1
|
Andratschke N, Willmann J, Appelt AL, Day M, Kronborg C, Massaccesi M, Ozsahin M, Pasquier D, Petric P, Riesterer O, De Ruysscher D, M Van der Velden J, Guckenberger M. Reirradiation - still navigating uncharted waters? Clin Transl Radiat Oncol 2024; 49:100871. [PMID: 39444538 PMCID: PMC11497423 DOI: 10.1016/j.ctro.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the emergence of high-precision radiotherapy technologies such as stereotactic ablative radiotherapy (SABR), MR guided brachytherapy, image guided intensity modulated photon and proton radiotherapy and most recently daily adaptive radiotherapy, reirradiation is increasingly recognized as a viable treatment option for many patients. This includes those with recurrent, metastatic or new malignancies post initial radiotherapy. The primary challenge in reirradiation lies in balancing tumor control against the risk of severe toxicity from cumulative radiation doses to previously irradiated normal tissue. Although technology for precise delivery has advanced at a fast pace, clinical practice of reirradiation still mostly relies on individual expertise, as prospective evidence is scarce, the level of reporting in clinical studies is not standardized and of low quality - especially with respect to cumulative doses received by organs at risk. A recent ESTRO/EORTC initiative proposed a standardized definition of reirradiation and formulated general requirements for minimal reporting in clinical studies [1]. As a consequence we found it timely to convene for an international and interdisciplinary meeting with experts in the field to summarize the current evidence, identify knowledge gaps and explore which best practices can be derived for safe reirradiation. The meeting was held on 15.06.2023 in Zurich and was endorsed by the scientific societies SASRO, DEGRO and ESTRO. Here, we report on available evidence and research priorities in the field of reirradiation, as discussed during the meeting.
Collapse
Affiliation(s)
- Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James’s, University of Leeds, UK
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Madalyne Day
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Camilla Kronborg
- Danish Centre for Particle Therapy, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariangela Massaccesi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre O Lambret, Lille, France
- University of Lille, Centrale Lille, CNRS, CRIStAL UMR 9189, Lille, France
| | - Primoz Petric
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | | | - Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro), GROW School and Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Joanne M Van der Velden
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| |
Collapse
|
2
|
Rashed Nizam QM, Ahmed A, Ahmed I, Sihver L. Monte Carlo calculations of target fragments from helium and carbon ion interactions with water. Z Med Phys 2024:S0939-3889(24)00088-6. [PMID: 39393948 DOI: 10.1016/j.zemedi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
When high energetic heavy ions interact with any target, short range, high linear energy transfer (LET) target fragments are produced. These target fragments (TFs) can give a significant dose to the healthy tissue during heavy ion cancer therapy, and when cosmic radiation interacts with astronauts. This paper presents Monte Carlo simulations, using the Particle and Heavy Ion Transport code System (PHITS), to characterize target fragments from reactions of helium and carbon ions with water. The calculated ranges, LET, doses, and production cross sections are presented. It is shown that protons, deuterons, tritons, alpha particles, 3He, 6He, nitrogen, oxygen, and fluorine ions are the most probable target fragments when carbon and helium ions collide with water. Among the produced target fragments, alpha particles and nitrogen ions give the highest dose to the targets, since the combination of fluence and LETs of these TFs are highest among the produced fragments. The production cross sections of proton and oxygen are the highest among the target fragments cross sections when helium and carbon ions imping on water, because these TFs can be produced through more reaction channels compared to other fragments. These findings are helpful for accurate dose measurement during heavy ion cancer therapy and for shielding of space radiation.
Collapse
Affiliation(s)
| | - Asif Ahmed
- Department of Physics, University of Chittagong, Chittagong 4331, Bangladesh
| | - Iftekhar Ahmed
- Department of Physics, University of Chittagong, Chittagong 4331, Bangladesh
| | - Lembit Sihver
- Department of Radiation Physics, Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria; Department of Informatics and Engineering Systems, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA; Department of Physics, East Carolina University, Greenville, NC 27858-4353, USA; Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON K7K 7B4, Canada
| |
Collapse
|
3
|
Pham TN, Coupey J, Ivanova V, Thariat J, Valable S. Differential plasma cytokine variation following X-ray or proton brain irradiation using machine-learning approaches. Cancer Radiother 2024; 28:474-483. [PMID: 39307604 DOI: 10.1016/j.canrad.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE X-ray and proton irradiation have been reported to induce distinct modifications in cytokine expression in vitro and in vivo, suggesting a dissimilar inflammatory response between X-rays and protons. We aimed to investigate the differences in cytokine profiles early following fractionated brain irradiation with X-rays or protons and their relationship with leukocyte subpopulations in rodents. MATERIALS AND METHODS Our study utilized data from 80 tumor-free mice subjected to X-ray or proton brain irradiation in four fractions of 2.5Gy. Sixteen non-irradiated mice were used as the controls. Blood was collected 12h postirradiation to examine the profile of 13 cytokines. Correlation analysis, principal component analysis (PCA), and tree-based modeling were used to investigate the relationship between cytokine levels and leukocyte subpopulation variations following irradiation in the blood. RESULTS Regardless of the irradiation type, brain irradiation resulted in a notable elevation in the plasma levels of IFN-γ and MCP-1. The use of either X-ray or proton beam had differential effect on plasma cytokine levels following brain irradiation. Specifically, X-ray irradiation was associated with significantly increased plasma levels of IFN-β, IL-12p70, and IL-23, along with a decreased level of IL-1α, in comparison to proton irradiation. Correlation analysis revealed distinct cytokine regulatory patterns between X-ray and proton brain irradiation. PCA highlighted the association of MCP-1, IL-6, TNF-α, IL-17A, and IFN-γ with neutrophils, monocytes, and naïve T-cells following X-ray irradiation. TNF-α and IL-23 levels correlated with naïve CD4+-cells following proton irradiation. Tree-based models demonstrated that high TNF-α level resulted in an increase in naïve T-cells, neutrophils, and monocytes, whereas low IL-6 level was associated with decreases in these cell counts. CONCLUSION Our findings revealed distinct inflammatory responses induced by X-ray irradiation in contrast to proton brain irradiation, as demonstrated by the differential regulation of cytokines in the bloodstream. Moreover, the study highlighted the association between specific cytokine levels and various leukocyte subpopulations. Further investigation is essential to accurately determine the impact of proton and X-ray brain irradiation on the inflammatory response and the efficacy of radiotherapy treatment.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France; Laboratoire de physique corpusculaire, UMR6534 IN2P3/EnsiCaen, Caen, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Viktoriia Ivanova
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire, UMR6534 IN2P3/EnsiCaen, Caen, France; Department of Radiation Oncology, Centre François-Baclesse, Caen, France.
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France.
| |
Collapse
|
4
|
Bernardo T, Heuchel L, Heinzelmann F, Esser J, Lüdemann L, Timmermann B, Lühr A, von Neubeck C. Linear energy transfer dependent variation in viability and proliferation along the Bragg peak curve in sarcoma and normal tissue cells. Phys Med Biol 2024; 69:195005. [PMID: 39137807 DOI: 10.1088/1361-6560/ad6edc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.The energy deposition of photons and protons differs. It depends on the position in the proton Bragg peak (BP) and the linear energy transfer (LET) leading to a variable relative biological effectiveness (RBE). Here, we investigate LET dependent alterations on metabolic viability and proliferation of sarcoma and endothelium cell lines following proton irradiation in comparison to photon exposure.Approach.Using a multi-step range shifter, each column of a 96-well plate was positioned in a different depth along four BP curves with increasing intensities. The high-throughput experimental setup covers dose, LET, and RBE changes seen in a treatment field. Photon irradiation was performed to calculate the RBE along the BP curve. Two biological information out of one experiment were extracted allowing a correlation between metabolic viability and proliferation of the cells.Main results.The metabolic viability and cellular proliferation were column-wise altered showing a depth-dose profile. Endothelium cell viability recovers within 96 h post BP irradiation while sarcoma cell viability remains reduced. Highest RBE values were observed at the BP distal fall-off regarding proliferation of the sarcoma and endothelial cells.Significance.The high-throughput experimental setup introduced here (I) covers dose, LET, and RBE changes seen in a treatment field, (II) measures short-term effects within 48 h to 96 h post irradiation, and (III) can additionally be transferred to various cell types without time consuming experimental adaptations. Traditionally, RBE values are calculated from clonogenic cell survival. Measured RBE profiles strongly depend on physical characteristics such as dose and LET and biological characteristics for example cell type and time point. Metabolic viability and proliferation proofed to be in a similar effect range compared to clonogenic survival results. Based on limited data of combined irradiation with doxorubicin, future experiments will test combined treatment with systemic therapies applied in clinics e.g. cyclin-dependent inhibitors.
Collapse
Affiliation(s)
- Teresa Bernardo
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Lena Heuchel
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
| | - Feline Heinzelmann
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
- University Hospital Essen, West German Cancer Center (WTZ), Hufelandstr. 55, Essen, DE 45147, Germany
| | - Johannes Esser
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
| | - Lutz Lüdemann
- University Hospital Essen, Clinic and Polyclinic for Radiotherapy/Medical Physics, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
- West German Proton Therapy Center Essen, Am Mühlenbach 1, Essen, DE 45147, Germany
- University Hospital Essen, West German Cancer Center (WTZ), Hufelandstr. 55, Essen, DE 45147, Germany
- German Cancer Consortium, Hufelandstr. 55, Essen, DE 45147, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Otto-Hahn Str. 4, Dortmund, DE 44227, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University of Duisburg-Essen, Hufelandstr. 55, Essen, DE 45147, Germany
| |
Collapse
|
5
|
Corrales-García EM, Aristu-Mendioroz JJ, Castro-Novais J, Matute-Martín R, Learra-Martínez MC, Delgado-López PD. Current state of proton therapy for tumors of the central nervous system in Spain: physical bases, indications, controversies and perspectives. Clin Transl Oncol 2024:10.1007/s12094-024-03624-z. [PMID: 39207674 DOI: 10.1007/s12094-024-03624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The unique biophysical properties of proton therapy (PT), regarding the precise dose distribution, a remarkable better sparing of surrounding normal tissues, and the decreasing costs have promoted the spread of this technique worldwide. In Spain, eleven new PT centers, added to the currently two in function, are expected to be available in the near future. Indications for PT are currently evolving. The suitability of PT in central nervous system tumors of the adult population has been extrapolated from the favorable experience in children and adolescents. Given the lack of appropriate randomized trials, controversies remain regarding its use in lower grade tumors, re-irradiation, and other clinical scenarios in which an a priori dose distribution benefit is expected compared to photon-based radiotherapy. PT is a reasonable option in many brain and spinal tumors associating long life expectancy, in which cognitive decline, and the appearance of radiation-induced neoplasms can be minimized.Estado actual de la terapia con protones en los tumores del sistema nervioso central en España: bases físicas, indicaciones, controversias y perspectivas.
