker for the Carboplatin Plus Paclitaxel Doublet Regimens. Curr Issues Mol Biol 2024; 46:13951-13969. [PMID: 39727962 PMCID: PMC11727171 DOI: 10.3390/cimb46120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to generate Car- and Pac-resistant cell lines from the human lung adenocarcinoma H1792 cell line, designated as H1792/Car and H1792/Pac, and perform transcriptome sequencing to identify potential targets. Common differentially expressed genes (Co-DEGs) in both resistant cell lines were identified, followed by hub gene identification. Online validation was conducted through GEPIA and Kaplan-Meier Plotter platforms, with experimental validation performed using real-time quantitative PCR (RT-qPCR). After six months, the H1792/Car and H1792/Pac cell lines exhibited a 10.7-fold and 5.6-fold increase in resistance to Car and Pac, respectively. Flow cytometry analysis demonstrated that both resistant cell lines were resistant to cell cycle arrest and apoptosis induced by Car or Pac. Transcriptomic sequencing identified 123 Co-DEGs, including 72 upregulated and 51 downregulated genes, consistently expressed in both H1792/Car and H1792/Pac cell lines. Among these, 13 hub genes were identified, with colony-stimulating factor 3 (CSF3) uniquely associated with post-progression survival (PPS) in adenocarcinoma patients undergoing chemotherapy. Notably, CSF3 expression was significantly elevated in both H1792/Car and H1792/Pac compared to parental cells. These findings underscore the value of drug-resistant models in uncovering critical biomarkers. CSF3 emerges as a promising guiding marker or potential molecular target for optimizing Car- and Pac-based doublet regimens.
Collapse
Affiliation(s)
- Pritsana Raungrut
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkhla University, Hat Yai 90110, Songkhla, Thailand; (S.T.); (T.M.); (S.M.)
| | - Suchanan Tanyapattrapong
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkhla University, Hat Yai 90110, Songkhla, Thailand; (S.T.); (T.M.); (S.M.)
| | - Thipphanet Masjon
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkhla University, Hat Yai 90110, Songkhla, Thailand; (S.T.); (T.M.); (S.M.)
| | - Saowanee Maungchanburi
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkhla University, Hat Yai 90110, Songkhla, Thailand; (S.T.); (T.M.); (S.M.)
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkhla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
18
|
Pochini L, Tedesco GE, Mazza T, Scalise M, Indiveri C. OCTN1 mediates acetylcholine transport in the A549 lung cancer cells: possible pathophysiological implications. Front Mol Biosci 2024; 11:1512530. [PMID: 39719963 PMCID: PMC11666908 DOI: 10.3389/fmolb.2024.1512530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
A role for acetylcholine in cell proliferation, epithelial mesenchymal transition and invasion has been well assessed and related to the presence of the non-neuronal cholinergic system in lung cancer. For the operation of this non-neuronal system, acetylcholine should be released by a transporter mediated non-quantal process. OCTN1 is one of the transporters able to catalyse acetylcholine efflux in vitro and ex vivo. Using the A549 cell line as a lung cancer model, it has been found that these cells express OCTN1 at a higher level with respect to other cancer cells. The transport capacity of OCTN1 extracted from A549 and reconstituted into proteoliposomes reflects the protein expression profile. The properties of the acetylcholine transport mediated by OCTN1 of A549 in terms of specificity to ligands and ability to catalyse efflux of acetylcholine correspond to those previously described for the same transporter in other cells or to those of the human recombinant protein. OCTN1 is the major player in acetylcholine release in A549 and, therefore, may represent a target for inhibitors able to block the acetylcholine action in this type of aggressive tumors.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Giusi Elisabetta Tedesco
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| |
Collapse
|
19
|
Ganina A, Askarov M, Kozina L, Karimova M, Shayakhmetov Y, Mukhamedzhanova P, Brimova A, Berikbol D, Chuvakova E, Zaripova L, Baigenzhin A. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Adv Respir Med 2024; 92:504-525. [PMID: 39727496 PMCID: PMC11673795 DOI: 10.3390/arm92060045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer. Investigations are also exploring the factors that influence the success of T-cell therapy and the methods used to stimulate them. Achieving a comprehensive understanding of the characteristics of activated lymphocytes and deciphering the mechanisms underlying their activation of innate anti-tumor immunity will pave the way for numerous clinical trials and the development of innovative strategies for cancer therapy like combined immunotherapy and radiation therapy.
Collapse
Affiliation(s)
- Anastasia Ganina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Manarbek Askarov
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Larissa Kozina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Madina Karimova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Yerzhan Shayakhmetov
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Perizat Mukhamedzhanova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Aigul Brimova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Daulet Berikbol
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Elmira Chuvakova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Lina Zaripova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Abay Baigenzhin
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| |
Collapse
|
20
|
Nardone V, Reginelli A, Patanè V, Sangiovanni A, Grassi R, Russo A, Correale P, Giordano DS, Zaccaria C, Belfiore MP, Cappabianca S. Prognostic Value of Sarcopenia in Elderly Patients with Metastatic Non-Small-Cell Lung Cancer Undergoing Radiotherapy. Curr Oncol 2024; 31:6673-6685. [PMID: 39590123 PMCID: PMC11592436 DOI: 10.3390/curroncol31110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Sarcopenia, a syndrome characterized by age-related loss of muscle mass and function, lacks universally accepted diagnostic criteria, particularly for its role as a prognostic factor in elderly patients with non-small-cell lung cancer (NSCLC). This study aimed to evaluate the prognostic significance of sarcopenia, assessed by psoas muscle size on baseline CT scans, in patients over 70 years of age with metastatic NSCLC. Methods: We retrospectively analyzed 85 elderly patients undergoing palliative radiation therapy between August 2022 and July 2024. Using morphometric analysis of psoas size, we investigated its correlation with overall survival (OS) and progression-free survival (PFS). Results: Our results showed that decreased psoas size was significantly associated with shorter OS and PFS, with median OS of 10 months and PFS of 4 months in sarcopenic patients compared to longer survival times in non-sarcopenic patients. Median survival of non-sarcopenic vs. sarcopenic patients was 21 ± 7 months (muscle area > median) versus 5 ± 2.3 months (muscle area < median). Multivariate analysis confirmed that psoas size, along with ECOG performance status and treatment of primary NSCLC, was a significant predictor of survival. Discussion: These findings suggest that psoas muscle size is a valuable prognostic marker for elderly NSCLC patients, potentially guiding treatment decisions and patient management. Further research is needed to validate these results and refine prognostic models for this population.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Anna Russo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Pierpaolo Correale
- Unit of Medical Oncology, Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89128 Reggio Calabria, Italy;
| | - Diego Sandro Giordano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Carmine Zaccaria
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.R.); (V.P.); (A.S.); (R.G.); (A.R.); (D.S.G.); (C.Z.); (M.P.B.); (S.C.)
| |
Collapse
|
21
|
Kandimalla R, Moholkar DN, Samanta SK, Tyagi N, Aqil F, Gupta R. Oncogene Downregulation by Mahanine Suppresses Drug-Sensitive and Drug-Resistant Lung Cancer and Inhibits Orthotopic Tumor Progression. Cancers (Basel) 2024; 16:3572. [PMID: 39518013 PMCID: PMC11545155 DOI: 10.3390/cancers16213572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Lung cancer is one of the deadliest cancers, and drug resistance complicates its treatment. Mahanine (MH), an alkaloid from Murraya koenigii has been known for its anti-cancer properties. However, its effectiveness and mechanisms in treating non-small cell lung cancer (NSCLC) remain largely unexplored. The present study aimed to investigate MH's effect on drug-sensitive and drug-resistant NSCLC and its potential mechanism of action. Methods: We isolated MH from M. koenigii leaves and the purity (99%) was confirmed by HPLC, LC-MS and NMR. The antiproliferative activity of MH was determined using MTT and colony formation assays against drug-sensitive (A549 and H1299) and Taxol-resistant lung cancer cells (A549-TR). Western blot analysis was performed to determine MH's effects on various molecular targets. Anti-tumor activity of MH was determined against lung tumors developed in female NOD Scid mice injected with A549-Fluc bioluminescent cells (1.5 × 106) intrathoracically. Results: MH dose-dependently reduced the proliferation of all lung cancer cells (A549, H1299 and A549-TR), with IC50 values of 7.5, 5, and 10 µM, respectively. Mechanistically, MH arrested cell growth in the G0/G1 and G2/M phases of the cell cycle by inhibiting cyclin-dependent kinase 4/6 (CDK4/6) and cell division control 2 (CDC2) and induced apoptosis through the downregulation of B-cell leukemia/lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL). The apoptotic induction capacity of MH can also be attributed to its ability to inhibit pro-oncogenic markers, including mesenchymal-epithelial transition factor receptor (MET), phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), survivin, rat sarcoma viral oncogene (RAS), myelocytomatosis oncogene (cMYC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) levels. In vivo, MH (25 mg/kg b. wt.) significantly (p < 0.001) inhibited the growth of A549 lung cancer orthotopic xenografts in NOD Scid mice by 70%. Conclusions: Our study provides new mechanistic insights into MH's therapeutic potential against NSCLC.
Collapse
Affiliation(s)
- Raghuram Kandimalla
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Disha N. Moholkar
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | - Neha Tyagi
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh Gupta
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
22
|
AL-Haj WA, Nsairat H, El-Tanani M. Pimozide-loaded nanostructured lipid carriers: Repurposing strategy against lung cancer. Sci Prog 2024; 107:368504241296304. [PMID: 39497512 PMCID: PMC11536680 DOI: 10.1177/00368504241296304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
OBJECTIVE This study aimed to repurpose pimozide (PMZ) by incorporating it into nanostructured lipid carriers (NLC) using a modified melting emulsion ultrasonication method. METHODS We employed stearic and oleic acids in a 1:1 ratio as lipids, with Tween 80 and PEG 4000 as surfactants. The formulation was analyzed for particle size, zeta potential, and encapsulation efficiency. Transmission electron microscopy (TEM) was used to confirm the spherical shape of the particles. The release profile of PMZ-NLC was evaluated under different pH conditions, and anticancer activity was tested on A549 cell lines. RESULTS The PMZ-NLC exhibited an average particle size of 136 ± 2.9 nm, a zeta potential of -25.1 ± 0.9 mV, and an encapsulation efficiency of 86% ± 11. TEM confirmed the spherical shape of the NLCs. PMZ release from PMZ-NLC was pH-sensitive, enhancing tumor targeting. IC50 values were 16.5 μM for free PMZ and 12.9 μM for PMZ-NLC after 72 h. DISCUSSION PMZ-NLC demonstrated improved anticancer activity compared to free PMZ, suggesting that encapsulation enhances the drug's effectiveness. The pH-sensitive release profile supports its potential for targeted therapy in lung cancer. CONCLUSIONS PMZ-NLC showed potential as a safe and effective strategy for lung cancer treatment. Further investigation is warranted to evaluate its in vivo efficacy, long-term safety, and clinical application.