Collapse
Affiliation(s)
| | | | - Juan Castro-Novais
- Servicio de Radiofísica y Protección Radiológica, Centro de Protonterapia. Hospital Universitario Quironsalud, Madrid, Spain
| | - Raúl Matute-Martín
- Servicio Oncología Radioterápica, Centro de Protonterapia, Hospital Quironsalud, Madrid, Spain
| | - María Concepción Learra-Martínez
- Comisión de Protonterapia de La Comunidad de Castilla y LeónServicio de Atención Hospitalaria y CoordinaciónDirección Técnica de Asistencia SanitariaDirección General de Asistencia Sanitaria y HumanizaciónGerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pedro David Delgado-López
- Servicio de Neurocirugía, Hospital Universitario de Burgos, Avda Islas Baleares 3, 09006, Burgos, Spain.
| |
Collapse
|
6
|
Marignol L, McMahon SJ. Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study. Radiat Res 2024; 202:177-184. [PMID: 38918000 DOI: 10.1667/rade-24-00023.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
Collapse
Affiliation(s)
- L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
7
|
Torelli N, Bicker Y, Marc L, Fabiano S, Unkelbach J. A new approach to combined proton-photon therapy for metastatic cancer patients. Phys Med Biol 2024; 69:145008. [PMID: 38942008 DOI: 10.1088/1361-6560/ad5d48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.Proton therapy is a limited resource and is typically not available to metastatic cancer patients. Combined proton-photon therapy (CPPT), where most fractions are delivered with photons and only few with protons, represents an approach to distribute proton resources over a larger patient population. In this study, we consider stereotactic radiotherapy of multiple brain or liver metastases, and develop an approach to optimally take advantage of a single proton fraction by optimizing the proton and photon dose contributions to each individual metastasis.Approach.CPPT treatments must balance two competing goals: (1) deliver a larger dose in the proton fractions to reduce integral dose, and (2) fractionate the dose in the normal tissue between metastases, which requires using the photon fractions. Such CPPT treatments are generated by simultaneously optimizing intensity modulated proton therapy (IMPT) and intensity modulated radiotherapy (IMRT) plans based on their cumulative biologically effective dose (BEDα/β). The dose contributions of the proton and photon fractions to each individual metastasis are handled as additional optimization variables in the optimization problem. The method is demonstrated for two patients with 29 and 30 brain metastases, and two patients with 4 and 3 liver metastases.Main results.Optimized CPPT plans increase the proton dose contribution to most of the metastases, while using photons to fractionate the dose around metastases which are large or located close to critical structures. On average, the optimized CPPT plans reduce the mean brain BED2by 29% and the mean liver BED4by 42% compared to IMRT-only plans. Thereby, the CPPT plans approach the dosimetric quality of IMPT-only plans, for which the mean brain BED2and mean liver BED4are reduced by 28% and 58%, respectively, compared to IMRT-only plans.Significance.CPPT with optimized proton and photon dose contributions to individual metastases may benefit selected metastatic cancer patients without tying up major proton resources.
Collapse
Affiliation(s)
- Nathan Torelli
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yves Bicker
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Louise Marc
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Denbeigh JM, Howard ME, Garcia DA, Debrot EK, Cole KC, Remmes NB, Beltran CJ. Characterizing Proton-Induced Biological Effects in a Mouse Spinal Cord Model: A Comparison of Bragg Peak and Entrance Beam Response in Single and Fractionated Exposures. Int J Radiat Oncol Biol Phys 2024; 119:924-935. [PMID: 38310485 DOI: 10.1016/j.ijrobp.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE Proton relative biological effectiveness (RBE) is a dynamic variable influenced by factors like linear energy transfer (LET), dose, tissue type, and biological endpoint. The standard fixed proton RBE of 1.1, currently used in clinical planning, may not accurately represent the true biological effects of proton therapy (PT) in all cases. This uncertainty can contribute to radiation-induced normal tissue toxicity in patients. In late-responding tissues such as the spinal cord, toxicity can cause devastating complications. This study investigated spinal cord tolerance in mice subjected to proton irradiation and characterized the influence of fractionation on proton- induced myelopathy at entrance (ENT) and Bragg peak (BP) positions. METHODS AND MATERIALS Cervical spinal cords of 8-week-old C57BL/6J female mice were irradiated with single- or multi-fractions (18x) using lateral opposed radiation fields at 1 of 2 positions along the Bragg curve: ENT (dose-mean LET = 1.2 keV/μm) and BP (LET = 6.9 keV/μm). Mice were monitored over 1 year for changes in weight, mobility, and general health, with radiation-induced myelopathy as the primary biological endpoint. Calculations of the RBE of the ENT and BP curve (RBEENT/BP) were performed. RESULTS Single-fraction RBEENT/BP for 50% effect probability (tolerance dose (TD50), grade II paresis, determined using log-logistic model fitting) was 1.10 ± 0.06 (95% CI) and for multifraction treatments it was 1.19 ± 0.05 (95% CI). Higher incidence and faster onset of paralysis were seen in mice treated at the BP compared with ENT. CONCLUSIONS The findings challenge the universally fixed RBE value in PT, indicating up to a 25% mouse spinal cord RBEENT/BP variation for multifraction treatments. These results highlight the importance of considering fractionation in determining RBE for PT. Robust characterization of proton-induced toxicity, aided by in vivo models, is paramount for refining clinical decision-making and mitigating potential patient side effects.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida.
| | - Michelle E Howard
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Emily K Debrot
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Kristin C Cole
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
9
|
Giovannini D, Antonelli F, Casciati A, De Angelis C, Denise Astorino M, Bazzano G, Fratini E, Ampollini A, Vadrucci M, Cisbani E, Nenzi P, Picardi L, Saran A, Marino C, Mancuso M, Ronsivalle C, Pazzaglia S. Comparing the effects of irradiation with protons or photons on neonatal mouse brain: Apoptosis, oncogenesis and hippocampal alterations. Radiother Oncol 2024; 195:110267. [PMID: 38614282 DOI: 10.1016/j.radonc.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND PURPOSE Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.
Collapse
Affiliation(s)
- Daniela Giovannini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Francesca Antonelli
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Arianna Casciati
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | | | - Maria Denise Astorino
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Giulia Bazzano
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Emiliano Fratini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Alessandro Ampollini
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Monia Vadrucci
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy; Italian Space Agency, Science and Research Directorate, Via del Politecnico 00133, Rome, Italy
| | | | - Paolo Nenzi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Luigi Picardi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Anna Saran
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Carmela Marino
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Concetta Ronsivalle
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Simonetta Pazzaglia
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy.
| |
Collapse
|
10
|
Palassini E, Baldi GG, Sulfaro S, Barisella M, Bianchi G, Campanacci D, Fiore M, Gambarotti M, Gennaro M, Morosi C, Navarria F, Palmerini E, Sangalli C, Sbaraglia M, Trama A, Asaftei S, Badalamenti G, Bertulli R, Bertuzzi AF, Biagini R, Bonadonna A, Brunello A, Callegaro D, Cananzi F, Cianchetti M, Collini P, Comandini D, Curcio A, D'Ambrosio L, De Pas T, Dei Tos AP, Ferraresi V, Ferrari A, Franchi A, Frezza AM, Fumagalli E, Ghilli M, Greto D, Grignani G, Guida M, Ibrahim T, Krengli M, Luksch R, Marrari A, Mastore M, Merlini A, Milano GM, Navarria P, Pantaleo MA, Parafioriti A, Pellegrini I, Pennacchioli E, Rastrelli M, Setola E, Tafuto S, Turano S, Valeri S, Vincenzi B, Vitolo V, Ivanescu A, Paloschi F, Casali PG, Gronchi A, Stacchiotti S. Clinical recommendations for treatment of localized angiosarcoma: A consensus paper by the Italian Sarcoma Group. Cancer Treat Rev 2024; 126:102722. [PMID: 38604052 DOI: 10.1016/j.ctrv.2024.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Angiosarcoma (AS) represents a rare and aggressive vascular sarcoma, posing distinct challenges in clinical management compared to other sarcomas. While the current European Society of Medical Oncology (ESMO) clinical practice guidelines for sarcoma treatment are applicable to AS, its unique aggressiveness and diverse tumor presentations necessitate dedicated and detailed clinical recommendations, which are currently lacking. Notably, considerations regarding surgical extent, radiation therapy (RT), and neoadjuvant/adjuvant chemotherapy vary significantly in localized disease, depending on each different site of onset. Indeed, AS are one of the sarcoma types most sensitive to cytotoxic chemotherapy. Despite this, uncertainties persist regarding optimal management across different clinical presentations, highlighting the need for further investigation through clinical trials. The Italian Sarcoma Group (ISG) organized a consensus meeting on April 1st, 2023, in Castel San Pietro, Italy, bringing together Italian sarcoma experts from several disciplines and patient representatives from "Sofia nel Cuore Onlus" and the ISG patient advocacy working group. The objective was to develop specific clinical recommendations for managing localized AS within the existing framework of sarcoma clinical practice guidelines, accounting for potential practice variations among ISG institutions. The aim was to try to standardize and harmonize clinical practices, or at least highlight the open questions in the local management of the disease, to define the best evidence-based practice for the optimal approach of localized AS and generate the recommendations presented herein.
Collapse
Affiliation(s)
- Elena Palassini
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| | | | | | - Marta Barisella
- Department of Pathology, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Giuseppe Bianchi
- Department of Surgery, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Domenico Campanacci
- Department of Surgery, Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
| | - Marco Fiore
- Department of Surgery, Sarcoma Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marco Gambarotti
- Department of Pathology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Gennaro
- Department of Surgery, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Carlo Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Federico Navarria
- Department of Radiation Oncology, IRCCS Centro di Riferimento Oncologico di Aviano, Aviano, Pordenone, Italy
| | - Emanuela Palmerini
- Department of Medical Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Sangalli
- Department of Radiation Therapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marta Sbaraglia
- Department of Pathology, Università di Padova, Padova, Italy
| | - Annalisa Trama
- Department of Edidemiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sebastian Asaftei
- Department of Pediatric Oncology, Ospedale Infantile Regina Margherita , Torino
| | - Giuseppe Badalamenti
- Department of Medical Oncology, Azienda Universitaria Policlinico Giaccone, Palermo, Italy
| | - Rossella Bertulli
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alexia Francesca Bertuzzi
- Department of Medical Oncology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Roberto Biagini
- Department of Oncological Orthopedics, IRCCS Istituto Nazionale Tumori Regina Elena - Istituti Fisioterapici Ospitalieri, Roma, Italy
| | - Angela Bonadonna
- Department of Medical Oncology, IRCCS Centro di Riferimento Oncologico di Aviano, Aviano, Pordenone, Italy
| | - Antonella Brunello
- Department of Medical Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Dario Callegaro
- Department of Surgery, Sarcoma Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Ferdinando Cananzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milano, Italy; Sarcoma, Melanoma and Rare Tumors Surgery Unit, Humanitas Cancer Center, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | | | - Paola Collini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Danila Comandini
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Annalisa Curcio
- Department of Surgery, Ospedale Morgagni e Pierantoni, Forlì, Italy
| | - Lorenzo D'Ambrosio
- Department of Medical Oncology, Ospedale S. Luigi, Orbassano, Torino, Italy
| | - Tommaso De Pas
- Department of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | | | - Virginia Ferraresi
- Sarcomas and Rare Tumors Departmental Unit, IRCCS Istituto Nazionale Tumori Regina Elena - Istituti Fisioterapici Ospitalieri, Roma, Italy
| | - Andrea Ferrari
- Department of Pediatric Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessandro Franchi
- Department of Pathology, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Anna Maria Frezza
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Elena Fumagalli
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Matteo Ghilli
- Breast Centre, Department of Oncology, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Daniela Greto
- Department of Radiation Therapy, Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
| | - Giovanni Grignani
- Department of Medical Oncology, Azienda Ospedaliera Univerisitaria Città della Salute e della Scienza, Torino, Italy
| | - Michele Guida
- Department of Medical Oncology, IRCCS Istituto Tumori di Bari Giovanni Paolo II, Bari, Italy
| | - Toni Ibrahim
- Department of Medical Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Krengli
- Department of Radiation Therapy, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Roberto Luksch
- Department of Pediatric Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Andrea Marrari
- Department of Medical Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Alessandra Merlini
- Department of Medical Oncology, Ospedale S. Luigi, Orbassano, Torino, Italy
| | | | - Piera Navarria
- Department of Radiation Therapy, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Maria Abbondanza Pantaleo
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna', University of Bologna, Bologna, Italy
| | | | - Ilaria Pellegrini
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Marco Rastrelli
- Department of Surgical Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy; Department of Surgery, Oncology and Gastroenterology (DISCOG), Università di Padova, Padova, Italy
| | - Elisabetta Setola
- Department of Medical Oncology, Istituto Europeo Oncologia, Milano, Italy
| | - Salvatore Tafuto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori G. Pascale, Napoli, Italy
| | - Salvatore Turano
- Department of Medical Oncology, Azienda Ospedaliera S.S. Annunziata, Cosenza, Italy
| | - Sergio Valeri
- Department of Surgery, Università Campus Bio-Medico, Roma, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Università Campus Bio-Medico, Roma, Italy
| | - Viviana Vitolo
- Department of Radiation Therapy, Centro Nazionale di Adroterapia Oncologica, Fondazione CNAO, Pavia, Italy
| | | | | | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessandro Gronchi
- Department of Surgery, Sarcoma Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Silvia Stacchiotti
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
11
|
Park S, Choi C, Kim H, Shin YJ, Oh Y, Park W, Cho WK, Kim N. Olaparib enhances sensitization of BRCA-proficient breast cancer cells to x-rays and protons. Breast Cancer Res Treat 2024; 203:449-461. [PMID: 37902934 DOI: 10.1007/s10549-023-07150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
PURPOSE This study aimed to compare the radiosensitizing effect of the PARP inhibitor, Olaparib, between proton and X-rays irradiations in BRCA-proficient breast cancer (BC) cells. METHODS Two BRCA-proficient BC cell lines, MDA-MB-231 and T47D BC, were used. Cell proliferation was assessed using the CCK-8 assay, and radiosensitivity was determined through the clonogenic survival assay. Flow cytometry was employed to analyze cell cycle distribution and apoptosis. The kinetics of DNA damage repair were evaluated using γH2AX immunofluorescence imaging and the comet assay. Tumor spheroid assays were conducted to test radiosensitivity in a three-dimensional culture condition. RESULTS Olaparib sensitized both MDA-MB-231 and T47D cells to proton and X-ray irradiation in the clonogenic assay. MDA-MB-231 cells exhibited a higher dose enhancement factor for Olaparib than T47D cells. Olaparib increased radiation-induced G2/M cell cycle arrest and apoptosis specifically in MDA-MB-231 cells. γH2AX immunostaining and the comet assay showed Olaparib augmented radiation-induced DNA damage and apoptosis. The enhancement effect of Olaparib was more pronounced in proton irradiation than in X-ray irradiation, particularly in MDA-MB-231 cells than T47D cells. Both radiation and Olaparib dose-dependently inhibited spheroid growth in both cell lines. The synergy scores demonstrated that Olaparib interacted more strongly with protons than X-rays. The addition of an ATR inhibitor further enhanced Olaparib-induced proton radiosensitization in MDA-MB-231 cells. CONCLUSION This study found that Olaparib enhanced radiation efficacy in BRCA-proficient breast cancer cells, with a more pronounced effect observed with proton irradiation compared to X-ray irradiation. Combining Olaparib with an ATR inhibitor increased the radiosensitizing effect of protons.
Collapse
Affiliation(s)
- Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Haeyoung Kim
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Yong Jae Shin
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yunjeong Oh
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| |
Collapse
|
12
|
Sorokina SS, Malkov AE, Rozanova OM, Smirnova EN, Shemyakov AE. Behavioral performance and microglial status in mice after moderate dose of proton irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:497-509. [PMID: 37794305 DOI: 10.1007/s00411-023-01044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Cognitive impairment is a remote effect of gamma radiation treatment of malignancies. The major part of the studies on the effect of proton irradiation (a promising alternative in the treatment of radio-resistant tumors and tumors located close to critical organs) on the cognitive abilities of laboratory animals and their relation to morphological changes in the brain is rather contradictory. The aim of this study was to investigate cognitive functions and the dynamics of changes in morphological parameters of hippocampal microglial cells after 7.5 Gy of proton irradiation. Two months after the cranial irradiation, 8- to 9-week-old male SHK mice were tested for total activity, spatial learning, as well as long- and short-term hippocampus-dependent memory. To estimate the morphological parameters of microglia, brain slices of control and irradiated animals each with different time after proton irradiation (24 h, 7 days, 1 month) were stained for microglial marker Iba-1. No changes in behavior or deficits in short-term and long-term hippocampus-dependent memory were found, but an impairment of episodic memory was observed. A change in the morphology of hippocampal microglial cells, which is characteristic of the transition of cells to an activated state, was detected. One day after proton exposure in the brain tissue, a slight decrease in cell density was observed, which was restored to the control level by the 30th day after treatment. The results obtained may be promising with regard to the future use of using high doses of protons per fraction in the irradiation of tumors.
Collapse
Affiliation(s)
- S S Sorokina
- Laboratory of Isotope Investigations, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia.
| | - A E Malkov
- Laboratory of Neurons Systematic Organization, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| | - O M Rozanova
- Laboratory of Cell Engineering, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| | - E N Smirnova
- Laboratory of Cell Engineering, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| | - A E Shemyakov
- Theranostics and Nuclear Medicine Laboratory, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russia
| |
Collapse
|
13
|
Zlygosteva O, Juvkam IS, Arous D, Sitarz M, Sørensen BS, Ankjærgaard C, Andersen CE, Galtung HK, Søland TM, Edin NJ, Malinen E. Acute normal tissue responses in a murine model following fractionated irradiation of the head and neck with protons or X-rays. Acta Oncol 2023; 62:1574-1580. [PMID: 37703217 DOI: 10.1080/0284186x.2023.2254481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.
Collapse
Affiliation(s)
- Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Delmon Arous
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus E Andersen
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Melia E, Parsons J. DNA damage and repair dependencies of ionising radiation modalities. Biosci Rep 2023; 43:BSR20222586. [PMID: 37695845 PMCID: PMC10548165 DOI: 10.1042/bsr20222586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Radiotherapy is utilised in the treatment of ∼50% of all human cancers, which predominantly employs photon radiation. However, particle radiotherapy elicits significant benefits over conventional photons due to more precise dose deposition and increased linear energy transfer (LET) that generates an enhanced therapeutic response. Specifically, proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) are characterised by a Bragg peak, which generates a low entrance radiation dose, with the majority of the energy deposition being defined within a small region which can be specifically targeted to the tumour, followed by a low exit dose. PBT is deemed relatively low-LET whereas CIRT is more densely ionising and therefore high LET. Despite the radiotherapy type, tumour cell killing relies heavily on the introduction of DNA damage that overwhelms the repair capacity of the tumour cells. It is known that DNA damage complexity increases with LET that leads to enhanced biological effectiveness, although the specific DNA repair pathways that are activated following the different radiation sources is unclear. This knowledge is required to determine whether specific proteins and enzymes within these pathways can be targeted to further increase the efficacy of the radiation. In this review, we provide an overview of the different radiation modalities and the DNA repair pathways that are responsive to these. We also provide up-to-date knowledge of studies examining the impact of LET and DNA damage complexity on DNA repair pathway choice, followed by evidence on how enzymes within these pathways could potentially be therapeutically exploited to further increase tumour radiosensitivity, and therefore radiotherapy efficacy.