Collapse
Affiliation(s)
- Wafa’ A. AL-Haj
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
23
|
Thoidingjam S, Sriramulu S, Hassan O, Brown SL, Siddiqui F, Movsas B, Gadgeel S, Nyati S. BUB1 Inhibition Overcomes Radio- and Chemoradiation Resistance in Lung Cancer. Cancers (Basel) 2024; 16:3291. [PMID: 39409911 PMCID: PMC11475950 DOI: 10.3390/cancers16193291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Despite advances in targeted therapies and immunotherapies, traditional treatments like microtubule stabilizers (paclitaxel, docetaxel), DNA-intercalating platinum drugs (cisplatin), and radiation therapy remain essential for managing locally advanced and metastatic lung cancer. Identifying novel molecular targets could enhance the efficacy of these treatments. Hypothesis: We hypothesize that BUB1 (Ser/Thr kinase) is overexpressed in lung cancers and its inhibition will sensitize lung cancers to chemoradiation. Methods: BUB1 inhibitor (BAY1816032) was combined with cisplatin, paclitaxel, a PARP inhibitor olaparib, and radiation in cell proliferation and radiation-sensitization assays. Biochemical and molecular assays evaluated the impact on DNA damage signaling and cell death. Results: Immunostaining of lung tumor microarrays (TMAs) confirmed higher BUB1 expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) compared to normal tissues. In NSCLC, BUB1 overexpression correlated directly with the expression of TP53 mutations and poorer overall survival in NSCLC and SCLC patients. BAY1816032 synergistically sensitized lung cancer cell lines to paclitaxel and olaparib and enhanced cell killing by radiation in both NSCLC and SCLC. Molecular analysis indicated a shift towards pro-apoptotic and anti-proliferative states, evidenced by altered BAX, BCL2, PCNA, and Caspases-9 and -3 expressions. Conclusions: Elevated BUB1 expression is associated with poorer survival in lung cancer. Inhibiting BUB1 sensitizes NSCLC and SCLC to chemotherapies (cisplatin, paclitaxel), targeted therapy (olaparib), and radiation. Furthermore, we present the novel finding that BUB1 inhibition sensitized both NSCLC and SCLC to radiotherapy and chemoradiation. Our results demonstrate BUB1 inhibition as a promising strategy to sensitize lung cancers to radiation and chemoradiation therapies.
Collapse
Affiliation(s)
| | | | - Oudai Hassan
- Department of Surgical Pathology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Shirish Gadgeel
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Division of Hematology/Oncology, Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Papassotiriou I, Kapogiannatos A, Makatsoris C, Bakogeorgou S, Mantogiannakou I, Roussou E, Souras G, Liakas D, Sergentanis TN, Gavriatopoulou M, Ntanasis-Stathopoulos I. Efficacy and Safety of Amivantamab in Advanced or Metastatic EGFR-Mutant Non-Small Cell Lung Cancer: A Systematic Review. J Clin Med 2024; 13:5489. [PMID: 39336976 PMCID: PMC11432208 DOI: 10.3390/jcm13185489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: This systematic review aimed to examine the efficacy and safety profile of amivantamab in patients with advanced or metastatic non-small cell lung cancer (NSCLC) and EGFR mutations. Methods: Three scientific databases, PubMed, Cochrane library and ClinicalTrials.gov were searched for relevant articles up until 30 June 2024. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR) and ≥3 grade adverse events (AE) were the outcomes of interest. Results: Five clinical trials were included in this systematic review, reporting data from 1124 patients (safety population; n = 1091 efficacy population), who received amivantamab as a monotherapy or in combination with other treatments, both in a first-line and in a relapsed/refractory setting. The median PFS for groups of patients that received amivantamab ranged from 4.3 to 8.3 months, while the lowest observed OS was 10.2 months. The ORR ranged from 30% to 73%. The rate of grade 3 or higher AEs ranged from 35% to 92%, while serious AEs ranged from 29% to 52%. Infusion-related reactions (IRRs) ranged from 42% to 78% among patients that received amivantamab intravenously, while a 13% IRR rate was found in a group of patients that received amivantamab subcutaneously. Conclusions: Current evidence suggests that amivantamab is an effective treatment option for patients with advanced or metastatic NSCLC with EGFR mutations. Amivantamab-based combinations may prolong survival both in the treatment of naïve patients and those who have progressed on chemotherapy or tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Ionas Papassotiriou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Antonios Kapogiannatos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christos Makatsoris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Sabrina Bakogeorgou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioanna Mantogiannakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Emmanouela Roussou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Souras
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitris Liakas
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
25
|
Manguinhas R, Serra PA, Gil N, Rosell R, Oliveira NG, Guedes RC. Novel DNA Repair Inhibitors Targeting XPG to Enhance Cisplatin Therapy in Non-Small Cell Lung Cancer: Insights from In Silico and Cell-Based Studies. Cancers (Basel) 2024; 16:3174. [PMID: 39335146 PMCID: PMC11430689 DOI: 10.3390/cancers16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
NSCLC is marked by low survival and resistance to platinum-based chemotherapy. The XPG endonuclease has emerged as a promising biomarker for predicting the prognosis of cisplatin-treated patients and its downregulation having been reported to increase cisplatin efficacy. This study presents an integrated strategy for identifying small molecule inhibitors of XPG to improve cisplatin therapy in NSCLC. A structure-based virtual screening approach was adopted, including a structural and physicochemical analysis of the protein, and a library of small molecules with reported inhibitory activities was retrieved. This analysis identified Lys84 as a crucial residue for XPG activity by targeting its interaction with DNA. After molecular docking and virtual screening calculations, 61 small molecules were selected as potential XPG inhibitors, acquired from the ChemBridge database and then validated in H1299 cells, a NSCLC cell line exhibiting the highest ERCC5 expression. The MTS assay was performed as a first screening approach to determine whether these potential inhibitors could enhance cisplatin-induced cytotoxicity. Overall, among the eight compounds identified as the most promising, three of them revealed to significantly increase the impact of cisplatin. The inherent cytotoxicity of these compounds was further investigated in a non-tumoral lung cell line (BEAS-2B cells), which resulted in the identification of two non-cytotoxic candidates to be used in combination with cisplatin in order to improve its efficacy in NSCLC therapy.