Collapse
Affiliation(s)
- Emma Melia
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jason L. Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
15
|
Crompton D, Koffler D, Fekrmandi F, Lehrer EJ, Sheehan JP, Trifiletti DM. Preoperative stereotactic radiosurgery as neoadjuvant therapy for resectable brain tumors. J Neurooncol 2023; 165:21-28. [PMID: 37889441 DOI: 10.1007/s11060-023-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is a method of delivering conformal radiation, which allows minimal radiation damage to surrounding healthy tissues. Adjuvant radiation therapy has been shown to improve local control in a variety of intracranial neoplasms, such as brain metastases, gliomas, and benign tumors (i.e., meningioma, vestibular schwannoma, etc.). For brain metastases, adjuvant SRS specifically has demonstrated positive oncologic outcomes as well as preserving cognitive function when compared to conventional whole brain radiation therapy. However, as compared with neoadjuvant SRS, larger post-operative volumes and greater target volume uncertainty may come with an increased risk of local failure and treatment-related complications, such as radiation necrosis. In addition to its role in brain metastases, neoadjuvant SRS for high grade gliomas may enable dose escalation and increase immunogenic effects and serve a purpose in benign tumors for which one cannot achieve a gross total resection (GTR). Finally, although neoadjuvant SRS has historically been delivered with photon therapy, there are high LET radiation modalities such as carbon-ion therapy which may allow radiation damage to tissue and should be further studied if done in the neoadjuvant setting. In this review we discuss the evolving role of neoadjuvant radiosurgery in the treatment for brain metastases, gliomas, and benign etiologies. We also offer perspective on the evolving role of high LET radiation such as carbon-ion therapy. METHODS PubMed was systemically reviewed using the search terms "neoadjuvant radiosurgery", "brain metastasis", and "glioma". ' Clinicaltrials.gov ' was also reviewed to include ongoing phase III trials. RESULTS This comprehensive review describes the evolving role for neoadjuvant SRS in the treatment for brain metastases, gliomas, and benign etiologies. We also discuss the potential role for high LET radiation in this setting such as carbon-ion radiotherapy. CONCLUSION Early clinical data is very promising for neoadjuvant SRS in the setting of brain metastases. There are three ongoing phase III trials that will be more definitive in evaluating the potential benefits. While there is less data available for neoadjuvant SRS for gliomas, there remains a potential role, particularly to enable dose escalation and increase immunogenic effects.
Collapse
Affiliation(s)
- David Crompton
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
16
|
Zavestovskaya IN, Popov AL, Kolmanovich DD, Tikhonowski GV, Pastukhov AI, Savinov MS, Shakhov PV, Babkova JS, Popov AA, Zelepukin IV, Grigoryeva MS, Shemyakov AE, Klimentov SM, Ryabov VA, Prasad PN, Deyev SM, Kabashin AV. Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2167. [PMID: 37570485 PMCID: PMC10421420 DOI: 10.3390/nano13152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.
Collapse
Affiliation(s)
- Irina N. Zavestovskaya
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Anton L. Popov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Danil D. Kolmanovich
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Gleb V. Tikhonowski
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | | | - Maxim S. Savinov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Pavel V. Shakhov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Julia S. Babkova
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Anton A. Popov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Ivan V. Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Maria S. Grigoryeva
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
| | - Alexander E. Shemyakov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
| | - Sergey M. Klimentov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Vladimir A. Ryabov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
| | - Paras N. Prasad
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
- Department of Chemistry, Institute for Lasers, Photonics, and Biophotonics, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Sergey M. Deyev
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | |
Collapse
|
17
|
Krcek R, Leiser D, García-Marqueta M, Bolsi A, Weber DC. Long Term Outcome and Quality of Life of Intracranial Meningioma Patients Treated with Pencil Beam Scanning Proton Therapy. Cancers (Basel) 2023; 15:3099. [PMID: 37370709 DOI: 10.3390/cancers15123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to assess the clinical outcome, including QoL, of patients with intracranial meningiomas WHO grade 1-3 who were treated with Pencil Beam Scanning Proton Therapy (PBS PT) between 1997 and 2022. Two hundred patients (median age 50.4 years, 70% WHO grade 1) were analyzed. Acute and late side effects were classified according to CTCAE version 5.0. Time to event data were calculated. QoL was assessed descriptively by the EORTC-QLQ-C30 and BN20 questionnaires. With a median follow-up of 65 months (range: 3.8-260.8 months) the 5 year OS was 95.7% and 81.8% for WHO grade 1 and grade 2/3, respectively (p < 0.001). Twenty (10%) local failures were observed. Failures occurred significantly (p < 0.001) more frequent in WHO grade 2 or 3 meningioma (WHO grade 1: n = 7, WHO grade 2/3: n = 13), in patients with multiple meningiomas (p = 0.005), in male patients (p = 0.005), and when PT was initiated not as upfront therapy (p = 0.011). There were no high-grade toxicities in the majority (n = 176; 88%) of patients. QoL was assessed for 83 (41.5%) patients and for those patients PT did not impacted QoL negatively during the follow-up. In summary, we observed very few local recurrences of meningiomas after PBS PT, a stable QoL, and a low rate of high-grade toxicity.
Collapse
Affiliation(s)
- Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Marta García-Marqueta
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
18
|
Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol 2023; 6:388. [PMID: 37031346 PMCID: PMC10082834 DOI: 10.1038/s42003-023-04770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Collapse
Affiliation(s)
- Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierangela Giustetto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | | | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Fabrizio Scopelliti
- Radiopharmacy Laboratory Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| |
Collapse
|
19
|
Tommasino F, Cartechini G, Righetto R, Farace P, Cianchetti M. Does variable RBE affect toxicity risks for mediastinal lymphoma patients? NTCP-based evaluation after proton therapy treatment. Phys Med 2023; 108:102569. [PMID: 36989976 DOI: 10.1016/j.ejmp.2023.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/04/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION Mediastinal lymphoma (ML) is a solid malignancy affecting young patients. Modern combined treatments allow obtaining good survival probability, together with a long life expectancy, and therefore with the need to minimize treatment-related toxicities. We quantified the expected toxicity risk for different organs and endpoints in ML patients treated with intensity-modulated proton therapy (IMPT) at our centre, accounting also for uncertainties related to variable RBE. METHODS Treatment plans for ten ML patients were recalculated with a TOPAS-based Monte Carlo code, thus retrieving information on LET and allowing the estimation of variable RBE. Published NTCP models were adopted to calculate the toxicity risk for hypothyroidism, heart valve defects, coronary heart disease and lung fibrosis. NTCP was calculated assuming both constant (i.e. 1.1) and variable RBE. The uncertainty associated with individual radiosensitivity was estimated by random sampling α/β values before RBE evaluation. RESULTS Variable RBE had a minor impact on hypothyroidism risk for 7 patients, while it led to significant increase for the remaining three (+24% risk maximum increase). Lung fibrosis was slightly affected by variable RBE, with a maximum increase of ≅ 1%. This was similar for heart valve dysfunction, with the exception of one patient showing an about 10% risk increase, which could be explained by means of large heart volume and D1 increase. DISCUSSION The use of NTCP models allows for identifying those patients associated with a higher toxicity risk. For those patients, it might be worth including variable RBE in plan evaluation.
Collapse
|
20
|
Xavier MN, Torres Novaes JA, Cavalcante Silva AC, Silva Alves AV, Bryanne Araujo Santos MJ, de Moraes Pantaleão S, Scher R, d'Errico F, Oliveira de Souza S. Cytogenetic effects of β-particles in Allium cepa cells used as a biological indicator for radiation damages. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 259-260:107109. [PMID: 36652762 DOI: 10.1016/j.jenvrad.2023.107109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Analysis of cytogenetics effects of ionizing radiation for flora and fauna is essential to determine the impact on these communities and may produce an efficient warning system to avoid harm to human health. Onion (Allium cepa) is a well-established in vivo standard model, and it is widely used in cytogenetics studies for different environmental pollutants. In this work, onion roots were exposed to 0.04-1.44 Gy of β-particles from a 90Sr/90Y source. We investigated the capacity of brief external exposures to β-particles on inducing cytogenetic damages in root meristematic cells of onion aiming to verify if onion can be used as a radiation-sensitive cytogenetic bioindicator. A nonlinear increase in the frequencies of chromosomal aberrations and cells with micronuclei was observed. Onion roots exposed to doses 0.13 Gy or higher of β-particles showed a significant difference (p<0.05) in these frequencies when compared to the unirradiated group. The frequencies of these endpoints showed to be suitable to assess the difference in the dose of beta radiation received from 0.36 Gy. Our research shows the potential of using cytogenetic effects in Allium cepa cells as a biological indicator for a first screening of genotoxic damages induced by brief external exposures to β-particles.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ricardo Scher
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Francesco d'Errico
- School of Medicine, Yale University, New Haven, CT, USA; Scuola di Ingegneria, Università di Pisa, Pisa, Italy
| | | |
Collapse
|
21
|
Hinshaw RG, Schroeder MK, Ciola J, Varma C, Colletti B, Liu B, Liu GG, Shi Q, Williams JP, O’Banion MK, Caldarone BJ, Lemere CA. High-Energy, Whole-Body Proton Irradiation Differentially Alters Long-Term Brain Pathology and Behavior Dependent on Sex and Alzheimer's Disease Mutations. Int J Mol Sci 2023; 24:ijms24043615. [PMID: 36835027 PMCID: PMC9965515 DOI: 10.3390/ijms24043615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Whole-body exposure to high-energy particle radiation remains an unmitigated hazard to human health in space. Ongoing experiments at the NASA Space Radiation Laboratory and elsewhere repeatedly show persistent changes in brain function long after exposure to simulations of this unique radiation environment, although, as is also the case with proton radiotherapy sequelae, how this occurs and especially how it interacts with common comorbidities is not well-understood. Here, we report modest differential changes in behavior and brain pathology between male and female Alzheimer's-like and wildtype littermate mice 7-8 months after exposure to 0, 0.5, or 2 Gy of 1 GeV proton radiation. The mice were examined with a battery of behavior tests and assayed for amyloid beta pathology, synaptic markers, microbleeds, microglial reactivity, and plasma cytokines. In general, the Alzheimer's model mice were more prone than their wildtype littermates to radiation-induced behavior changes, and hippocampal staining for amyloid beta pathology and microglial activation in these mice revealed a dose-dependent reduction in males but not in females. In summary, radiation-induced, long-term changes in behavior and pathology, although modest, appear specific to both sex and the underlying disease state.
Collapse
Affiliation(s)
- Robert G. Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02129, USA
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jason Ciola
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Curran Varma
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Brianna Colletti
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Departments of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Grace Geyu Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Qiaoqiao Shi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Departments of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - M. Kerry O’Banion
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Departments of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
22
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
23
|
Hahn C, Heuchel L, Ödén J, Traneus E, Wulff J, Plaude S, Timmermann B, Bäumer C, Lühr A. Comparing biological effectiveness guided plan optimization strategies for cranial proton therapy: potential and challenges. Radiat Oncol 2022; 17:169. [PMID: 36273132 DOI: 10.1186/s13014-022-02143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To introduce and compare multiple biological effectiveness guided (BG) proton plan optimization strategies minimizing variable relative biological effectiveness (RBE) induced dose burden in organs at risk (OAR) while maintaining plan quality with a constant RBE. METHODS Dose-optimized (DOSEopt) proton pencil beam scanning reference treatment plans were generated for ten cranial patients with prescription doses ≥ 54 Gy(RBE) and ≥ 1 OAR close to the clinical target volume (CTV). For each patient, four additional BG plans were created. BG objectives minimized either proton track-ends, dose-averaged linear energy transfer (LETd), energy depositions from high-LET protons or variable RBE-weighted dose (DRBE) in adjacent serially structured OARs. Plan quality (RBE = 1.1) was assessed by CTV dose coverage and robustness (2 mm setup, 3.5% density), dose homogeneity and conformity in the planning target volumes and adherence to OAR tolerance doses. LETd, DRBE (Wedenberg model, α/βCTV = 10 Gy, α/βOAR = 2 Gy) and resulting normal tissue complication probabilities (NTCPs) for blindness and brainstem necrosis were derived. Differences between DOSEopt and BG optimized plans were assessed and statistically tested (Wilcoxon signed rank, α = 0.05). RESULTS All plans were clinically acceptable. DOSEopt and BG optimized plans were comparable in target volume coverage, homogeneity and conformity. For recalculated DRBE in all patients, all BG plans significantly reduced near-maximum DRBE to critical OARs with differences up to 8.2 Gy(RBE) (p < 0.05). Direct DRBE optimization primarily reduced absorbed dose in OARs (average ΔDmean = 2.0 Gy; average ΔLETd,mean = 0.1 keV/µm), while the other strategies reduced LETd (average ΔDmean < 0.3 Gy; average ΔLETd,mean = 0.5 keV/µm). LET-optimizing strategies were more robust against range and setup uncertaintes for high-dose CTVs than DRBE optimization. All BG strategies reduced NTCP for brainstem necrosis and blindness on average by 47% with average and maximum reductions of 5.4 and 18.4 percentage points, respectively. CONCLUSIONS All BG strategies reduced variable RBE-induced NTCPs to OARs. Reducing LETd in high-dose voxels may be favourable due to its adherence to current dose reporting and maintenance of clinical plan quality and the availability of reported LETd and dose levels from clinical toxicity reports after cranial proton therapy. These optimization strategies beyond dose may be a first step towards safely translating variable RBE optimization in the clinics.
Collapse
Affiliation(s)
- Christian Hahn
- Department of Physics, TU Dortmund University, Dortmund, Germany. .,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Lena Heuchel
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Jörg Wulff
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Sandija Plaude
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Bäumer
- Department of Physics, TU Dortmund University, Dortmund, Germany.,West German Proton Therapy Centre Essen, Essen, Germany.,West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
24
|
Bianchi A, Selva A, Rossignoli M, Pasquato F, Missiaggia M, Scifoni E, La Tessa C, Tommasino F, Conte V. Microdosimetry with a mini-TEPC in the spread-out Bragg peak of 148 MeV protons. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Rozanova OM, Smirnova EN, Belyakova TA, Strelnikova NS, Shemyakov AE, Smirnov AV. The Effect of Irradiation with a Sequence of Neutrons and Protons on the Tumor Response of Solid Ehrlich Carcinoma and Skin Reactions in Mice in the Early and Long Terms. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Fabiano S, Torelli N, Papp D, Unkelbach J. A novel stochastic optimization method for handling misalignments of proton and photon doses in combined treatments. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Combined proton–photon treatments, where most fractions are delivered with photons and only a few are delivered with protons, may represent a practical approach to optimally use limited proton resources. It has been shown that, when organs at risk (OARs) are located within or near the tumor, the optimal multi-modality treatment uses protons to hypofractionate parts of the target volume and photons to achieve near-uniform fractionation in dose-limiting healthy tissues, thus exploiting the fractionation effect. These plans may be sensitive to range and setup errors, especially misalignments between proton and photon doses. Thus, we developed a novel stochastic optimization method to directly incorporate these uncertainties into the biologically effective dose (BED)-based simultaneous optimization of proton and photon plans. Approach. The method considers the expected value
E
b
and standard deviation
σ
b
of the cumulative BED
b
in every voxel of a structure. For the target, a piecewise quadratic penalty function of the form
b
min
−
E
b
−
2
σ
b
+
2
is minimized, aiming for plans in which the expected BED minus two times the standard deviation exceeds the prescribed BED
b
min
.
Analogously,
E
b
+
2
σ
b
−
b
max
+
2
is considered for OARs. Main results. Using a spinal metastasis case and a liver cancer patient, it is demonstrated that the novel stochastic optimization method yields robust combined treatment plans. Tumor coverage and a good sparing of the main OARs are maintained despite range and setup errors, and especially misalignments between proton and photon doses. This is achieved without explicitly considering all combinations of proton and photon error scenarios. Significance. Concerns about range and setup errors for safe clinical implementation of optimized proton–photon radiotherapy can be addressed through an appropriate stochastic planning method.
Collapse
|
27
|
Fattori S, Petringa G, Agosteo S, Bortot D, Conte V, Cuttone G, Di Fini A, Farokhi F, Mazzucconi D, Pandola L, Petrović I, Ristić-Fira A, Rosenfeld A, Weber U, Cirrone GAP. 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy,
y
D
¯
and
y
¯
F
, derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of
L
¯
d
Total
and
L
¯
t
Total
with
y
¯
D
and
y
¯
T
experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.
Collapse
|
28
|
A systematic review of clinical studies on variable proton Relative Biological Effectiveness (RBE). Radiother Oncol 2022; 175:79-92. [PMID: 35988776 DOI: 10.1016/j.radonc.2022.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Recently, a number of clinical studies have explored links between possible Relative Biological Effectiveness (RBE) elevations and patient toxicities and/or image changes following proton therapy. Our objective was to perform a systematic review of such studies. We applied a "Problem [RBE], Intervention [Protons], Population [Patients], Outcome [Side effect]" search strategy to the PubMed database. From our search, we retrieved studies which: (a) performed novel voxel-wise analyses of patient effects versus physical dose and LET (n = 13), and (b) compared image changes between proton and photon cohorts with regard to proton RBE (n = 9). For each retrieved study, we extracted data regarding: primary tumour type; size of patient cohort; type of image change studied; image-registration method (deformable or rigid); LET calculation method, and statistical methodology. We compared and contrasted their methods in order to discuss the weight of clinical evidence for variable proton RBE. We concluded that clinical evidence for variable proton RBE remains statistically weak at present. Our principal recommendation is that proton centres and clinical trial teams collaborate to standardize follow-up protocols and statistical analysis methods, so that larger patient cohorts can ultimately be considered for RBE analyses.
Collapse
|
29
|
Parisi G, Schettino G, Romano F. A systematic study of the contribution of counting statistics to the final lineal energy uncertainty in microdosimetry. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac79fb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objectives. Microdosimetry is proving to be a reliable and powerful tool to be applied in different fields such as radiobiology, radiation protection and hadron therapy. However, accepted standard protocols and codes of practice are still missing. With this regard, a systematic and methodical uncertainty analysis is fundamental to build an accredited uncertainty budget of practical use. This work studied the contribution of counting statistics (i.e. number of events collected) to the final frequency-mean and dose-mean lineal energy uncertainties, aiming at providing guidelines for good experimental and simulation practice. The practical limitation of current technologies and the non-negligible probability of nuclear reactions require careful considerations and nonlinear approaches. Approach. Microdosimetric data were obtained by means of the particle tracking Monte Carlo code Geant4. The uncertainty analysis was carried out relying on a Monte Carlo based numerical analysis, as suggested by the BIPM's ‘Guide to the expression of uncertainty in measurement’. Final uncertainties were systematically investigated for proton, helium and carbon ions at an increasing number of detected events, for a range of different clinical-relevant beam energies. Main results. Rare events generated by nuclear interactions in the detector sensitive volume were found to massively degrade microdosimetric uncertainties unless a very high statistics is collected. The study showed an increasing impact of such events for increasing beam energy and lighter ions. For instance, in the entrance region of a 250 MeV proton beam, about 5 ∗ 107 events need to be collected to obtain a dose-mean lineal energy uncertainty below 10%. Significance. The results of this study help define the necessary conditions to achieve appropriate statistics in computational microdosimetry, pointing out the importance of properly taking into account nuclear interaction events. Their impact on microdosimetric quantities and on their uncertainty is significant and cannot be overlooked, particularly when characterising clinical beams and radiobiological response. This work prepared the ground for deeper investigations involving dedicated experiments and for the development of a method to properly evaluate the counting statistics uncertainty contribution in the uncertainty budget, whose accuracy is fundamental for the clinical transition of microdosimetry.