Collapse
Affiliation(s)
- Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
| | - Patrícia A. Serra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
- Egas Moniz Interdisciplinary Research Center, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
| | - Rafael Rosell
- Dr. Rosell Oncology Institute, 08028 Barcelona, Spain;
- Institute Germans Trias i Pujol, 08916 Badalona, Spain
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.)
| |
Collapse
|
26
|
Reinmuth N, Juan-Vidal O, Kowalski D, Bryl M, Kryzhanivska A, Vicente D, Horváth Z, Gálffy G, Csánky E, Pápai Székely Z, Vynnychenko I, Armstrong J, Dalvi T, Xie M, Iyer S, Shrestha Y, Jiang H, Bondarenko I. Novel Combinations of Immunotherapies or DNA Damage Repair Inhibitors in Platinum-Refractory Extensive-Stage Small Cell Lung Cancer: The Phase II BALTIC Study. Clin Cancer Res 2024; 30:4055-4067. [PMID: 39017667 PMCID: PMC11393542 DOI: 10.1158/1078-0432.ccr-24-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE The phase II, multiarm, signal-searching BALTIC study (NCT02937818) assessed novel treatment combinations for platinum-refractory/resistant extensive-stage small cell lung cancer (ES-SCLC). PATIENTS AND METHODS Patients with ES-SCLC with progressive disease during or within 90 days of completing first-line platinum-based chemotherapy received one of three regimens: durvalumab plus tremelimumab followed by durvalumab monotherapy (arm A), adavosertib plus carboplatin (arm B), or ceralasertib plus olaparib (arm C). The primary endpoint was the objective response rate. Prespecified exploratory biomarker analyses were conducted in arms A and C. RESULTS In arm A (n = 41), arm B (n = 10), and arm C (n = 21), the confirmed objective response rates were 7.3%, 0%, and 4.8%, respectively. Safety profiles in all arms were consistent with those of the individual drugs. In arm A, patients with PD-L1 expression (tumor cells or immune cells) ≥1% seemed to have a greater likelihood of achieving disease control with durvalumab plus tremelimumab than those with PD-L1 (tumor cells and immune cells) <1%, and lower baseline ctDNA and reduction in the on-treatment ctDNA level were both associated with longer overall survival. Among patients treated with ceralasertib plus olaparib in arm C, specific immune response-relevant circulating chemokines and cytokines were identified as early biomarkers of survival and pharmacodynamic biomarkers. CONCLUSIONS In BALTIC, all combination regimens demonstrated tolerable safety profiles, but antitumor activity was limited in refractory/resistant ES-SCLC. Among patients treated with durvalumab plus tremelimumab, an association of on-treatment reduction in ctDNA with longer overall survival suggests the potential use of ctDNA as a surrogate of treatment response, warranting further investigation.
Collapse
Affiliation(s)
- Niels Reinmuth
- Department of Thoracic Oncology, Asklepios Lung Clinic Munich-Gauting, Gauting, Germany.
- German Center of Lung Research, LMU Munich, Munich, Germany.
| | - Oscar Juan-Vidal
- Department of Medical Oncology, La Fe University Hospital, Valencia, Spain.
| | - Dariusz Kowalski
- Department of Lung Cancer and Thoracic Tumours, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| | - Maciej Bryl
- Oncology Department, E.J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland.
| | - Anna Kryzhanivska
- Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine.
| | - David Vicente
- Hospital Universitario Virgen Macarena, Seville, Spain.
| | - Zsolt Horváth
- Bacs-Kiskun County Teaching Hospital, Kecskemét, Hungary.
| | | | - Eszter Csánky
- Department of Pulmonology, Semmelweis Hospital, Miskolc, Hungary.
| | | | | | | | | | | | | | | | | | - Igor Bondarenko
- Dnipropetrovsk State Medical Academy, Dnipropetrovsk, Ukraine.
| |
Collapse
|
27
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. eLife 2024; 13:RP96992. [PMID: 39213022 PMCID: PMC11364435 DOI: 10.7554/elife.96992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.
Collapse
Affiliation(s)
- Phaedra C Ghazi
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Kayla T O'Toole
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Sanjana Srinivas Boggaram
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Michael T Scherzer
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Mark R Silvis
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | | | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Eric L Snyder
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Conan G Kinsey
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Internal Medicine, Division of Medical Oncology, University of UtahSalt Lake CityUnited States
| | - Martin McMahon
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Dermatology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
28
|
Koirala M, DiPaola M. Overcoming Cancer Resistance: Strategies and Modalities for Effective Treatment. Biomedicines 2024; 12:1801. [PMID: 39200265 PMCID: PMC11351918 DOI: 10.3390/biomedicines12081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Resistance to cancer drugs is a complex phenomenon that poses a significant challenge in the treatment of various malignancies. This review comprehensively explores cancer resistance mechanisms and discusses emerging strategies and modalities to overcome this obstacle. Many factors contribute to cancer resistance, including genetic mutations, activation of alternative signaling pathways, and alterations in the tumor microenvironment. Innovative approaches, such as targeted protein degradation, immunotherapy combinations, precision medicine, and novel drug delivery systems, hold promise for improving treatment outcomes. Understanding the intricacies of cancer resistance and leveraging innovative modalities are essential for advancing cancer therapy.