Collapse
|
30
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
31
|
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. Int J Mol Sci 2022; 23:ijms23137465. [PMID: 35806469 PMCID: PMC9267413 DOI: 10.3390/ijms23137465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Collapse
|
32
|
Pompos A, Foote RL, Koong AC, Le QT, Mohan R, Paganetti H, Choy H. National Effort to Re-Establish Heavy Ion Cancer Therapy in the United States. Front Oncol 2022; 12:880712. [PMID: 35774126 PMCID: PMC9238353 DOI: 10.3389/fonc.2022.880712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.
Collapse
Affiliation(s)
- Arnold Pompos
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | - Albert C. Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Hak Choy
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
33
|
Heuchel L, Hahn C, Pawelke J, Sørensen BS, Dosanjh M, Lühr A. Clinical use and future requirements of relative biological effectiveness: survey among all european proton therapy centres. Radiother Oncol 2022; 172:134-139. [PMID: 35605747 DOI: 10.1016/j.radonc.2022.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE The relative biological effectiveness (RBE) varies along the treatment field. However, in clinical practice, a constant RBE of 1.1 is assumed, which can result in undesirable side effects. This study provides an accurate overview of current clinical practice for considering proton RBE in Europe. MATERIALS AND METHODS A survey was devised and sent to all proton therapy centres in Europe that treat patients. The online questionnaire consisted of 39 questions addressing various aspects of RBE consideration in clinical practice, including treatment planning, patient follow-up and future demands. RESULTS All 25 proton therapy centres responded. All centres prescribed a constant RBE of 1.1, but also applied measures (except for one eye treatment centre) to counteract variable RBE effects such as avoiding beams stopping inside or in front of an organ at risk and putting restrictions on the minimum number and opening angle of incident beams for certain treatment sites. For the future, most centres (16) asked for more retrospective or prospective outcome studies investigating the potential effect of the effect of a variable RBE. To perform such studies, 18 centres asked for LET and RBE calculation and visualisation tools developed by treatment planning system vendors. CONCLUSION All European proton centres are aware of RBE variability but comply with current guidelines of prescribing a constant RBE. However, they actively mitigate uncertainty and risk of side effects resulting from increased RBE by applying measures and restrictions during treatment planning. To change RBE-related clinical guidelines in the future more clinical data on RBE are explicitly demanded.
Collapse
Affiliation(s)
- Lena Heuchel
- Department of Physics, TU Dortmund University, Germany
| | - Christian Hahn
- Department of Physics, TU Dortmund University, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, DCPT, Aarhus University Hospital, Denmark
| | - Manjit Dosanjh
- Department of Physics, University of Oxford, UK; CERN, Geneva, Switzerland
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Germany.
| |
Collapse
|
34
|
Parisi A, Furutani KM, Beltran CJ. On the calculation of the relative biological effectiveness of ion radiation therapy using a biological weighting function, the microdosimetric kinetic model (MKM) and subsequent corrections (non-Poisson MKM and modified MKM). Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fdf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/22/2022] [Indexed: 12/31/2022]
Abstract
Abstract
Objective. To investigate similarities and differences in the formalism, processing, and the results of relative biological effectiveness (RBE) calculations with a biological weighting function (BWF), the microdosimetric kinetic model (MKM) and subsequent modifications (non-Poisson MKM, modified MKM). This includes: (a) the extension of the V79-RBE10% BWF to model the RBE for other clonogenic survival levels; (b) a novel implementation of MKMs as weighting functions; (c) a benchmark against Chinese Hamster lung fibroblast (V79) in vitro data; (d) a study on the effect of pre- or post- processing the average biophysical quantities used for the RBE calculations; (e) a possible modification of the modified MKM parameters to improve the model accuracy at high linear energy transfer (LET). Methodology. Lineal energy spectra were simulated for two spherical targets (diameter = 0.464 or 1.0 μm) using PHITS for 1H, 4He, 12C, 20Ne, 40Ar, 56Fe and 132Xe ions. The results of the in silico calculations were compared with published in vitro data. Main results. All models appear to underestimate the RBE
α
of hydrogen ions. All MKMs generally overestimate the RBE50%, RBE10% and RBE1% for ions with an LET greater than ∼200 keV μm−1. This overestimation is greater for small surviving fractions and is likely due to the assumption of a radiation-independent quadratic term of clonogenic survival (ß). The overall RBE trends seem to be best described by the novel ‘post-processing average’ implementation of the non-Poisson MKM. In case of calculations with the non-Poisson MKM, pre- or post- processing the average biophysical quantities affects the computed RBE values significantly. Significance. This study presents a systematic analysis of the formalism and results of widely used microdosimetric models of clonogenic survival for ions relevant for cancer particle therapy and space radiation protection. Points for improvements were highlighted and will contribute to the development of upgraded biophysical models.
Collapse
|
35
|
Parisi A, Olko P, Swakon J, Horwacik T, Jablonski H, Malinowski L, Nowak T, Struelens L, Vanhavere F. Microdosimetric characterization of a clinical proton therapy beam: comparison between simulated lineal energy distributions in spherical water targets and experimental measurements with a silicon detector. Phys Med Biol 2021; 67. [PMID: 34933289 DOI: 10.1088/1361-6560/ac4563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Objective Treatment planning based on computer simulations were proposed to account for the increase in the relative biological effectiveness (RBE) of proton radiotherapy beams near to the edges of the irradiated volume. Since silicon detectors could be used to validate the results of these simulations, it is important to explore the limitations of this comparison. Approach Microdosimetric measurements with a MicroPlus Bridge V2 silicon detector (thickness = 10 µm) were performed along the Bragg peak of a clinical proton beam. The lineal energy distributions, the dose mean values, and the RBE calculated with a biological weighting function were compared with simulations with PHITS (microdosimetric target = 1 µm water sphere), and published clonogenic survival in vitro RBE data for the V79 cell line. The effect of the silicon-to-water conversion was also investigated by comparing three different methodologies (conversion based on a single value, novel bin-to-bin conversions based on SRIM and PSTAR). Main results Mainly due to differences in the microdosimetric targets, the experimental dose-mean lineal energy and RBE values at the distal edge were respectively up to 53% and 28% lower than the simulated ones. Furthermore, the methodology chosen for the silicon-to-water conversion was proven to affect the dose mean lineal energy and the RBE10 up to 32% and 11% respectively. The best methodology to compensate for this underestimation was the bin-to-bin silicon-to-water conversion based on PSTAR. Significance This work represents the first comparison between PHITS-simulated lineal energy distributions in water targets and corresponding experimental spectra measured with silicon detectors. Furthermore, the effect of the silicon-to-water conversion on the RBE was explored for the first time. The proposed methodology based on the PSTAR bin-to-bin conversion appears to provide superior results with respect to commonly used single scaling factors and is recommended for future studies.
Collapse
Affiliation(s)
| | - Pawel Olko
- IFJ PAN, Walerego Eljasza Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Jan Swakon
- IFJ PAN, Walerego Eljasza Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Tomasz Horwacik
- IF PAN, Walerego Eljasza Radzikowskiego 152, Krakow, Kraków, 31-342, POLAND
| | - Hubert Jablonski
- IFJ PAN, Walerego Eljasza Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Leszek Malinowski
- IFJ PAN, Walerego Eljasza Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Tomasz Nowak
- IFJ PAN, Walerego Eljasza Radzikowskiego 152, Krakow, 31-342, POLAND
| | | | | |
Collapse
|
36
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
37
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
39
|
Riva G, Vischioni B, Gandini S, Cavalieri S, Ronchi S, Barcellini A, Bonora M, Chalaszczyk A, Ingargiola R, Vitolo V, Fiore MR, Iannalfi A, Orlandi E. Particle Beam Therapy Tolerance and Outcome on Patients with Autoimmune Diseases: A Single Institution Matched Case-Control Study. Cancers (Basel) 2021; 13:cancers13205183. [PMID: 34680331 PMCID: PMC8534022 DOI: 10.3390/cancers13205183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
It is unclear whether autoimmune diseases (ADs) may predispose patients to higher radiation-induced toxicity, and no data are available regarding particle therapy. Our objective was to determine if cancer patients with ADs have a higher incidence of complications after protons (PT) or carbon ion (CIRT) therapy. METHODS In our retrospective monocentric study, 38 patients with ADs over 1829 patients were treated with particle therapy between 2011 and 2020. Thirteen patients had collagen vascular disease (CVD), five an inflammatory bowel disease (IBD) and twenty patients an organ-specific AD. Each patient was matched with two control patients without ADs on the basis of type/site of cancer, type of particle treatment, age, sex, hypertension and/or diabetes and previous surgery. RESULTS No G4-5 complications were reported. In the AD group, the frequency of acute grade 3 (G3) toxicity was higher than in the control group (15.8% vs. 2.6%, p = 0.016). Compared to their matched controls, CVD-IBD patients had a higher frequency of G3 acute complications (27.7 vs. 2.6%, p = 0.002). There was no difference between AD patients (7.9%) and controls (2.6%) experiencing late G3 toxicity (p = 0.33). The 2 years disease-free survival was lower in AD patients than in controls (74% vs. 91%, p = 0.01), although the differences in terms of survival were not significant. CONCLUSIONS G3 acute toxicity was more frequently reported in AD patients after PT or CIRT. Since no severe G4-G5 events were reported and in consideration of the benefit of particle therapy for selected cancers, we conclude that particle therapy should be not discouraged for patients with ADs. Further prospective studies are warranted to gain insight into toxicity in cancer patients with ADs enrolled for particle therapy.
Collapse
Affiliation(s)
- Giulia Riva
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
- Correspondence: ; Tel.: +39-0382-078-501
| | - Barbara Vischioni
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20139 Milan, Italy;
| | - Stefano Cavalieri
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Sara Ronchi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Amelia Barcellini
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Maria Bonora
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Agnieszka Chalaszczyk
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Rossana Ingargiola
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Viviana Vitolo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Maria Rosaria Fiore
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Alberto Iannalfi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| | - Ester Orlandi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (B.V.); (S.R.); (A.B.); (M.B.); (A.C.); (R.I.); (V.V.); (M.R.F.); (A.I.); (E.O.)
| |
Collapse
|
40
|
Bellinzona EV, Grzanka L, Attili A, Tommasino F, Friedrich T, Krämer M, Scholz M, Battistoni G, Embriaco A, Chiappara D, Cirrone GAP, Petringa G, Durante M, Scifoni E. Biological Impact of Target Fragments on Proton Treatment Plans: An Analysis Based on the Current Cross-Section Data and a Full Mixed Field Approach. Cancers (Basel) 2021; 13:cancers13194768. [PMID: 34638254 PMCID: PMC8507563 DOI: 10.3390/cancers13194768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Proton therapy is now an established external radiotherapy modality for cancer treatment. Clinical routine currently neglects the radiobiological impact of nuclear target fragments even if experimental evidences show a significant enhancement in cell-killing effect due to secondary particles. This paper quantifies the contribution of proton target fragments of different charge in different irradiation scenarios and compares the computationally predicted corrections to the overall biological dose with experimental data. Abstract Clinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact challenging due to their very short range. However, considering their low residual energy and therefore high LET, the possible contribution of such heavy particles to the overall biological effect could be not negligible. In this context, we performed a systematic analysis aimed at an explicit assessment of the RBE (relative biological effectiveness, i.e., the ratio of photon to proton physical dose needed to achieve the same biological effect) contribution of target fragments in the biological dose calculations of proton fields. The TOPAS Monte Carlo code has been used to characterize the radiation field, i.e., for the scoring of primary protons and fragments in an exemplary water target. TRiP98, in combination with LEM IV RBE tables, was then employed to evaluate the RBE with a mixed field approach accounting for fragments’ contributions. The results were compared with that obtained by considering only primary protons for the pristine beam and spread out Bragg peak (SOBP) irradiations, in order to estimate the relative weight of target fragments to the overall RBE. A sensitivity analysis of the secondary particles production cross-sections to the biological dose has been also carried out in this study. Finally, our modeling approach was applied to the analysis of a selection of cell survival and RBE data extracted from published in vitro studies. Our results indicate that, for high energy proton beams, the main contribution to the biological effect due to the secondary particles can be attributed to secondary protons, while the contribution of heavier fragments is mainly due to helium. The impact of target fragments on the biological dose is maximized in the entrance channels and for small α/β values. When applied to the description of survival data, model predictions including all fragments allowed better agreement to experimental data at high energies, while a minor effect was observed in the peak region. An improved description was also obtained when including the fragments’ contribution to describe RBE data. Overall, this analysis indicates that a minor contribution can be expected to the overall RBE resulting from target fragments. However, considering the fragmentation effects can improve the agreement with experimental data for high energy proton beams.
Collapse
Affiliation(s)
- Elettra Valentina Bellinzona
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 38123 Trento, Italy; (E.V.B.); (F.T.)
- Department of Physics, University of Trento, 38123 Trento, Italy;
| | - Leszek Grzanka
- The Department of Radiation Research and Proton Radiotherapy, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Andrea Attili
- “Roma Tre” Section, INFN—National Institute for Nuclear Physics, 00146 Roma, Italy;
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 38123 Trento, Italy; (E.V.B.); (F.T.)
- Department of Physics, University of Trento, 38123 Trento, Italy;
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
| | - Michael Krämer
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
| | - Michael Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
| | | | - Alessia Embriaco
- “Pavia” Section, INFN—National Institute for Nuclear Physics, 6-27100 Pavia, Italy;
| | - Davide Chiappara
- Laboratori Nazionali del Sud, INFN—National Institute for Nuclear Physics, 95125 Catania, Italy; (D.C.); (G.A.P.C.); (G.P.)
| | - Giuseppe A. P. Cirrone
- Laboratori Nazionali del Sud, INFN—National Institute for Nuclear Physics, 95125 Catania, Italy; (D.C.); (G.A.P.C.); (G.P.)
| | - Giada Petringa
- Laboratori Nazionali del Sud, INFN—National Institute for Nuclear Physics, 95125 Catania, Italy; (D.C.); (G.A.P.C.); (G.P.)
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
- Institut für Physik Kondensierter Materie, Technische Universität, 64289 Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 38123 Trento, Italy; (E.V.B.); (F.T.)
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Correspondence:
| |
Collapse
|
41
|
Predict Treatment Response by Magnetic Resonance Diffusion Weighted Imaging: A Preliminary Study on 46 Meningiomas Treated with Proton-Therapy. Diagnostics (Basel) 2021; 11:diagnostics11091684. [PMID: 34574025 PMCID: PMC8469991 DOI: 10.3390/diagnostics11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: a considerable subgroup of meningiomas (MN) exhibit indolent and insidious growth. Strategies to detect earlier treatment responses based on tumour biology rather than on size can be useful. We aimed to characterize therapy-induced changes in the apparent diffusion coefficient (ADC) of MN treated with proton-therapy (PT), determining whether the pre- and early post-treatment ADC values may predict tumour response. Methods: Forty-four subjects with MN treated with PT were retrospectively enrolled. All patients underwent conventional magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) at baseline and each 3 months for a follow-up period up to 36 months after the beginning of PT. Mean relative ADC (rADCm) values of 46 MN were measured at each exam. The volume variation percentage (VV) for each MN was calculated. The Wilcoxon test was used to assess the differences in rADCm values between pre-treatment and post-treatment exams. Patients were grouped in terms of VV (threshold −20%). A p < 0.05 was considered statistically significant for all the tests. Results: A significant progressive increase of rADCm values was detected at each time point when compared to baseline rADCm (p < 0.05). Subjects that showed higher pre-treatment rADCm values had no significant volume changes or showed volume increase, while subjects that showed a VV < −20% had significantly lower pre-treatment rADCm values. Higher and earlier rADCm increases (3 months) are related to greater volume reduction. Conclusion: In MN treated with PT, pre-treatment rADCm values and longitudinal rADCm changes may predict treatment response.
Collapse
|
42
|
Sørensen BS, Pawelke J, Bauer J, Burnet NG, Dasu A, Høyer M, Karger CP, Krause M, Schwarz M, Underwood TSA, Wagenaar D, Whitfield GA, Lühr A. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiother Oncol 2021; 163:177-184. [PMID: 34480959 DOI: 10.1016/j.radonc.2021.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Clinical treatment with protons uses the concept of relative biological effectiveness (RBE) to convert the absorbed dose into an RBE-weighted dose that equals the dose for radiotherapy with photons causing the same biological effect. Currently, in proton therapy a constant RBE of 1.1 is generically used. However, empirical data indicate that the RBE is not constant, but increases at the distal edge of the proton beam. This increase in RBE is of concern, as the clinical impact is still unresolved, and clinical studies demonstrating a clinical effect of an increased RBE are emerging. Within the European Particle Therapy Network (EPTN) work package 6 on radiobiology and RBE, a workshop was held in February 2020 in Manchester with one day of discussion dedicated to the impact of proton RBE in a clinical context. Current data on RBE effects, patient outcome and modelling from experimental as well as clinical studies were presented and discussed. Furthermore, representatives from European clinical proton therapy centres, who were involved in patient treatment, laid out their current clinical practice on how to consider the risk of a variable RBE in their centres. In line with the workshop, this work considers the actual impact of RBE issues on patient care in proton therapy by reviewing preclinical data on the relation between linear energy transfer (LET) and RBE, current clinical data sets on RBE effects in patients, and applied clinical strategies to manage RBE uncertainties. A better understanding of the variability in RBE would allow development of proton treatments which are safer and more effective.