Collapse
|
29
|
Mendes C, Lemos I, Hipólito A, Abreu B, Freitas-Dias C, Martins F, Pires R, Barros H, Bonifácio V, Gonçalves L, Serpa J. Metabolic profiling and combined therapeutic strategies unveil the cytotoxic potential of selenium-chrysin (SeChry) in NSCLC cells. Biosci Rep 2024; 44:BSR20240752. [PMID: 38990147 PMCID: PMC11292474 DOI: 10.1042/bsr20240752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024] Open
Abstract
Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.
Collapse
Affiliation(s)
- Cindy Mendes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Ana Hipólito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Bruna Abreu
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Rita F. Pires
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Hélio Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vasco D.B. Bonifácio
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| |
Collapse
|
30
|
Kafeel S, Ragone A, Salzillo A, Palmiero G, Naviglio S, Sapio L. Adiponectin Receptor Agonist AdipoRon Inhibits Proliferation and Drives Glycolytic Dependence in Non-Small-Cell Lung Cancer Cells. Cancers (Basel) 2024; 16:2633. [PMID: 39123363 PMCID: PMC11312309 DOI: 10.3390/cancers16152633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the countless therapeutic advances achieved over the years, non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. To this primacy contribute both non-oncogene addicted and advanced NSCLCs, in which conventional therapies are only partially effective. The adiponectin receptor agonist AdipoRon has revealed antiproliferative action in different cancers, including osteosarcoma and pancreatic cancer. Herein, we investigated its potential anticancer role in NSCLC for the first time. We proved that AdipoRon strongly inhibits viability, growth and colony formation in H1299 and A549 NSCLC cells, mainly through a slowdown in cell cycle progression. Along with the biological behaviors, a metabolic switching was observed after AdipoRon administration in NSCLC cells, consisting of higher glucose consumption and lactate accumulation. Remarkably, both 2-Deoxy Glucose and Oxamate glycolytic-interfering agents greatly enhanced AdipoRon's antiproliferative features. As a master regulator of cell metabolism, AMP-activated protein kinase (AMPK) was activated by AdipoRon. Notably, the ablation of AdipoRon-induced AMPK phosphorylation by Compound-C significantly counteracted its effectiveness. However, the engagement of other pathways should be investigated afterwards. With a focus on NSCLC, our findings further support the ability of AdipoRon in acting as an anticancer molecule, driving its endorsement as a future candidate in NSCLC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.K.); (A.R.); (A.S.); (G.P.); (L.S.)
| | | |
Collapse
|
31
|
Thomas R, Jerome JM, Krieger KL, Ashraf N, Rowley DR. The reactive stroma response regulates the immune landscape in prostate cancer. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:249-77. [DOI: 10.20517/jtgg.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prostate cancer remains the most commonly diagnosed and the second leading cause of cancer-related deaths in men in the United States. The neoplastic transformation of prostate epithelia, concomitant with modulations in the stromal compartment, known as reactive stromal response, is critical for the growth, development, and progression of prostate cancer. Reactive stroma typifies an emergent response to disrupted tissue homeostasis commonly observed in wound repair and pathological conditions such as cancer. Despite the significance of reactive stroma in prostate cancer pathobiology, our understanding of the ontogeny, phenotypic and functional heterogeneity, and reactive stromal regulation of the immune microenvironment in prostate cancer remains limited. Traditionally characterized to have an immunologically "cold" tumor microenvironment, prostate cancer presents significant challenges for advancing immunotherapy compared to other solid tumors. This review explores the detrimental role of reactive stroma in prostate cancer, particularly its immunomodulatory function. Understanding the molecular characteristics and dynamic transcriptional program of the reactive stromal populations in tandem with tumor progression could offer insights into enhancing immunotherapy efficacy against prostate cancer.
Collapse
|
32
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
33
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sulabh Singhal
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Perez-Medina M, Lopez-Gonzalez JS, Benito-Lopez JJ, Ávila-Ríos S, Soto-Nava M, Matias-Florentino M, Méndez-Tenorio A, Galicia-Velasco M, Chavez-Dominguez R, Meza-Toledo SE, Aguilar-Cazares D. Transcriptomic Analysis Reveals Early Alterations Associated with Intrinsic Resistance to Targeted Therapy in Lung Adenocarcinoma Cell Lines. Cancers (Basel) 2024; 16:2490. [PMID: 39001552 PMCID: PMC11240825 DOI: 10.3390/cancers16132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Lung adenocarcinoma is the most prevalent form of lung cancer, and drug resistance poses a significant obstacle in its treatment. This study aimed to investigate the overexpression of long non-coding RNAs (lncRNAs) as a mechanism that promotes intrinsic resistance in tumor cells from the onset of treatment. Drug-tolerant persister (DTP) cells are a subset of cancer cells that survive and proliferate after exposure to therapeutic drugs, making them an essential object of study in cancer treatment. The molecular mechanisms underlying DTP cell survival are not fully understood; however, long non-coding RNAs (lncRNAs) have been proposed to play a crucial role. DTP cells from lung adenocarcinoma cell lines were obtained after single exposure to tyrosine kinase inhibitors (TKIs; erlotinib or osimertinib). After establishing DTP cells, RNA sequencing was performed to investigate the differential expression of the lncRNAs. Some lncRNAs and one mRNA were overexpressed in DTP cells. The clinical relevance of lncRNAs was evaluated in a cohort of patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA). RT-qPCR validated the overexpression of lncRNAs and mRNA in the residual DTP cells and LUAD biopsies. Knockdown of these lncRNAs increases the sensitivity of DTP cells to therapeutic drugs. This study provides an opportunity to investigate the involvement of lncRNAs in the genetic and epigenetic mechanisms that underlie intrinsic resistance. The identified lncRNAs and CD74 mRNA may serve as potential prognostic markers or therapeutic targets to improve the overall survival (OS) of patients with lung cancer.