Collapse
Affiliation(s)
- Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Christian P Karger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium Dresden and German Cancer Research Center Heidelberg, Germany; Dept. of Radiation Oncology, University Hospital and Faculty of Medicine C.G. Carus, Dresden, Germany; National Center for Tumor Diseases Dresden, German Cancer Research Center Heidelberg, University Hospital and Faculty of Medicine C.G. Carus Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Marco Schwarz
- Protontherapy Department -Trento Hospital, and TIFPA-INFN, Trento, Italy
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, UK
| | - Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, UK
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
43
|
Licursi V, Wang W, Di Nisio E, Cammarata FP, Acquaviva R, Russo G, Manti L, Cestelli Guidi M, Fratini E, Kamel G, Amendola R, Pisciotta P, Negri R. Transcriptional modulations induced by proton irradiation in mice skin in function of adsorbed dose and distance. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1949675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Valerio Licursi
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| | - Wei Wang
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| | - Elena Di Nisio
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR) , CNR, Cefalù (PA), Italy
- Laboratori Nazionali del Sud, INFN, Catania, Italy
| | - Rosaria Acquaviva
- Laboratori Nazionali del Sud, INFN, Catania, Italy
- Department of Drug and Health Science, Biochemistry section, University of Catania, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR) , CNR, Cefalù (PA), Italy
- Laboratori Nazionali del Sud, INFN, Catania, Italy
| | - Lorenzo Manti
- Department of Physics “E. Pancini” University of Naples Federico II, University of Naples Federico II, Naples, Italy
- Section of Naples, INFN, Naples, Italy
| | | | - Emiliano Fratini
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Gihan Kamel
- SESAME (Synchrotron - Light for Experimental Science and Applications in the Middle East), Allan, Jordan
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Roberto Amendola
- SSPT-TECS-SAM, CR Casaccia, ENEA, SSPT-TECS-SAM, CR Casaccia, Rome, Italy
| | - Pietro Pisciotta
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR) , CNR, Cefalù (PA), Italy
- Laboratori Nazionali del Sud, INFN, Catania, Italy
- Department of Radiotherapy, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rodolfo Negri
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Cunningham C, de Kock M, Engelbrecht M, Miles X, Slabbert J, Vandevoorde C. Radiosensitization Effect of Gold Nanoparticles in Proton Therapy. Front Public Health 2021; 9:699822. [PMID: 34395371 PMCID: PMC8358148 DOI: 10.3389/fpubh.2021.699822] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
The number of proton therapy facilities and the clinical usage of high energy proton beams for cancer treatment has substantially increased over the last decade. This is mainly due to the superior dose distribution of proton beams resulting in a reduction of side effects and a lower integral dose compared to conventional X-ray radiotherapy. More recently, the usage of metallic nanoparticles as radiosensitizers to enhance radiotherapy is receiving growing attention. While this strategy was originally intended for X-ray radiotherapy, there is currently a small number of experimental studies indicating promising results for proton therapy. However, most of these studies used low proton energies, which are less applicable to clinical practice; and very small gold nanoparticles (AuNPs). Therefore, this proof of principle study evaluates the radiosensitization effect of larger AuNPs in combination with a 200 MeV proton beam. CHO-K1 cells were exposed to a concentration of 10 μg/ml of 50 nm AuNPs for 4 hours before irradiation with a clinical proton beam at NRF iThemba LABS. AuNP internalization was confirmed by inductively coupled mass spectrometry and transmission electron microscopy, showing a random distribution of AuNPs throughout the cytoplasm of the cells and even some close localization to the nuclear membrane. The combined exposure to AuNPs and protons resulted in an increase in cell killing, which was 27.1% at 2 Gy and 43.8% at 6 Gy, compared to proton irradiation alone, illustrating the radiosensitizing potential of AuNPs. Additionally, cells were irradiated at different positions along the proton depth-dose curve to investigate the LET-dependence of AuNP radiosensitization. An increase in cytogenetic damage was observed at all depths for the combined treatment compared to protons alone, but no incremental increase with LET could be determined. In conclusion, this study confirms the potential of 50 nm AuNPs to increase the therapeutic efficacy of proton therapy.
Collapse
Affiliation(s)
- Charnay Cunningham
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa.,Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Maryna de Kock
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Monique Engelbrecht
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa.,Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Xanthene Miles
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa
| | - Jacobus Slabbert
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, National Research Foundation, Cape Town, South Africa
| |
Collapse
|
45
|
Howard ME, Denbeigh JM, Debrot EK, Garcia DA, Remmes NB, Herman MG, Beltran CJ. Dosimetric Assessment of a High Precision System for Mouse Proton Irradiation to Assess Spinal Cord Toxicity. Radiat Res 2021; 195:541-548. [PMID: 33826742 DOI: 10.1667/rade-20-00153.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
The uncertainty associated with the relative biological effectiveness (RBE) in proton therapy, particularly near the Bragg peak (BP), has led to the shift towards biological-based treatment planning. Proton RBE uncertainty has recently been reported as a possible cause for brainstem necrosis in pediatric patients treated with proton therapy. Despite this, in vivo studies have been limited due to the complexity of accurate delivery and absolute dosimetry. The purpose of this investigation was to create a precise and efficient method of treating the mouse spinal cord with various portions of the proton Bragg curve and to quantify associated uncertainties for the characterization of proton RBE. Mice were restrained in 3D printed acrylic boxes, shaped to their external contour, with a silicone insert extending down to mold around the mouse. Brass collimators were designed for parallel opposed beams to treat the spinal cord while shielding the brain and upper extremities of the animal. Up to six animals may be accommodated for simultaneous treatment within the restraint system. Two plans were generated targeting the cervical spinal cord, with either the entrance (ENT) or the BP portion of the beam. Dosimetric uncertainty was measured using EBT3 radiochromic film with a dose-averaged linear energy transfer (LETd) correction. Positional uncertainty was assessed by collecting a library of live mouse scans (n = 6 mice, two independent scans per mouse) and comparing the following dosimetric statistics from the mouse cervical spinal cord: Volume receiving 90% of the prescription dose (V90); mean dose to the spinal cord; and LETd. Film analysis results showed the dosimetric uncertainty to be ±1.2% and ±5.4% for the ENT and BP plans, respectively. Preliminary results from the mouse library showed the V90 to be 96.3 ± 4.8% for the BP plan. Positional uncertainty of the ENT plan was not measured due to the inherent robustness of that treatment plan. The proposed high-throughput mouse proton irradiation setup resulted in accurate dose delivery to mouse spinal cords positioned along the ENT and BP. Future directions include adapting the setup to account for weight fluctuations in mice undergoing fractionated irradiation.
Collapse
Affiliation(s)
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021; 97:1229-1240. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
Collapse
Affiliation(s)
- Otilija Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Pablo Cirrone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
- Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Institute of Physics (IoP) of the Czech Academy of Science (CAS), ELI-Beamlines, Prague, Czech Republic
| | - Giacomo Cuttone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, NIRS, Chiba, QST, Japan
| | - Wook-Geun Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | | | - Ivan Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
47
|
Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?-An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143429. [PMID: 34298642 PMCID: PMC8307065 DOI: 10.3390/cancers13143429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor hypoxia is considered a critical factor associated with the resistance of conventional radiotherapy, where the X-ray-induced free radicals lead to DNA damage in a manner that is strongly dependent on the tissue oxygenation. The emerging PSMA-directed radioligand therapy (RLT) employs the α or β particles emitted by the radiopharmaceuticals to kill the tumor cells. In contrast to conventional therapy, the induced DNA damage is less dependent on the oxygenation status. Less attention has been paid to investigating whether tumor hypoxia will influence the efficacy of PSMA-directed RLT. We propose a histology-driven in silico model to quantitatively investigate the influence of tumor hypoxia on the treatment outcome for PSMA-directed RLT with 177Lu and 225Ac. Our finding suggests that hypoxia is a factor to be considered for the application of PSMA-directed RLT. Abstract Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection–reaction–diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome.
Collapse
|
48
|
Miles X, Vandevoorde C, Hunter A, Bolcaen J. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Front Oncol 2021; 11:703442. [PMID: 34307171 PMCID: PMC8296304 DOI: 10.3389/fonc.2021.703442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Inhibition of the MDM2/X-p53 interaction is recognized as a potential anti-cancer strategy, including the treatment of glioblastoma (GB). In response to cellular stressors, such as DNA damage, the tumor suppression protein p53 is activated and responds by mediating cellular damage through DNA repair, cell cycle arrest and apoptosis. Hence, p53 activation plays a central role in cell survival and the effectiveness of cancer therapies. Alterations and reduced activity of p53 occur in 25-30% of primary GB tumors, but this number increases drastically to 60-70% in secondary GB. As a result, reactivating p53 is suggested as a treatment strategy, either by using targeted molecules to convert the mutant p53 back to its wild type form or by using MDM2 and MDMX (also known as MDM4) inhibitors. MDM2 down regulates p53 activity via ubiquitin-dependent degradation and is amplified or overexpressed in 14% of GB cases. Thus, suppression of MDM2 offers an opportunity for urgently needed new therapeutic interventions for GB. Numerous small molecule MDM2 inhibitors are currently undergoing clinical evaluation, either as monotherapy or in combination with chemotherapy and/or other targeted agents. In addition, considering the major role of both p53 and MDM2 in the downstream signaling response to radiation-induced DNA damage, the combination of MDM2 inhibitors with radiation may offer a valuable therapeutic radiosensitizing approach for GB therapy. This review covers the role of MDM2/X in cancer and more specifically in GB, followed by the rationale for the potential radiosensitizing effect of MDM2 inhibition. Finally, the current status of MDM2/X inhibition and p53 activation for the treatment of GB is given.
Collapse
Affiliation(s)
- Xanthene Miles
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Alistair Hunter
- Radiobiology Section, Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
49
|
McMahon SJ, Prise KM. A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Front Oncol 2021; 11:689112. [PMID: 34268120 PMCID: PMC8276175 DOI: 10.3389/fonc.2021.689112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Variations in the intrinsic radiosensitivity of different cells to ionizing radiation is now widely believed to be a significant driver in differences in response to radiotherapy. While the mechanisms of radiosensitivity have been extensively studied in the laboratory, there are a lack of models which integrate this knowledge into a predictive framework. This paper presents an overview of the Medras model, which has been developed to provide a mechanistic framework in which different radiation responses can be modelled and individual responses predicted. This model simulates the repair of radiation-induced DNA damage, incorporating the overall kinetics of repair and its fidelity, to predict a range of biological endpoints including residual DNA damage, mutation, chromosome aberration, and cell death. Validation of this model against a range of exposure types is presented, including considerations of varying radiation qualities and dose-rates. This approach has the potential to inform new tools to deliver mechanistic predictions of radiation sensitivity, and support future developments in treatment personalization.
Collapse
Affiliation(s)
- Stephen Joseph McMahon
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | |
Collapse
|
50
|
Abstract
Radiotherapy delivered using photons induces an immune response that leads to modulation of the tumor microenvironment. Clinical studies are ongoing to evaluate immune checkpoint inhibitors in association with photon radiotherapy. At present, there is no publication on the radio-induced immune response after proton therapy. Balb/c mice bearing subcutaneous CT26 colon tumors were irradiated by a single fraction of 16.4 Gy using a proton beam extracted from a TR24 cyclotron. RNA sequencing analysis was assessed at 3 days post-treatment. Proton therapy immune response was monitored by flow cytometry using several panels (lymphoid, myeloid cells, lymphoid cytokines) at 7 and 14 days post-irradiation. RNA-Seq functional profiling identified a large number of GO categories linked to “immune response” and “interferon signaling”. Immunomonitoring evaluation showed induced tumor infiltration by immune cells. This is the first study showing the effect of proton therapy on immune response. These interesting results provide a sound basis to assess the efficacy of a combination of proton therapy and immune checkpoint inhibitors.
Collapse
|