Collapse
Affiliation(s)
- Mario Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
- Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 14080, Mexico;
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| | - Jesus J. Benito-Lopez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 14080, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico 14080, Mexico; (S.Á.-R.); (M.S.-N.); (M.M.-F.)
| | - Maribel Soto-Nava
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico 14080, Mexico; (S.Á.-R.); (M.S.-N.); (M.M.-F.)
| | - Margarita Matias-Florentino
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico 14080, Mexico; (S.Á.-R.); (M.S.-N.); (M.M.-F.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnologia y Bioinformatica Genomica, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 14080, Mexico;
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| | - Sergio E. Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico 14080, Mexico;
| | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de Mexico 14080, Mexico; (M.P.-M.); (J.S.L.-G.); (J.J.B.-L.); (M.G.-V.); (R.C.-D.)
| |
Collapse
|
35
|
Zhao W, Hu X, Chen Z, Li X. Major Facilitator Superfamily Domain Containing 12 Is Overexpressed in Lung Cancer and Exhibits an Oncogenic Role in Lung Adenocarcinoma Cells. DNA Cell Biol 2024; 43:331-340. [PMID: 38687351 DOI: 10.1089/dna.2023.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Major facilitator superfamily domain containing 12 (MFSD12) regulates lysosomal cysteine import and promotes the proliferation and survival of melanoma cells. However, the expression and function of MFSD12 in other cancers, particularly in lung cancer, remain unclear. The expression of MFSD12 across various types of cancers and corresponding control tissues was examined using TIMER. MFSD12 expression in lung adenocarcinoma (LUAD) and its correlation with distinct clinicopathological features of LUAD patients were analyzed with UALCAN. The correlation between MFSD12 expression and survival of LUAD patients was assessed using the R package, survival, and the relationship between MFSD12 expression and immune infiltration status in LUAD was investigated using CIBERSORT. In addition, MFSD12 expression was knocked down in PC9 LUAD cells and their proliferation, capacity for expansion, cell cycle, apoptosis, and migration/invasion were evaluated through CCK-8 assays, colony formation assays, 7-AAD staining, Annexin V/PI staining, and Transwell assays, respectively. The stemness of these PC9 cells was determined through Western blotting, flow cytometry, and tumor sphere formation assays. MFSD12 mRNA levels were significantly elevated in multiple types of cancers, including LUAD. MFSD12 expression was also positively correlated with cancer stage, nodal metastasis, and infiltration of various immune cells in LUAD, and high MFSD12 levels predicted poor survival among LUAD patients. Knockdown of MFSD12 in PC9 cells resulted in decreased proliferation, attenuated colony formation capacity, cell cycle arrest, elevated apoptosis, impaired migration/invasion, and reduced stemness in PC9 cells. MFSD12 is an oncogene in LUAD.
Collapse
Affiliation(s)
- Weijun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xilin Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zixuan Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579200. [PMID: 38370808 PMCID: PMC10871191 DOI: 10.1101/2024.02.06.579200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS G12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS G12C -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS G12C , efforts are underway to develop effective combination therapies. Here we report that inhibition of KRAS G12C signaling increases autophagy in KRAS G12C expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRAS G12C -driven lung cancer cell proliferation in vitro and superior tumor control in vivo . Additionally, in genetically engineered mouse models of KRAS G12C -driven NSCLC, inhibition of either KRAS G12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRAS G12C in lung cancer.
Collapse
|
37
|
Yang JX, Chuang YC, Tseng JC, Liu YL, Lai CY, Lee AYL, Huang CYF, Hong YR, Chuang TH. Tumor promoting effect of PDLIM2 downregulation involves mitochondrial ROS, oncometabolite accumulations and HIF-1α activation. J Exp Clin Cancer Res 2024; 43:169. [PMID: 38880883 PMCID: PMC11181580 DOI: 10.1186/s13046-024-03094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
38
|
Liu D, Zuo R, Liu W, He Y, Wang Y, Yue P, Gong W, Cui J, Zhu F, Luo Y, Qi L, Guo Y, Chen L, Li G, Liu Z, Chen P, Guo H. DNAJC24 acts directly with PCNA and promotes malignant progression of LUAD by activating phosphorylation of AKT. FASEB J 2024; 38:e23630. [PMID: 38713100 DOI: 10.1096/fj.202300667rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ran Zuo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Yue
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinfang Cui
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fuyi Zhu
- Department of Oncology Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Luo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lisha Qi
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yan Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Cancer Biobank of Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liwei Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guangtao Li
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, LUAD Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
39
|
Faber DL, Agbarya A, Caspy B, Lapidot M, Rosenberg SK, Schneer S, Sharoni E, Galili R. A Single-Center Experience in Combined Oncological-Surgical Treatment for Resectable Locally Advanced Non-Small Cell Lung Cancer (NSCLC). Diseases 2024; 12:98. [PMID: 38785753 PMCID: PMC11119286 DOI: 10.3390/diseases12050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common pulmonary malignancy, frequently diagnosed at an advanced stage (III/IV). Patients in the Locally Advanced Stage Subgroup (IIIA) are relatively few, yet compose heterogenic phenotypes, posing a diagnostic and treating challenge, leading to a lack of clinical guidelines regarding the optimal standard of care. Several approaches exist, with a general agreement that a combined oncological and surgical modality approach is required. In this current retrospective descriptive study, patients with operable stage IIIA NSCLC who underwent surgery between 2013 and 2020 were evaluated on several aspects, including the initial diagnosis, neoadjuvant regimens, outcomes of surgical intervention, and overall survival at 2 years and 5 years following treatment. A total of 35 patients had neoadjuvant oncological treatment (mostly chemoradiation therapy) prior to surgery, out of which 28 patients were diagnosed with stage IIIA NSCLC. In post-operative assessment of pathological staging, downstaging was reported in 19 patients, of which 25% of cases were defined as a complete pathological response. The 2-year overall survival rate was 65% and the 5-year overall survival rate was 62%. The main pattern of disease recurrence was distant metastasis.
Collapse
Affiliation(s)
- Dan Levy Faber
- Department of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, 7 Michal St., Haifa 3436212, Israel; (B.C.); (S.S.); (E.S.); (R.G.)
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Abed Agbarya
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Oncology Institute, Bnai-Zion Medical Center, Haifa 3339419, Israel
| | - Ben Caspy
- Department of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, 7 Michal St., Haifa 3436212, Israel; (B.C.); (S.S.); (E.S.); (R.G.)
- Azrieli Faculty of Medicine, Bar Ilan University, Tzfat 3436212, Israel;
| | - Moshe Lapidot
- Azrieli Faculty of Medicine, Bar Ilan University, Tzfat 3436212, Israel;
- Department of Thoracic Surgery, Galilee Medical Center, Nahariya 2210001, Israel
| | - Shoshana Keren Rosenberg
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Oncology Institute, Lin Medical Center and Carmel Medical Center, Haifa 3515210, Israel
| | - Sonia Schneer
- Department of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, 7 Michal St., Haifa 3436212, Israel; (B.C.); (S.S.); (E.S.); (R.G.)
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Pulmonary Division, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Erez Sharoni
- Department of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, 7 Michal St., Haifa 3436212, Israel; (B.C.); (S.S.); (E.S.); (R.G.)
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Ronen Galili
- Department of Cardiothoracic Surgery, Lady Davis Carmel Medical Center, 7 Michal St., Haifa 3436212, Israel; (B.C.); (S.S.); (E.S.); (R.G.)
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| |
Collapse
|
40
|
Mohanty P, Pande B, Acharya R, Bhaskar LVKS, Verma HK. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024; 12:93. [PMID: 38785748 PMCID: PMC11119248 DOI: 10.3390/diseases12050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer, characterized by its heterogeneity, presents a significant challenge in therapeutic management, primarily due to the development of resistance to conventional drugs. This resistance is often compounded by the tumor's ability to reprogram its metabolic pathways, a survival strategy that enables cancer cells to thrive in adverse conditions. This review article explores the complex link between drug resistance and metabolic reprogramming in lung cancer, offering a detailed analysis of the molecular mechanisms and treatment strategies. It emphasizes the interplay between drug resistance and changes in metabolic pathways, crucial for developing effective lung cancer therapies. This review examines the impact of current treatments on metabolic pathways and the significance of considering metabolic factors to combat drug resistance. It highlights the different challenges and metabolic alterations in non-small-cell lung cancer and small-cell lung cancer, underlining the need for subtype-specific treatments. Key signaling pathways, including PI3K/AKT/mTOR, MAPK, and AMPK, have been discussed for their roles in promoting drug resistance and metabolic changes, alongside the complex regulatory networks involved. This review article evaluates emerging treatments targeting metabolism, such as metabolic inhibitors, dietary management, and combination therapies, assessing their potential and challenges. It concludes with insights into the role of precision medicine and metabolic biomarkers in crafting personalized lung cancer treatments, advocating for metabolic targeting as a promising approach to enhance treatment efficacy and overcome drug resistance. This review underscores ongoing advancements and hurdles in integrating metabolic considerations into lung cancer therapy strategies.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492099, India;
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, IngolstädterLandstraße 1, 85764 Oberschleißheim, 85764 Munich, Bayren, Germany
| |
Collapse
|
41
|
Feng B, Wang X, Qiu D, Sun H, Deng J, Tan Y, Ji K, Xu S, Zhang S, Tang C. DDX18 Facilitates the Tumorigenesis of Lung Adenocarcinoma by Promoting Cell Cycle Progression through the Upregulation of CDK4. Int J Mol Sci 2024; 25:4953. [PMID: 38732173 PMCID: PMC11084921 DOI: 10.3390/ijms25094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.
Collapse
Affiliation(s)
- Bingbing Feng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Xinying Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Ding Qiu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Haiyang Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Jianping Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Ying Tan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Kaile Ji
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Shaoting Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ce Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
42
|
Xu K, Cui Y, Guan B, Qin L, Feng D, Abuduwayiti A, Wu Y, Li H, Cheng H, Li Z. Nanozymes with biomimetically designed properties for cancer treatment. NANOSCALE 2024; 16:7786-7824. [PMID: 38568434 DOI: 10.1039/d4nr00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.
Collapse
Affiliation(s)
- Ke Xu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yujie Cui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Bin Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200081, China
| | - Dihao Feng
- School of Art, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Abudumijiti Abuduwayiti
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yimu Wu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hao Li
- Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
43
|
Thoidingjam S, Sriramulu S, Hassan O, Brown SL, Siddiqui F, Movsas B, Gadgeel S, Nyati S. BUB1 inhibition sensitizes lung cancer cell lines to radiotherapy and chemoradiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590355. [PMID: 38712071 PMCID: PMC11071420 DOI: 10.1101/2024.04.19.590355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Lung cancer is a major public health concern, with high incidence and mortality. Despite advances in targeted therapy and immunotherapy, microtubule stabilizers (paclitaxel, docetaxel), DNA intercalating platinum drugs (cisplatin) and radiation therapy continue to play a critical role in the management of locally advanced and metastatic lung cancer. Novel molecular targets would provide opportunities for improving the efficacies of radiotherapy and chemotherapy. Hypothesis We hypothesize that BUB1 (Ser/Thr kinase) is over-expressed in lung cancers and that its inhibition will sensitize lung cancers to chemoradiation. Methods BUB1 inhibitor (BAY1816032) was combined with platinum (cisplatin), microtubule poison (paclitaxel), a PARP inhibitor (olaparib) and radiation in cell proliferation and radiation sensitization assays. Biochemical and molecular assays were used to evaluate their impact on DNA damage signaling and cell death mechanisms. Results BUB1 expression assessed by immunostaining of lung tumor microarrays (TMAs) confirmed higher BUB1 expression in NSCLC and SCLC compared to that of normal tissues. BUB1 overexpression in lung cancer tissues correlated directly with expression of TP53 mutations in non-small cell lung cancer (NSCLC). Elevated BUB1 levels correlated with poorer overall survival in NSCLC and small cell lung cancer (SCLC) patients. A BUB1 inhibitor (BAY1816032) synergistically sensitized lung cancer cell lines to paclitaxel and olaparib. Additionally, BAY1816032 enhanced cell killing by radiation in both NSCLC and SCLC. Molecular changes following BUB1 inhibition suggest a shift towards pro-apoptotic and anti-proliferative states, indicated by altered expression of BAX, BCL2, PCNA, and Caspases 9 and 3. Conclusion A direct correlation between BUB1 protein expression and overall survival was shown. BUB1 inhibition sensitized both NSCLC and SCLC to various chemotherapies (cisplatin, paclitaxel) and targeted therapy (PARPi). Furthermore, we present the novel finding that BUB1 inhibition sensitized both NSCLC and SCLC to radiotherapy and chemoradiation. Our results demonstrate BUB1 inhibition as a promising strategy to sensitize lung cancers to radiation and chemoradiation therapies.
Collapse
|
44
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
45
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Zhang J, Tang M, Shang J. PPARγ Modulators in Lung Cancer: Molecular Mechanisms, Clinical Prospects, and Challenges. Biomolecules 2024; 14:190. [PMID: 38397426 PMCID: PMC10886696 DOI: 10.3390/biom14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Lung cancer is one of the most lethal malignancies worldwide. Peroxisome proliferator-activated receptor gamma (PPARγ, NR1C3) is a ligand-activated transcriptional factor that governs the expression of genes involved in glucolipid metabolism, energy homeostasis, cell differentiation, and inflammation. Multiple studies have demonstrated that PPARγ activation exerts anti-tumor effects in lung cancer through regulation of lipid metabolism, induction of apoptosis, and cell cycle arrest, as well as inhibition of invasion and migration. Interestingly, PPARγ activation may have pro-tumor effects on cells of the tumor microenvironment, especially myeloid cells. Recent clinical data has substantiated the potential of PPARγ agonists as therapeutic agents for lung cancer. Additionally, PPARγ agonists also show synergistic effects with traditional chemotherapy and radiotherapy. However, the clinical application of PPARγ agonists remains limited due to the presence of adverse side effects. Thus, further research and clinical trials are necessary to comprehensively explore the actions of PPARγ in both tumor and stromal cells and to evaluate the in vivo toxicity. This review aims to consolidate the molecular mechanism of PPARγ modulators and to discuss their clinical prospects and challenges in tackling lung cancer.
Collapse
Affiliation(s)
- Jiyun Zhang
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Miru Tang
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jinsai Shang
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
47
|
Brock BA, Mir H, Flenaugh EL, Oprea-Ilies G, Singh R, Singh S. Social and Biological Determinants in Lung Cancer Disparity. Cancers (Basel) 2024; 16:612. [PMID: 38339362 PMCID: PMC10854636 DOI: 10.3390/cancers16030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lung cancer remains a leading cause of death in the United States and globally, despite progress in treatment and screening efforts. While mortality rates have decreased in recent years, long-term survival of patients with lung cancer continues to be a challenge. Notably, African American (AA) men experience significant disparities in lung cancer compared to European Americans (EA) in terms of incidence, treatment, and survival. Previous studies have explored factors such as smoking patterns and complex social determinants, including socioeconomic status, personal beliefs, and systemic racism, indicating their role in these disparities. In addition to social factors, emerging evidence points to variations in tumor biology, immunity, and comorbid conditions contributing to racial disparities in this disease. This review emphasizes differences in smoking patterns, screening, and early detection and the intricate interplay of social, biological, and environmental conditions that make African Americans more susceptible to developing lung cancer and experiencing poorer outcomes.
Collapse
Affiliation(s)
- Briana A. Brock
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Eric L. Flenaugh
- Division of Pulmonary Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Khilwani R, Singh S. Traversing through the Mechanistic Event Analysis in IL-6 and IL-17 Signaling for a New Therapeutic Paradigm in NSCLC. Int J Mol Sci 2024; 25:1216. [PMID: 38279220 PMCID: PMC10816370 DOI: 10.3390/ijms25021216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India;
| |
Collapse
|
49
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
50
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|